Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1980,2,Mod(1,1980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1980, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1980.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1980 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1980.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(15.8103796002\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 660) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1980.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.00000 | 0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.00000 | 0.755929 | 0.377964 | − | 0.925820i | \(-0.376624\pi\) | ||||
0.377964 | + | 0.925820i | \(0.376624\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −1.00000 | −0.301511 | ||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.00000 | 0.554700 | 0.277350 | − | 0.960769i | \(-0.410544\pi\) | ||||
0.277350 | + | 0.960769i | \(0.410544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 2.00000 | 0.458831 | 0.229416 | − | 0.973329i | \(-0.426318\pi\) | ||||
0.229416 | + | 0.973329i | \(0.426318\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 8.00000 | 1.43684 | 0.718421 | − | 0.695608i | \(-0.244865\pi\) | ||||
0.718421 | + | 0.695608i | \(0.244865\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 2.00000 | 0.338062 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000 | 0.328798 | 0.164399 | − | 0.986394i | \(-0.447432\pi\) | ||||
0.164399 | + | 0.986394i | \(0.447432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 2.00000 | 0.304997 | 0.152499 | − | 0.988304i | \(-0.451268\pi\) | ||||
0.152499 | + | 0.988304i | \(0.451268\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3.00000 | −0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −1.00000 | −0.134840 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 12.0000 | 1.56227 | 0.781133 | − | 0.624364i | \(-0.214642\pi\) | ||||
0.781133 | + | 0.624364i | \(0.214642\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 2.00000 | 0.256074 | 0.128037 | − | 0.991769i | \(-0.459132\pi\) | ||||
0.128037 | + | 0.991769i | \(0.459132\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 2.00000 | 0.248069 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −4.00000 | −0.488678 | −0.244339 | − | 0.969690i | \(-0.578571\pi\) | ||||
−0.244339 | + | 0.969690i | \(0.578571\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000 | 0.234082 | 0.117041 | − | 0.993127i | \(-0.462659\pi\) | ||||
0.117041 | + | 0.993127i | \(0.462659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −2.00000 | −0.227921 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −10.0000 | −1.12509 | −0.562544 | − | 0.826767i | \(-0.690177\pi\) | ||||
−0.562544 | + | 0.826767i | \(0.690177\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000 | 1.31717 | 0.658586 | − | 0.752506i | \(-0.271155\pi\) | ||||
0.658586 | + | 0.752506i | \(0.271155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.00000 | 0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 2.00000 | 0.205196 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 14.0000 | 1.42148 | 0.710742 | − | 0.703452i | \(-0.248359\pi\) | ||||
0.710742 | + | 0.703452i | \(0.248359\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000 | 1.16008 | 0.580042 | − | 0.814587i | \(-0.303036\pi\) | ||||
0.580042 | + | 0.814587i | \(0.303036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −6.00000 | −0.564433 | −0.282216 | − | 0.959351i | \(-0.591070\pi\) | ||||
−0.282216 | + | 0.959351i | \(0.591070\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 1.00000 | 0.0909091 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 1.00000 | 0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 2.00000 | 0.177471 | 0.0887357 | − | 0.996055i | \(-0.471717\pi\) | ||||
0.0887357 | + | 0.996055i | \(0.471717\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 4.00000 | 0.346844 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −6.00000 | −0.512615 | −0.256307 | − | 0.966595i | \(-0.582506\pi\) | ||||
−0.256307 | + | 0.966595i | \(0.582506\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −22.0000 | −1.86602 | −0.933008 | − | 0.359856i | \(-0.882826\pi\) | ||||
−0.933008 | + | 0.359856i | \(0.882826\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −2.00000 | −0.167248 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 12.0000 | 0.983078 | 0.491539 | − | 0.870855i | \(-0.336434\pi\) | ||||
0.491539 | + | 0.870855i | \(0.336434\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 14.0000 | 1.13930 | 0.569652 | − | 0.821886i | \(-0.307078\pi\) | ||||
0.569652 | + | 0.821886i | \(0.307078\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 8.00000 | 0.642575 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.0000 | 1.11732 | 0.558661 | − | 0.829396i | \(-0.311315\pi\) | ||||
0.558661 | + | 0.829396i | \(0.311315\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 8.00000 | 0.626608 | 0.313304 | − | 0.949653i | \(-0.398564\pi\) | ||||
0.313304 | + | 0.949653i | \(0.398564\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 24.0000 | 1.85718 | 0.928588 | − | 0.371113i | \(-0.121024\pi\) | ||||
0.928588 | + | 0.371113i | \(0.121024\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −9.00000 | −0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −12.0000 | −0.912343 | −0.456172 | − | 0.889892i | \(-0.650780\pi\) | ||||
−0.456172 | + | 0.889892i | \(0.650780\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 2.00000 | 0.151186 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 12.0000 | 0.896922 | 0.448461 | − | 0.893802i | \(-0.351972\pi\) | ||||
0.448461 | + | 0.893802i | \(0.351972\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 2.00000 | 0.147043 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −10.0000 | −0.719816 | −0.359908 | − | 0.932988i | \(-0.617192\pi\) | ||||
−0.359908 | + | 0.932988i | \(0.617192\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 12.0000 | 0.854965 | 0.427482 | − | 0.904024i | \(-0.359401\pi\) | ||||
0.427482 | + | 0.904024i | \(0.359401\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −2.00000 | −0.138343 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −22.0000 | −1.51454 | −0.757271 | − | 0.653101i | \(-0.773468\pi\) | ||||
−0.757271 | + | 0.653101i | \(0.773468\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 2.00000 | 0.136399 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 16.0000 | 1.08615 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 20.0000 | 1.33930 | 0.669650 | − | 0.742677i | \(-0.266444\pi\) | ||||
0.669650 | + | 0.742677i | \(0.266444\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000 | 0.796468 | 0.398234 | − | 0.917284i | \(-0.369623\pi\) | ||||
0.398234 | + | 0.917284i | \(0.369623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 2.00000 | 0.132164 | 0.0660819 | − | 0.997814i | \(-0.478950\pi\) | ||||
0.0660819 | + | 0.997814i | \(0.478950\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −12.0000 | −0.786146 | −0.393073 | − | 0.919507i | \(-0.628588\pi\) | ||||
−0.393073 | + | 0.919507i | \(0.628588\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −12.0000 | −0.776215 | −0.388108 | − | 0.921614i | \(-0.626871\pi\) | ||||
−0.388108 | + | 0.921614i | \(0.626871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −10.0000 | −0.644157 | −0.322078 | − | 0.946713i | \(-0.604381\pi\) | ||||
−0.322078 | + | 0.946713i | \(0.604381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −3.00000 | −0.191663 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 4.00000 | 0.254514 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −12.0000 | −0.757433 | −0.378717 | − | 0.925513i | \(-0.623635\pi\) | ||||
−0.378717 | + | 0.925513i | \(0.623635\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −18.0000 | −1.12281 | −0.561405 | − | 0.827541i | \(-0.689739\pi\) | ||||
−0.561405 | + | 0.827541i | \(0.689739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 4.00000 | 0.248548 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −6.00000 | −0.368577 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −30.0000 | −1.82913 | −0.914566 | − | 0.404436i | \(-0.867468\pi\) | ||||
−0.914566 | + | 0.404436i | \(0.867468\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 2.00000 | 0.121491 | 0.0607457 | − | 0.998153i | \(-0.480652\pi\) | ||||
0.0607457 | + | 0.998153i | \(0.480652\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −1.00000 | −0.0603023 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2.00000 | 0.120168 | 0.0600842 | − | 0.998193i | \(-0.480863\pi\) | ||||
0.0600842 | + | 0.998193i | \(0.480863\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 26.0000 | 1.54554 | 0.772770 | − | 0.634686i | \(-0.218871\pi\) | ||||
0.772770 | + | 0.634686i | \(0.218871\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −24.0000 | −1.40209 | −0.701047 | − | 0.713115i | \(-0.747284\pi\) | ||||
−0.701047 | + | 0.713115i | \(0.747284\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 12.0000 | 0.698667 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 4.00000 | 0.230556 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 2.00000 | 0.114520 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −10.0000 | −0.570730 | −0.285365 | − | 0.958419i | \(-0.592115\pi\) | ||||
−0.285365 | + | 0.958419i | \(0.592115\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −24.0000 | −1.36092 | −0.680458 | − | 0.732787i | \(-0.738219\pi\) | ||||
−0.680458 | + | 0.732787i | \(0.738219\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −10.0000 | −0.565233 | −0.282617 | − | 0.959233i | \(-0.591202\pi\) | ||||
−0.282617 | + | 0.959233i | \(0.591202\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −18.0000 | −1.01098 | −0.505490 | − | 0.862832i | \(-0.668688\pi\) | ||||
−0.505490 | + | 0.862832i | \(0.668688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 2.00000 | 0.110940 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 8.00000 | 0.439720 | 0.219860 | − | 0.975531i | \(-0.429440\pi\) | ||||
0.219860 | + | 0.975531i | \(0.429440\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −4.00000 | −0.218543 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 26.0000 | 1.41631 | 0.708155 | − | 0.706057i | \(-0.249528\pi\) | ||||
0.708155 | + | 0.706057i | \(0.249528\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −8.00000 | −0.433224 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −20.0000 | −1.07990 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 12.0000 | 0.644194 | 0.322097 | − | 0.946707i | \(-0.395612\pi\) | ||||
0.322097 | + | 0.946707i | \(0.395612\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 26.0000 | 1.39175 | 0.695874 | − | 0.718164i | \(-0.255017\pi\) | ||||
0.695874 | + | 0.718164i | \(0.255017\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −18.0000 | −0.958043 | −0.479022 | − | 0.877803i | \(-0.659008\pi\) | ||||
−0.479022 | + | 0.877803i | \(0.659008\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 2.00000 | 0.104685 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 20.0000 | 1.04399 | 0.521996 | − | 0.852948i | \(-0.325188\pi\) | ||||
0.521996 | + | 0.852948i | \(0.325188\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −12.0000 | −0.623009 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −34.0000 | −1.76045 | −0.880227 | − | 0.474554i | \(-0.842610\pi\) | ||||
−0.880227 | + | 0.474554i | \(0.842610\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −16.0000 | −0.821865 | −0.410932 | − | 0.911666i | \(-0.634797\pi\) | ||||
−0.410932 | + | 0.911666i | \(0.634797\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −24.0000 | −1.22634 | −0.613171 | − | 0.789950i | \(-0.710106\pi\) | ||||
−0.613171 | + | 0.789950i | \(0.710106\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −2.00000 | −0.101929 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −18.0000 | −0.912636 | −0.456318 | − | 0.889817i | \(-0.650832\pi\) | ||||
−0.456318 | + | 0.889817i | \(0.650832\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −10.0000 | −0.503155 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 2.00000 | 0.100377 | 0.0501886 | − | 0.998740i | \(-0.484018\pi\) | ||||
0.0501886 | + | 0.998740i | \(0.484018\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −6.00000 | −0.299626 | −0.149813 | − | 0.988714i | \(-0.547867\pi\) | ||||
−0.149813 | + | 0.988714i | \(0.547867\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 16.0000 | 0.797017 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −2.00000 | −0.0991363 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −10.0000 | −0.494468 | −0.247234 | − | 0.968956i | \(-0.579522\pi\) | ||||
−0.247234 | + | 0.968956i | \(0.579522\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 24.0000 | 1.18096 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 12.0000 | 0.589057 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 12.0000 | 0.586238 | 0.293119 | − | 0.956076i | \(-0.405307\pi\) | ||||
0.293119 | + | 0.956076i | \(0.405307\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −10.0000 | −0.487370 | −0.243685 | − | 0.969854i | \(-0.578356\pi\) | ||||
−0.243685 | + | 0.969854i | \(0.578356\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 4.00000 | 0.193574 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −12.0000 | −0.578020 | −0.289010 | − | 0.957326i | \(-0.593326\pi\) | ||||
−0.289010 | + | 0.957326i | \(0.593326\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −34.0000 | −1.63394 | −0.816968 | − | 0.576683i | \(-0.804347\pi\) | ||||
−0.816968 | + | 0.576683i | \(0.804347\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 2.00000 | 0.0954548 | 0.0477274 | − | 0.998860i | \(-0.484802\pi\) | ||||
0.0477274 | + | 0.998860i | \(0.484802\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 12.0000 | 0.570137 | 0.285069 | − | 0.958507i | \(-0.407984\pi\) | ||||
0.285069 | + | 0.958507i | \(0.407984\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 6.00000 | 0.284427 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −18.0000 | −0.849473 | −0.424736 | − | 0.905317i | \(-0.639633\pi\) | ||||
−0.424736 | + | 0.905317i | \(0.639633\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 4.00000 | 0.187523 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 26.0000 | 1.21623 | 0.608114 | − | 0.793849i | \(-0.291926\pi\) | ||||
0.608114 | + | 0.793849i | \(0.291926\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 36.0000 | 1.67669 | 0.838344 | − | 0.545142i | \(-0.183524\pi\) | ||||
0.838344 | + | 0.545142i | \(0.183524\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −4.00000 | −0.185896 | −0.0929479 | − | 0.995671i | \(-0.529629\pi\) | ||||
−0.0929479 | + | 0.995671i | \(0.529629\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −12.0000 | −0.555294 | −0.277647 | − | 0.960683i | \(-0.589555\pi\) | ||||
−0.277647 | + | 0.960683i | \(0.589555\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −8.00000 | −0.369406 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −2.00000 | −0.0919601 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 2.00000 | 0.0917663 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −36.0000 | −1.64488 | −0.822441 | − | 0.568850i | \(-0.807388\pi\) | ||||
−0.822441 | + | 0.568850i | \(0.807388\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 4.00000 | 0.182384 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 14.0000 | 0.635707 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 8.00000 | 0.362515 | 0.181257 | − | 0.983436i | \(-0.441983\pi\) | ||||
0.181257 | + | 0.983436i | \(0.441983\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −28.0000 | −1.25345 | −0.626726 | − | 0.779240i | \(-0.715605\pi\) | ||||
−0.626726 | + | 0.779240i | \(0.715605\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 24.0000 | 1.07011 | 0.535054 | − | 0.844818i | \(-0.320291\pi\) | ||||
0.535054 | + | 0.844818i | \(0.320291\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 18.0000 | 0.797836 | 0.398918 | − | 0.916987i | \(-0.369386\pi\) | ||||
0.398918 | + | 0.916987i | \(0.369386\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 4.00000 | 0.176950 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −4.00000 | −0.176261 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −30.0000 | −1.31432 | −0.657162 | − | 0.753749i | \(-0.728243\pi\) | ||||
−0.657162 | + | 0.753749i | \(0.728243\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −22.0000 | −0.961993 | −0.480996 | − | 0.876723i | \(-0.659725\pi\) | ||||
−0.480996 | + | 0.876723i | \(0.659725\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 12.0000 | 0.518805 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 3.00000 | 0.129219 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −34.0000 | −1.46177 | −0.730887 | − | 0.682498i | \(-0.760893\pi\) | ||||
−0.730887 | + | 0.682498i | \(0.760893\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −10.0000 | −0.428353 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 26.0000 | 1.11168 | 0.555840 | − | 0.831289i | \(-0.312397\pi\) | ||||
0.555840 | + | 0.831289i | \(0.312397\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −20.0000 | −0.850487 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 4.00000 | 0.169182 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −24.0000 | −1.01148 | −0.505740 | − | 0.862686i | \(-0.668780\pi\) | ||||
−0.505740 | + | 0.862686i | \(0.668780\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −6.00000 | −0.252422 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −36.0000 | −1.50920 | −0.754599 | − | 0.656186i | \(-0.772169\pi\) | ||||
−0.754599 | + | 0.656186i | \(0.772169\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −10.0000 | −0.418487 | −0.209243 | − | 0.977864i | \(-0.567100\pi\) | ||||
−0.209243 | + | 0.977864i | \(0.567100\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −22.0000 | −0.915872 | −0.457936 | − | 0.888985i | \(-0.651411\pi\) | ||||
−0.457936 | + | 0.888985i | \(0.651411\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 24.0000 | 0.995688 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 6.00000 | 0.248495 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 36.0000 | 1.48588 | 0.742940 | − | 0.669359i | \(-0.233431\pi\) | ||||
0.742940 | + | 0.669359i | \(0.233431\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 16.0000 | 0.659269 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 36.0000 | 1.47834 | 0.739171 | − | 0.673517i | \(-0.235217\pi\) | ||||
0.739171 | + | 0.673517i | \(0.235217\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −24.0000 | −0.980613 | −0.490307 | − | 0.871550i | \(-0.663115\pi\) | ||||
−0.490307 | + | 0.871550i | \(0.663115\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 26.0000 | 1.06056 | 0.530281 | − | 0.847822i | \(-0.322086\pi\) | ||||
0.530281 | + | 0.847822i | \(0.322086\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 1.00000 | 0.0406558 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −22.0000 | −0.892952 | −0.446476 | − | 0.894795i | \(-0.647321\pi\) | ||||
−0.446476 | + | 0.894795i | \(0.647321\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −34.0000 | −1.37325 | −0.686624 | − | 0.727013i | \(-0.740908\pi\) | ||||
−0.686624 | + | 0.727013i | \(0.740908\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −6.00000 | −0.241551 | −0.120775 | − | 0.992680i | \(-0.538538\pi\) | ||||
−0.120775 | + | 0.992680i | \(0.538538\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 32.0000 | 1.28619 | 0.643094 | − | 0.765787i | \(-0.277650\pi\) | ||||
0.643094 | + | 0.765787i | \(0.277650\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 12.0000 | 0.480770 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −16.0000 | −0.636950 | −0.318475 | − | 0.947931i | \(-0.603171\pi\) | ||||
−0.318475 | + | 0.947931i | \(0.603171\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 2.00000 | 0.0793676 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −6.00000 | −0.237729 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 30.0000 | 1.18493 | 0.592464 | − | 0.805597i | \(-0.298155\pi\) | ||||
0.592464 | + | 0.805597i | \(0.298155\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −40.0000 | −1.57745 | −0.788723 | − | 0.614749i | \(-0.789257\pi\) | ||||
−0.788723 | + | 0.614749i | \(0.789257\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −24.0000 | −0.943537 | −0.471769 | − | 0.881722i | \(-0.656384\pi\) | ||||
−0.471769 | + | 0.881722i | \(0.656384\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −12.0000 | −0.471041 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −6.00000 | −0.234798 | −0.117399 | − | 0.993085i | \(-0.537456\pi\) | ||||
−0.117399 | + | 0.993085i | \(0.537456\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 12.0000 | 0.468879 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −12.0000 | −0.467454 | −0.233727 | − | 0.972302i | \(-0.575092\pi\) | ||||
−0.233727 | + | 0.972302i | \(0.575092\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 14.0000 | 0.544537 | 0.272268 | − | 0.962221i | \(-0.412226\pi\) | ||||
0.272268 | + | 0.962221i | \(0.412226\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 4.00000 | 0.155113 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −2.00000 | −0.0772091 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −10.0000 | −0.385472 | −0.192736 | − | 0.981251i | \(-0.561736\pi\) | ||||
−0.192736 | + | 0.981251i | \(0.561736\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 36.0000 | 1.38359 | 0.691796 | − | 0.722093i | \(-0.256820\pi\) | ||||
0.691796 | + | 0.722093i | \(0.256820\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 28.0000 | 1.07454 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 12.0000 | 0.459167 | 0.229584 | − | 0.973289i | \(-0.426264\pi\) | ||||
0.229584 | + | 0.973289i | \(0.426264\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −6.00000 | −0.229248 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −12.0000 | −0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 8.00000 | 0.304334 | 0.152167 | − | 0.988355i | \(-0.451375\pi\) | ||||
0.152167 | + | 0.988355i | \(0.451375\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −22.0000 | −0.834508 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 12.0000 | 0.453234 | 0.226617 | − | 0.973984i | \(-0.427233\pi\) | ||||
0.226617 | + | 0.973984i | \(0.427233\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 4.00000 | 0.150863 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 2.00000 | 0.0751116 | 0.0375558 | − | 0.999295i | \(-0.488043\pi\) | ||||
0.0375558 | + | 0.999295i | \(0.488043\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −2.00000 | −0.0747958 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −24.0000 | −0.895049 | −0.447524 | − | 0.894272i | \(-0.647694\pi\) | ||||
−0.447524 | + | 0.894272i | \(0.647694\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −8.00000 | −0.297936 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 8.00000 | 0.296704 | 0.148352 | − | 0.988935i | \(-0.452603\pi\) | ||||
0.148352 | + | 0.988935i | \(0.452603\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 50.0000 | 1.84679 | 0.923396 | − | 0.383849i | \(-0.125402\pi\) | ||||
0.923396 | + | 0.383849i | \(0.125402\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 4.00000 | 0.147342 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −34.0000 | −1.25071 | −0.625355 | − | 0.780340i | \(-0.715046\pi\) | ||||
−0.625355 | + | 0.780340i | \(0.715046\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 36.0000 | 1.32071 | 0.660356 | − | 0.750953i | \(-0.270405\pi\) | ||||
0.660356 | + | 0.750953i | \(0.270405\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 12.0000 | 0.439646 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 24.0000 | 0.876941 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 32.0000 | 1.16770 | 0.583848 | − | 0.811863i | \(-0.301546\pi\) | ||||
0.583848 | + | 0.811863i | \(0.301546\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 14.0000 | 0.509512 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −34.0000 | −1.23575 | −0.617876 | − | 0.786276i | \(-0.712006\pi\) | ||||
−0.617876 | + | 0.786276i | \(0.712006\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −12.0000 | −0.435000 | −0.217500 | − | 0.976060i | \(-0.569790\pi\) | ||||
−0.217500 | + | 0.976060i | \(0.569790\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −20.0000 | −0.724049 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 24.0000 | 0.866590 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 26.0000 | 0.937584 | 0.468792 | − | 0.883309i | \(-0.344689\pi\) | ||||
0.468792 | + | 0.883309i | \(0.344689\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 18.0000 | 0.647415 | 0.323708 | − | 0.946157i | \(-0.395071\pi\) | ||||
0.323708 | + | 0.946157i | \(0.395071\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 8.00000 | 0.287368 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 14.0000 | 0.499681 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 2.00000 | 0.0712923 | 0.0356462 | − | 0.999364i | \(-0.488651\pi\) | ||||
0.0356462 | + | 0.999364i | \(0.488651\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −12.0000 | −0.426671 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 4.00000 | 0.142044 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 6.00000 | 0.212531 | 0.106265 | − | 0.994338i | \(-0.466111\pi\) | ||||
0.106265 | + | 0.994338i | \(0.466111\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −2.00000 | −0.0705785 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −36.0000 | −1.26569 | −0.632846 | − | 0.774277i | \(-0.718114\pi\) | ||||
−0.632846 | + | 0.774277i | \(0.718114\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 2.00000 | 0.0702295 | 0.0351147 | − | 0.999383i | \(-0.488820\pi\) | ||||
0.0351147 | + | 0.999383i | \(0.488820\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 8.00000 | 0.280228 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 4.00000 | 0.139942 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 24.0000 | 0.837606 | 0.418803 | − | 0.908077i | \(-0.362450\pi\) | ||||
0.418803 | + | 0.908077i | \(0.362450\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −4.00000 | −0.139431 | −0.0697156 | − | 0.997567i | \(-0.522209\pi\) | ||||
−0.0697156 | + | 0.997567i | \(0.522209\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 12.0000 | 0.417281 | 0.208640 | − | 0.977992i | \(-0.433096\pi\) | ||||
0.208640 | + | 0.977992i | \(0.433096\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 2.00000 | 0.0694629 | 0.0347314 | − | 0.999397i | \(-0.488942\pi\) | ||||
0.0347314 | + | 0.999397i | \(0.488942\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 24.0000 | 0.830554 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 24.0000 | 0.828572 | 0.414286 | − | 0.910147i | \(-0.364031\pi\) | ||||
0.414286 | + | 0.910147i | \(0.364031\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −9.00000 | −0.309609 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 2.00000 | 0.0687208 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −10.0000 | −0.342393 | −0.171197 | − | 0.985237i | \(-0.554763\pi\) | ||||
−0.171197 | + | 0.985237i | \(0.554763\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −48.0000 | −1.63965 | −0.819824 | − | 0.572615i | \(-0.805929\pi\) | ||||
−0.819824 | + | 0.572615i | \(0.805929\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −40.0000 | −1.36478 | −0.682391 | − | 0.730987i | \(-0.739060\pi\) | ||||
−0.682391 | + | 0.730987i | \(0.739060\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000 | 0.816970 | 0.408485 | − | 0.912765i | \(-0.366057\pi\) | ||||
0.408485 | + | 0.912765i | \(0.366057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −12.0000 | −0.408012 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 10.0000 | 0.339227 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −8.00000 | −0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 2.00000 | 0.0676123 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 38.0000 | 1.28317 | 0.641584 | − | 0.767052i | \(-0.278277\pi\) | ||||
0.641584 | + | 0.767052i | \(0.278277\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 18.0000 | 0.606435 | 0.303218 | − | 0.952921i | \(-0.401939\pi\) | ||||
0.303218 | + | 0.952921i | \(0.401939\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 44.0000 | 1.48072 | 0.740359 | − | 0.672212i | \(-0.234656\pi\) | ||||
0.740359 | + | 0.672212i | \(0.234656\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 36.0000 | 1.20876 | 0.604381 | − | 0.796696i | \(-0.293421\pi\) | ||||
0.604381 | + | 0.796696i | \(0.293421\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 4.00000 | 0.134156 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 12.0000 | 0.401116 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −10.0000 | −0.332411 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 8.00000 | 0.265636 | 0.132818 | − | 0.991140i | \(-0.457597\pi\) | ||||
0.132818 | + | 0.991140i | \(0.457597\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 24.0000 | 0.795155 | 0.397578 | − | 0.917568i | \(-0.369851\pi\) | ||||
0.397578 | + | 0.917568i | \(0.369851\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −12.0000 | −0.397142 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 24.0000 | 0.792550 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 50.0000 | 1.64935 | 0.824674 | − | 0.565608i | \(-0.191359\pi\) | ||||
0.824674 | + | 0.565608i | \(0.191359\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 2.00000 | 0.0657596 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −54.0000 | −1.77168 | −0.885841 | − | 0.463988i | \(-0.846418\pi\) | ||||
−0.885841 | + | 0.463988i | \(0.846418\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −6.00000 | −0.196642 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 14.0000 | 0.457360 | 0.228680 | − | 0.973502i | \(-0.426559\pi\) | ||||
0.228680 | + | 0.973502i | \(0.426559\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 24.0000 | 0.782378 | 0.391189 | − | 0.920310i | \(-0.372064\pi\) | ||||
0.391189 | + | 0.920310i | \(0.372064\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −12.0000 | −0.389948 | −0.194974 | − | 0.980808i | \(-0.562462\pi\) | ||||
−0.194974 | + | 0.980808i | \(0.562462\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 4.00000 | 0.129845 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −24.0000 | −0.777436 | −0.388718 | − | 0.921357i | \(-0.627082\pi\) | ||||
−0.388718 | + | 0.921357i | \(0.627082\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −12.0000 | −0.387500 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −10.0000 | −0.321911 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −22.0000 | −0.707472 | −0.353736 | − | 0.935345i | \(-0.615089\pi\) | ||||
−0.353736 | + | 0.935345i | \(0.615089\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −36.0000 | −1.15529 | −0.577647 | − | 0.816286i | \(-0.696029\pi\) | ||||
−0.577647 | + | 0.816286i | \(0.696029\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −44.0000 | −1.41058 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 18.0000 | 0.575871 | 0.287936 | − | 0.957650i | \(-0.407031\pi\) | ||||
0.287936 | + | 0.957650i | \(0.407031\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −6.00000 | −0.191761 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 12.0000 | 0.382352 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 8.00000 | 0.254128 | 0.127064 | − | 0.991894i | \(-0.459445\pi\) | ||||
0.127064 | + | 0.991894i | \(0.459445\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −16.0000 | −0.507234 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 62.0000 | 1.96356 | 0.981780 | − | 0.190022i | \(-0.0608559\pi\) | ||||
0.981780 | + | 0.190022i | \(0.0608559\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1980.2.a.f.1.1 | 1 | ||
3.2 | odd | 2 | 660.2.a.d.1.1 | ✓ | 1 | ||
4.3 | odd | 2 | 7920.2.a.y.1.1 | 1 | |||
5.2 | odd | 4 | 9900.2.c.d.5149.2 | 2 | |||
5.3 | odd | 4 | 9900.2.c.d.5149.1 | 2 | |||
5.4 | even | 2 | 9900.2.a.e.1.1 | 1 | |||
12.11 | even | 2 | 2640.2.a.b.1.1 | 1 | |||
15.2 | even | 4 | 3300.2.c.i.1849.1 | 2 | |||
15.8 | even | 4 | 3300.2.c.i.1849.2 | 2 | |||
15.14 | odd | 2 | 3300.2.a.b.1.1 | 1 | |||
33.32 | even | 2 | 7260.2.a.l.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
660.2.a.d.1.1 | ✓ | 1 | 3.2 | odd | 2 | ||
1980.2.a.f.1.1 | 1 | 1.1 | even | 1 | trivial | ||
2640.2.a.b.1.1 | 1 | 12.11 | even | 2 | |||
3300.2.a.b.1.1 | 1 | 15.14 | odd | 2 | |||
3300.2.c.i.1849.1 | 2 | 15.2 | even | 4 | |||
3300.2.c.i.1849.2 | 2 | 15.8 | even | 4 | |||
7260.2.a.l.1.1 | 1 | 33.32 | even | 2 | |||
7920.2.a.y.1.1 | 1 | 4.3 | odd | 2 | |||
9900.2.a.e.1.1 | 1 | 5.4 | even | 2 | |||
9900.2.c.d.5149.1 | 2 | 5.3 | odd | 4 | |||
9900.2.c.d.5149.2 | 2 | 5.2 | odd | 4 |