Properties

Label 200.12.c.c.49.1
Level $200$
Weight $12$
Character 200.49
Analytic conductor $153.669$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,12,Mod(49,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.49");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(153.668636112\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{109})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 55x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-5.72015i\) of defining polynomial
Character \(\chi\) \(=\) 200.49
Dual form 200.12.c.c.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-696.180i q^{3} +73591.5i q^{7} -307519. q^{9} -383508. q^{11} -1.15867e6i q^{13} -6.51693e6i q^{17} +1.39982e7 q^{19} +5.12329e7 q^{21} -1.37394e6i q^{23} +9.07624e7i q^{27} +7.46197e7 q^{29} +1.32297e7 q^{31} +2.66991e8i q^{33} -1.67200e7i q^{37} -8.06644e8 q^{39} +1.03298e9 q^{41} -1.93764e8i q^{43} -1.16005e9i q^{47} -3.43839e9 q^{49} -4.53696e9 q^{51} -4.44363e8i q^{53} -9.74529e9i q^{57} +1.28304e8 q^{59} +7.96097e9 q^{61} -2.26308e10i q^{63} -6.89243e9i q^{67} -9.56509e8 q^{69} -1.12698e10 q^{71} -3.34998e9i q^{73} -2.82230e10i q^{77} -5.36237e10 q^{79} +8.71083e9 q^{81} +6.31693e10i q^{83} -5.19487e10i q^{87} -9.62373e10 q^{89} +8.52685e10 q^{91} -9.21027e9i q^{93} -4.37466e10i q^{97} +1.17936e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 1080404 q^{9} + 318160 q^{11} + 43733200 q^{19} + 80105088 q^{21} + 457655400 q^{29} + 129444224 q^{31} - 1751818144 q^{39} + 2402428392 q^{41} - 3532138148 q^{49} - 19249975840 q^{51} + 12025853168 q^{59}+ \cdots - 16629834512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 696.180i − 1.65407i −0.562149 0.827036i \(-0.690025\pi\)
0.562149 0.827036i \(-0.309975\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 73591.5i 1.65496i 0.561492 + 0.827482i \(0.310228\pi\)
−0.561492 + 0.827482i \(0.689772\pi\)
\(8\) 0 0
\(9\) −307519. −1.73595
\(10\) 0 0
\(11\) −383508. −0.717985 −0.358992 0.933340i \(-0.616880\pi\)
−0.358992 + 0.933340i \(0.616880\pi\)
\(12\) 0 0
\(13\) − 1.15867e6i − 0.865510i −0.901512 0.432755i \(-0.857541\pi\)
0.901512 0.432755i \(-0.142459\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 6.51693e6i − 1.11320i −0.830780 0.556601i \(-0.812105\pi\)
0.830780 0.556601i \(-0.187895\pi\)
\(18\) 0 0
\(19\) 1.39982e7 1.29697 0.648483 0.761229i \(-0.275404\pi\)
0.648483 + 0.761229i \(0.275404\pi\)
\(20\) 0 0
\(21\) 5.12329e7 2.73743
\(22\) 0 0
\(23\) − 1.37394e6i − 0.0445107i −0.999752 0.0222554i \(-0.992915\pi\)
0.999752 0.0222554i \(-0.00708469\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 9.07624e7i 1.21732i
\(28\) 0 0
\(29\) 7.46197e7 0.675561 0.337781 0.941225i \(-0.390324\pi\)
0.337781 + 0.941225i \(0.390324\pi\)
\(30\) 0 0
\(31\) 1.32297e7 0.0829969 0.0414985 0.999139i \(-0.486787\pi\)
0.0414985 + 0.999139i \(0.486787\pi\)
\(32\) 0 0
\(33\) 2.66991e8i 1.18760i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 1.67200e7i − 0.0396394i −0.999804 0.0198197i \(-0.993691\pi\)
0.999804 0.0198197i \(-0.00630922\pi\)
\(38\) 0 0
\(39\) −8.06644e8 −1.43162
\(40\) 0 0
\(41\) 1.03298e9 1.39245 0.696225 0.717823i \(-0.254861\pi\)
0.696225 + 0.717823i \(0.254861\pi\)
\(42\) 0 0
\(43\) − 1.93764e8i − 0.201001i −0.994937 0.100500i \(-0.967956\pi\)
0.994937 0.100500i \(-0.0320443\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 1.16005e9i − 0.737803i −0.929469 0.368901i \(-0.879734\pi\)
0.929469 0.368901i \(-0.120266\pi\)
\(48\) 0 0
\(49\) −3.43839e9 −1.73891
\(50\) 0 0
\(51\) −4.53696e9 −1.84132
\(52\) 0 0
\(53\) − 4.44363e8i − 0.145956i −0.997334 0.0729778i \(-0.976750\pi\)
0.997334 0.0729778i \(-0.0232502\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 9.74529e9i − 2.14528i
\(58\) 0 0
\(59\) 1.28304e8 0.0233644 0.0116822 0.999932i \(-0.496281\pi\)
0.0116822 + 0.999932i \(0.496281\pi\)
\(60\) 0 0
\(61\) 7.96097e9 1.20685 0.603423 0.797421i \(-0.293803\pi\)
0.603423 + 0.797421i \(0.293803\pi\)
\(62\) 0 0
\(63\) − 2.26308e10i − 2.87294i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 6.89243e9i − 0.623678i −0.950135 0.311839i \(-0.899055\pi\)
0.950135 0.311839i \(-0.100945\pi\)
\(68\) 0 0
\(69\) −9.56509e8 −0.0736240
\(70\) 0 0
\(71\) −1.12698e10 −0.741305 −0.370652 0.928772i \(-0.620866\pi\)
−0.370652 + 0.928772i \(0.620866\pi\)
\(72\) 0 0
\(73\) − 3.34998e9i − 0.189132i −0.995519 0.0945662i \(-0.969854\pi\)
0.995519 0.0945662i \(-0.0301464\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.82230e10i − 1.18824i
\(78\) 0 0
\(79\) −5.36237e10 −1.96068 −0.980342 0.197304i \(-0.936782\pi\)
−0.980342 + 0.197304i \(0.936782\pi\)
\(80\) 0 0
\(81\) 8.71083e9 0.277583
\(82\) 0 0
\(83\) 6.31693e10i 1.76026i 0.474733 + 0.880130i \(0.342545\pi\)
−0.474733 + 0.880130i \(0.657455\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 5.19487e10i − 1.11743i
\(88\) 0 0
\(89\) −9.62373e10 −1.82683 −0.913416 0.407028i \(-0.866565\pi\)
−0.913416 + 0.407028i \(0.866565\pi\)
\(90\) 0 0
\(91\) 8.52685e10 1.43239
\(92\) 0 0
\(93\) − 9.21027e9i − 0.137283i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 4.37466e10i − 0.517250i −0.965978 0.258625i \(-0.916731\pi\)
0.965978 0.258625i \(-0.0832693\pi\)
\(98\) 0 0
\(99\) 1.17936e11 1.24639
\(100\) 0 0
\(101\) −1.68061e11 −1.59111 −0.795554 0.605882i \(-0.792820\pi\)
−0.795554 + 0.605882i \(0.792820\pi\)
\(102\) 0 0
\(103\) − 6.02325e10i − 0.511948i −0.966684 0.255974i \(-0.917604\pi\)
0.966684 0.255974i \(-0.0823961\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.39380e11i 0.960701i 0.877077 + 0.480351i \(0.159491\pi\)
−0.877077 + 0.480351i \(0.840509\pi\)
\(108\) 0 0
\(109\) −1.19601e11 −0.744540 −0.372270 0.928124i \(-0.621421\pi\)
−0.372270 + 0.928124i \(0.621421\pi\)
\(110\) 0 0
\(111\) −1.16401e10 −0.0655664
\(112\) 0 0
\(113\) − 2.69277e10i − 0.137489i −0.997634 0.0687445i \(-0.978101\pi\)
0.997634 0.0687445i \(-0.0218993\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.56314e11i 1.50249i
\(118\) 0 0
\(119\) 4.79591e11 1.84231
\(120\) 0 0
\(121\) −1.38233e11 −0.484498
\(122\) 0 0
\(123\) − 7.19138e11i − 2.30321i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1.63631e11i − 0.439486i −0.975558 0.219743i \(-0.929478\pi\)
0.975558 0.219743i \(-0.0705219\pi\)
\(128\) 0 0
\(129\) −1.34895e11 −0.332469
\(130\) 0 0
\(131\) −2.54332e11 −0.575981 −0.287991 0.957633i \(-0.592987\pi\)
−0.287991 + 0.957633i \(0.592987\pi\)
\(132\) 0 0
\(133\) 1.03015e12i 2.14643i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.05270e12i 1.86355i 0.363032 + 0.931776i \(0.381741\pi\)
−0.363032 + 0.931776i \(0.618259\pi\)
\(138\) 0 0
\(139\) 9.02335e11 1.47498 0.737491 0.675357i \(-0.236011\pi\)
0.737491 + 0.675357i \(0.236011\pi\)
\(140\) 0 0
\(141\) −8.07607e11 −1.22038
\(142\) 0 0
\(143\) 4.44361e11i 0.621423i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.39374e12i 2.87628i
\(148\) 0 0
\(149\) −1.08288e12 −1.20797 −0.603986 0.796995i \(-0.706422\pi\)
−0.603986 + 0.796995i \(0.706422\pi\)
\(150\) 0 0
\(151\) 8.99725e11 0.932688 0.466344 0.884603i \(-0.345571\pi\)
0.466344 + 0.884603i \(0.345571\pi\)
\(152\) 0 0
\(153\) 2.00408e12i 1.93247i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 6.05620e11i − 0.506701i −0.967375 0.253351i \(-0.918467\pi\)
0.967375 0.253351i \(-0.0815327\pi\)
\(158\) 0 0
\(159\) −3.09356e11 −0.241421
\(160\) 0 0
\(161\) 1.01110e11 0.0736637
\(162\) 0 0
\(163\) − 5.92020e11i − 0.402999i −0.979489 0.201500i \(-0.935418\pi\)
0.979489 0.201500i \(-0.0645815\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 5.67821e10i − 0.0338276i −0.999857 0.0169138i \(-0.994616\pi\)
0.999857 0.0169138i \(-0.00538409\pi\)
\(168\) 0 0
\(169\) 4.49639e11 0.250892
\(170\) 0 0
\(171\) −4.30473e12 −2.25147
\(172\) 0 0
\(173\) − 2.27930e12i − 1.11828i −0.829075 0.559138i \(-0.811132\pi\)
0.829075 0.559138i \(-0.188868\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 8.93228e10i − 0.0386464i
\(178\) 0 0
\(179\) 1.91742e12 0.779876 0.389938 0.920841i \(-0.372497\pi\)
0.389938 + 0.920841i \(0.372497\pi\)
\(180\) 0 0
\(181\) −3.61293e12 −1.38238 −0.691190 0.722673i \(-0.742913\pi\)
−0.691190 + 0.722673i \(0.742913\pi\)
\(182\) 0 0
\(183\) − 5.54226e12i − 1.99621i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.49930e12i 0.799263i
\(188\) 0 0
\(189\) −6.67934e12 −2.01462
\(190\) 0 0
\(191\) −6.07217e11 −0.172846 −0.0864232 0.996259i \(-0.527544\pi\)
−0.0864232 + 0.996259i \(0.527544\pi\)
\(192\) 0 0
\(193\) − 4.64252e12i − 1.24793i −0.781454 0.623963i \(-0.785522\pi\)
0.781454 0.623963i \(-0.214478\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 4.86139e12i − 1.16734i −0.811992 0.583668i \(-0.801617\pi\)
0.811992 0.583668i \(-0.198383\pi\)
\(198\) 0 0
\(199\) −6.52349e12 −1.48180 −0.740898 0.671618i \(-0.765600\pi\)
−0.740898 + 0.671618i \(0.765600\pi\)
\(200\) 0 0
\(201\) −4.79837e12 −1.03161
\(202\) 0 0
\(203\) 5.49138e12i 1.11803i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.22513e11i 0.0772686i
\(208\) 0 0
\(209\) −5.36844e12 −0.931202
\(210\) 0 0
\(211\) 1.89227e12 0.311479 0.155740 0.987798i \(-0.450224\pi\)
0.155740 + 0.987798i \(0.450224\pi\)
\(212\) 0 0
\(213\) 7.84583e12i 1.22617i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.73597e11i 0.137357i
\(218\) 0 0
\(219\) −2.33219e12 −0.312839
\(220\) 0 0
\(221\) −7.55099e12 −0.963488
\(222\) 0 0
\(223\) − 6.33591e12i − 0.769365i −0.923049 0.384682i \(-0.874311\pi\)
0.923049 0.384682i \(-0.125689\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.95535e12i 0.545673i 0.962060 + 0.272837i \(0.0879618\pi\)
−0.962060 + 0.272837i \(0.912038\pi\)
\(228\) 0 0
\(229\) −1.55285e13 −1.62943 −0.814714 0.579863i \(-0.803106\pi\)
−0.814714 + 0.579863i \(0.803106\pi\)
\(230\) 0 0
\(231\) −1.96483e13 −1.96543
\(232\) 0 0
\(233\) − 7.75664e12i − 0.739973i −0.929037 0.369986i \(-0.879362\pi\)
0.929037 0.369986i \(-0.120638\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3.73317e13i 3.24311i
\(238\) 0 0
\(239\) −4.18729e12 −0.347332 −0.173666 0.984805i \(-0.555561\pi\)
−0.173666 + 0.984805i \(0.555561\pi\)
\(240\) 0 0
\(241\) 8.28156e12 0.656173 0.328087 0.944648i \(-0.393596\pi\)
0.328087 + 0.944648i \(0.393596\pi\)
\(242\) 0 0
\(243\) 1.00140e13i 0.758180i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.62194e13i − 1.12254i
\(248\) 0 0
\(249\) 4.39772e13 2.91160
\(250\) 0 0
\(251\) −6.31791e11 −0.0400284 −0.0200142 0.999800i \(-0.506371\pi\)
−0.0200142 + 0.999800i \(0.506371\pi\)
\(252\) 0 0
\(253\) 5.26918e11i 0.0319580i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.76085e13i 0.979691i 0.871809 + 0.489845i \(0.162947\pi\)
−0.871809 + 0.489845i \(0.837053\pi\)
\(258\) 0 0
\(259\) 1.23045e12 0.0656018
\(260\) 0 0
\(261\) −2.29470e13 −1.17274
\(262\) 0 0
\(263\) 2.18141e13i 1.06901i 0.845165 + 0.534505i \(0.179502\pi\)
−0.845165 + 0.534505i \(0.820498\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6.69985e13i 3.02171i
\(268\) 0 0
\(269\) 1.09453e13 0.473795 0.236897 0.971535i \(-0.423869\pi\)
0.236897 + 0.971535i \(0.423869\pi\)
\(270\) 0 0
\(271\) −4.38029e13 −1.82042 −0.910210 0.414146i \(-0.864080\pi\)
−0.910210 + 0.414146i \(0.864080\pi\)
\(272\) 0 0
\(273\) − 5.93622e13i − 2.36927i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 3.83236e13i − 1.41198i −0.708224 0.705988i \(-0.750503\pi\)
0.708224 0.705988i \(-0.249497\pi\)
\(278\) 0 0
\(279\) −4.06840e12 −0.144079
\(280\) 0 0
\(281\) −1.88363e13 −0.641372 −0.320686 0.947186i \(-0.603913\pi\)
−0.320686 + 0.947186i \(0.603913\pi\)
\(282\) 0 0
\(283\) 3.59883e12i 0.117852i 0.998262 + 0.0589258i \(0.0187675\pi\)
−0.998262 + 0.0589258i \(0.981232\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.60185e13i 2.30446i
\(288\) 0 0
\(289\) −8.19853e12 −0.239220
\(290\) 0 0
\(291\) −3.04555e13 −0.855568
\(292\) 0 0
\(293\) 1.89960e13i 0.513913i 0.966423 + 0.256957i \(0.0827198\pi\)
−0.966423 + 0.256957i \(0.917280\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 3.48081e13i − 0.874018i
\(298\) 0 0
\(299\) −1.59195e12 −0.0385245
\(300\) 0 0
\(301\) 1.42594e13 0.332649
\(302\) 0 0
\(303\) 1.17001e14i 2.63181i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 5.07622e13i − 1.06238i −0.847253 0.531189i \(-0.821745\pi\)
0.847253 0.531189i \(-0.178255\pi\)
\(308\) 0 0
\(309\) −4.19326e13 −0.846799
\(310\) 0 0
\(311\) 4.89908e13 0.954844 0.477422 0.878674i \(-0.341571\pi\)
0.477422 + 0.878674i \(0.341571\pi\)
\(312\) 0 0
\(313\) − 2.02897e13i − 0.381752i −0.981614 0.190876i \(-0.938867\pi\)
0.981614 0.190876i \(-0.0611329\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.80299e13i 1.01818i 0.860712 + 0.509091i \(0.170018\pi\)
−0.860712 + 0.509091i \(0.829982\pi\)
\(318\) 0 0
\(319\) −2.86173e13 −0.485043
\(320\) 0 0
\(321\) 9.70332e13 1.58907
\(322\) 0 0
\(323\) − 9.12256e13i − 1.44379i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.32636e13i 1.23152i
\(328\) 0 0
\(329\) 8.53702e13 1.22104
\(330\) 0 0
\(331\) −1.94810e13 −0.269500 −0.134750 0.990880i \(-0.543023\pi\)
−0.134750 + 0.990880i \(0.543023\pi\)
\(332\) 0 0
\(333\) 5.14172e12i 0.0688122i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.11994e14i − 1.40356i −0.712392 0.701782i \(-0.752388\pi\)
0.712392 0.701782i \(-0.247612\pi\)
\(338\) 0 0
\(339\) −1.87465e13 −0.227417
\(340\) 0 0
\(341\) −5.07372e12 −0.0595905
\(342\) 0 0
\(343\) − 1.07522e14i − 1.22287i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.43917e14i − 1.53568i −0.640640 0.767841i \(-0.721331\pi\)
0.640640 0.767841i \(-0.278669\pi\)
\(348\) 0 0
\(349\) −1.17413e14 −1.21389 −0.606943 0.794745i \(-0.707604\pi\)
−0.606943 + 0.794745i \(0.707604\pi\)
\(350\) 0 0
\(351\) 1.05164e14 1.05360
\(352\) 0 0
\(353\) 3.14959e12i 0.0305839i 0.999883 + 0.0152919i \(0.00486777\pi\)
−0.999883 + 0.0152919i \(0.995132\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 3.33882e14i − 3.04732i
\(358\) 0 0
\(359\) 2.16645e14 1.91748 0.958738 0.284291i \(-0.0917583\pi\)
0.958738 + 0.284291i \(0.0917583\pi\)
\(360\) 0 0
\(361\) 7.94605e13 0.682121
\(362\) 0 0
\(363\) 9.62349e13i 0.801394i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 1.32924e14i − 1.04217i −0.853505 0.521085i \(-0.825527\pi\)
0.853505 0.521085i \(-0.174473\pi\)
\(368\) 0 0
\(369\) −3.17660e14 −2.41723
\(370\) 0 0
\(371\) 3.27014e13 0.241551
\(372\) 0 0
\(373\) − 4.97449e13i − 0.356738i −0.983964 0.178369i \(-0.942918\pi\)
0.983964 0.178369i \(-0.0570821\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 8.64598e13i − 0.584705i
\(378\) 0 0
\(379\) −6.41630e13 −0.421472 −0.210736 0.977543i \(-0.567586\pi\)
−0.210736 + 0.977543i \(0.567586\pi\)
\(380\) 0 0
\(381\) −1.13917e14 −0.726942
\(382\) 0 0
\(383\) − 1.53711e14i − 0.953040i −0.879164 0.476520i \(-0.841898\pi\)
0.879164 0.476520i \(-0.158102\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.95862e13i 0.348928i
\(388\) 0 0
\(389\) −3.08115e14 −1.75384 −0.876921 0.480635i \(-0.840406\pi\)
−0.876921 + 0.480635i \(0.840406\pi\)
\(390\) 0 0
\(391\) −8.95388e12 −0.0495495
\(392\) 0 0
\(393\) 1.77061e14i 0.952714i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.15252e14i 1.09547i 0.836653 + 0.547734i \(0.184509\pi\)
−0.836653 + 0.547734i \(0.815491\pi\)
\(398\) 0 0
\(399\) 7.17171e14 3.55035
\(400\) 0 0
\(401\) −4.29414e13 −0.206815 −0.103407 0.994639i \(-0.532975\pi\)
−0.103407 + 0.994639i \(0.532975\pi\)
\(402\) 0 0
\(403\) − 1.53289e13i − 0.0718347i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.41227e12i 0.0284605i
\(408\) 0 0
\(409\) 1.78142e14 0.769639 0.384819 0.922992i \(-0.374264\pi\)
0.384819 + 0.922992i \(0.374264\pi\)
\(410\) 0 0
\(411\) 7.32869e14 3.08245
\(412\) 0 0
\(413\) 9.44211e12i 0.0386673i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 6.28187e14i − 2.43972i
\(418\) 0 0
\(419\) 3.36601e14 1.27332 0.636662 0.771143i \(-0.280315\pi\)
0.636662 + 0.771143i \(0.280315\pi\)
\(420\) 0 0
\(421\) 6.36951e13 0.234722 0.117361 0.993089i \(-0.462557\pi\)
0.117361 + 0.993089i \(0.462557\pi\)
\(422\) 0 0
\(423\) 3.56739e14i 1.28079i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.85860e14i 1.99729i
\(428\) 0 0
\(429\) 3.09355e14 1.02788
\(430\) 0 0
\(431\) 1.38853e14 0.449707 0.224853 0.974393i \(-0.427810\pi\)
0.224853 + 0.974393i \(0.427810\pi\)
\(432\) 0 0
\(433\) 3.07253e14i 0.970093i 0.874488 + 0.485046i \(0.161197\pi\)
−0.874488 + 0.485046i \(0.838803\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.92328e13i − 0.0577289i
\(438\) 0 0
\(439\) 2.37747e14 0.695921 0.347961 0.937509i \(-0.386874\pi\)
0.347961 + 0.937509i \(0.386874\pi\)
\(440\) 0 0
\(441\) 1.05737e15 3.01866
\(442\) 0 0
\(443\) 6.82803e13i 0.190141i 0.995471 + 0.0950703i \(0.0303076\pi\)
−0.995471 + 0.0950703i \(0.969692\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 7.53881e14i 1.99807i
\(448\) 0 0
\(449\) −7.19557e14 −1.86084 −0.930422 0.366490i \(-0.880560\pi\)
−0.930422 + 0.366490i \(0.880560\pi\)
\(450\) 0 0
\(451\) −3.96156e14 −0.999758
\(452\) 0 0
\(453\) − 6.26370e14i − 1.54273i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 5.95803e14i − 1.39818i −0.715033 0.699091i \(-0.753588\pi\)
0.715033 0.699091i \(-0.246412\pi\)
\(458\) 0 0
\(459\) 5.91492e14 1.35513
\(460\) 0 0
\(461\) −2.48547e14 −0.555973 −0.277987 0.960585i \(-0.589667\pi\)
−0.277987 + 0.960585i \(0.589667\pi\)
\(462\) 0 0
\(463\) 5.55882e14i 1.21419i 0.794629 + 0.607096i \(0.207666\pi\)
−0.794629 + 0.607096i \(0.792334\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.11081e13i 0.106475i 0.998582 + 0.0532374i \(0.0169540\pi\)
−0.998582 + 0.0532374i \(0.983046\pi\)
\(468\) 0 0
\(469\) 5.07224e14 1.03217
\(470\) 0 0
\(471\) −4.21620e14 −0.838121
\(472\) 0 0
\(473\) 7.43103e13i 0.144315i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.36650e14i 0.253372i
\(478\) 0 0
\(479\) −6.79608e14 −1.23144 −0.615720 0.787965i \(-0.711135\pi\)
−0.615720 + 0.787965i \(0.711135\pi\)
\(480\) 0 0
\(481\) −1.93730e13 −0.0343083
\(482\) 0 0
\(483\) − 7.03910e13i − 0.121845i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 3.50601e14i − 0.579967i −0.957032 0.289984i \(-0.906350\pi\)
0.957032 0.289984i \(-0.0936499\pi\)
\(488\) 0 0
\(489\) −4.12152e14 −0.666590
\(490\) 0 0
\(491\) −5.60616e14 −0.886579 −0.443289 0.896379i \(-0.646189\pi\)
−0.443289 + 0.896379i \(0.646189\pi\)
\(492\) 0 0
\(493\) − 4.86292e14i − 0.752037i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 8.29365e14i − 1.22683i
\(498\) 0 0
\(499\) 2.60119e14 0.376374 0.188187 0.982133i \(-0.439739\pi\)
0.188187 + 0.982133i \(0.439739\pi\)
\(500\) 0 0
\(501\) −3.95306e13 −0.0559533
\(502\) 0 0
\(503\) − 1.34386e15i − 1.86093i −0.366377 0.930466i \(-0.619402\pi\)
0.366377 0.930466i \(-0.380598\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 3.13029e14i − 0.414994i
\(508\) 0 0
\(509\) −3.28205e14 −0.425792 −0.212896 0.977075i \(-0.568290\pi\)
−0.212896 + 0.977075i \(0.568290\pi\)
\(510\) 0 0
\(511\) 2.46530e14 0.313007
\(512\) 0 0
\(513\) 1.27051e15i 1.57882i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.44891e14i 0.529731i
\(518\) 0 0
\(519\) −1.58681e15 −1.84971
\(520\) 0 0
\(521\) 3.73999e14 0.426838 0.213419 0.976961i \(-0.431540\pi\)
0.213419 + 0.976961i \(0.431540\pi\)
\(522\) 0 0
\(523\) − 7.77988e13i − 0.0869388i −0.999055 0.0434694i \(-0.986159\pi\)
0.999055 0.0434694i \(-0.0138411\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 8.62173e13i − 0.0923924i
\(528\) 0 0
\(529\) 9.50922e14 0.998019
\(530\) 0 0
\(531\) −3.94560e13 −0.0405596
\(532\) 0 0
\(533\) − 1.19688e15i − 1.20518i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 1.33487e15i − 1.28997i
\(538\) 0 0
\(539\) 1.31865e15 1.24851
\(540\) 0 0
\(541\) −1.17909e15 −1.09386 −0.546929 0.837179i \(-0.684203\pi\)
−0.546929 + 0.837179i \(0.684203\pi\)
\(542\) 0 0
\(543\) 2.51525e15i 2.28656i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 7.58961e14i 0.662658i 0.943515 + 0.331329i \(0.107497\pi\)
−0.943515 + 0.331329i \(0.892503\pi\)
\(548\) 0 0
\(549\) −2.44815e15 −2.09503
\(550\) 0 0
\(551\) 1.04455e15 0.876180
\(552\) 0 0
\(553\) − 3.94625e15i − 3.24486i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 9.88953e14i − 0.781578i −0.920480 0.390789i \(-0.872202\pi\)
0.920480 0.390789i \(-0.127798\pi\)
\(558\) 0 0
\(559\) −2.24509e14 −0.173968
\(560\) 0 0
\(561\) 1.73996e15 1.32204
\(562\) 0 0
\(563\) 1.70471e15i 1.27015i 0.772450 + 0.635075i \(0.219031\pi\)
−0.772450 + 0.635075i \(0.780969\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 6.41044e14i 0.459389i
\(568\) 0 0
\(569\) −5.26889e14 −0.370341 −0.185170 0.982706i \(-0.559284\pi\)
−0.185170 + 0.982706i \(0.559284\pi\)
\(570\) 0 0
\(571\) −6.85464e14 −0.472592 −0.236296 0.971681i \(-0.575933\pi\)
−0.236296 + 0.971681i \(0.575933\pi\)
\(572\) 0 0
\(573\) 4.22732e14i 0.285900i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.25421e15i 0.816402i 0.912892 + 0.408201i \(0.133844\pi\)
−0.912892 + 0.408201i \(0.866156\pi\)
\(578\) 0 0
\(579\) −3.23203e15 −2.06416
\(580\) 0 0
\(581\) −4.64873e15 −2.91317
\(582\) 0 0
\(583\) 1.70417e14i 0.104794i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.56777e15i 1.52071i 0.649507 + 0.760356i \(0.274975\pi\)
−0.649507 + 0.760356i \(0.725025\pi\)
\(588\) 0 0
\(589\) 1.85193e14 0.107644
\(590\) 0 0
\(591\) −3.38440e15 −1.93086
\(592\) 0 0
\(593\) 1.05019e15i 0.588123i 0.955786 + 0.294062i \(0.0950071\pi\)
−0.955786 + 0.294062i \(0.904993\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.54152e15i 2.45100i
\(598\) 0 0
\(599\) −1.16345e14 −0.0616455 −0.0308227 0.999525i \(-0.509813\pi\)
−0.0308227 + 0.999525i \(0.509813\pi\)
\(600\) 0 0
\(601\) −9.27714e14 −0.482619 −0.241310 0.970448i \(-0.577577\pi\)
−0.241310 + 0.970448i \(0.577577\pi\)
\(602\) 0 0
\(603\) 2.11955e15i 1.08268i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 9.37322e14i − 0.461691i −0.972990 0.230845i \(-0.925851\pi\)
0.972990 0.230845i \(-0.0741491\pi\)
\(608\) 0 0
\(609\) 3.82299e15 1.84930
\(610\) 0 0
\(611\) −1.34412e15 −0.638576
\(612\) 0 0
\(613\) − 9.73439e13i − 0.0454230i −0.999742 0.0227115i \(-0.992770\pi\)
0.999742 0.0227115i \(-0.00722992\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 2.70501e15i − 1.21787i −0.793220 0.608935i \(-0.791597\pi\)
0.793220 0.608935i \(-0.208403\pi\)
\(618\) 0 0
\(619\) −5.22797e14 −0.231225 −0.115612 0.993294i \(-0.536883\pi\)
−0.115612 + 0.993294i \(0.536883\pi\)
\(620\) 0 0
\(621\) 1.24702e14 0.0541839
\(622\) 0 0
\(623\) − 7.08225e15i − 3.02334i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3.73740e15i 1.54027i
\(628\) 0 0
\(629\) −1.08963e14 −0.0441267
\(630\) 0 0
\(631\) −1.58461e15 −0.630611 −0.315305 0.948990i \(-0.602107\pi\)
−0.315305 + 0.948990i \(0.602107\pi\)
\(632\) 0 0
\(633\) − 1.31736e15i − 0.515209i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.98397e15i 1.50504i
\(638\) 0 0
\(639\) 3.46569e15 1.28687
\(640\) 0 0
\(641\) 3.67621e15 1.34178 0.670890 0.741557i \(-0.265912\pi\)
0.670890 + 0.741557i \(0.265912\pi\)
\(642\) 0 0
\(643\) − 1.40268e15i − 0.503268i −0.967822 0.251634i \(-0.919032\pi\)
0.967822 0.251634i \(-0.0809680\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.65400e14i 0.265409i 0.991156 + 0.132704i \(0.0423661\pi\)
−0.991156 + 0.132704i \(0.957634\pi\)
\(648\) 0 0
\(649\) −4.92058e13 −0.0167753
\(650\) 0 0
\(651\) 6.77798e14 0.227198
\(652\) 0 0
\(653\) 3.06409e15i 1.00990i 0.863148 + 0.504951i \(0.168490\pi\)
−0.863148 + 0.504951i \(0.831510\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.03018e15i 0.328325i
\(658\) 0 0
\(659\) 5.49550e15 1.72241 0.861207 0.508254i \(-0.169709\pi\)
0.861207 + 0.508254i \(0.169709\pi\)
\(660\) 0 0
\(661\) −4.42413e15 −1.36370 −0.681851 0.731491i \(-0.738825\pi\)
−0.681851 + 0.731491i \(0.738825\pi\)
\(662\) 0 0
\(663\) 5.25685e15i 1.59368i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.02523e14i − 0.0300697i
\(668\) 0 0
\(669\) −4.41093e15 −1.27258
\(670\) 0 0
\(671\) −3.05310e15 −0.866497
\(672\) 0 0
\(673\) 3.72652e15i 1.04045i 0.854029 + 0.520225i \(0.174152\pi\)
−0.854029 + 0.520225i \(0.825848\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.80105e15i 1.02723i 0.858022 + 0.513613i \(0.171693\pi\)
−0.858022 + 0.513613i \(0.828307\pi\)
\(678\) 0 0
\(679\) 3.21938e15 0.856030
\(680\) 0 0
\(681\) 3.44982e15 0.902582
\(682\) 0 0
\(683\) − 4.06733e15i − 1.04712i −0.851990 0.523558i \(-0.824604\pi\)
0.851990 0.523558i \(-0.175396\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.08106e16i 2.69519i
\(688\) 0 0
\(689\) −5.14871e14 −0.126326
\(690\) 0 0
\(691\) −5.14416e15 −1.24218 −0.621091 0.783739i \(-0.713310\pi\)
−0.621091 + 0.783739i \(0.713310\pi\)
\(692\) 0 0
\(693\) 8.67910e15i 2.06273i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 6.73185e15i − 1.55008i
\(698\) 0 0
\(699\) −5.40001e15 −1.22397
\(700\) 0 0
\(701\) −2.86572e15 −0.639417 −0.319708 0.947516i \(-0.603585\pi\)
−0.319708 + 0.947516i \(0.603585\pi\)
\(702\) 0 0
\(703\) − 2.34051e14i − 0.0514110i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.23679e16i − 2.63323i
\(708\) 0 0
\(709\) −5.54221e15 −1.16179 −0.580896 0.813978i \(-0.697298\pi\)
−0.580896 + 0.813978i \(0.697298\pi\)
\(710\) 0 0
\(711\) 1.64903e16 3.40366
\(712\) 0 0
\(713\) − 1.81769e13i − 0.00369425i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.91511e15i 0.574512i
\(718\) 0 0
\(719\) −4.73660e15 −0.919301 −0.459651 0.888100i \(-0.652025\pi\)
−0.459651 + 0.888100i \(0.652025\pi\)
\(720\) 0 0
\(721\) 4.43260e15 0.847256
\(722\) 0 0
\(723\) − 5.76545e15i − 1.08536i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 1.01777e16i − 1.85870i −0.369205 0.929348i \(-0.620370\pi\)
0.369205 0.929348i \(-0.379630\pi\)
\(728\) 0 0
\(729\) 8.51462e15 1.53167
\(730\) 0 0
\(731\) −1.26275e15 −0.223754
\(732\) 0 0
\(733\) − 5.29486e15i − 0.924235i −0.886819 0.462117i \(-0.847090\pi\)
0.886819 0.462117i \(-0.152910\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.64330e15i 0.447792i
\(738\) 0 0
\(739\) −4.55855e15 −0.760821 −0.380411 0.924818i \(-0.624217\pi\)
−0.380411 + 0.924818i \(0.624217\pi\)
\(740\) 0 0
\(741\) −1.12916e16 −1.85676
\(742\) 0 0
\(743\) − 9.91668e14i − 0.160667i −0.996768 0.0803337i \(-0.974401\pi\)
0.996768 0.0803337i \(-0.0255986\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1.94258e16i − 3.05573i
\(748\) 0 0
\(749\) −1.02572e16 −1.58993
\(750\) 0 0
\(751\) 5.23831e15 0.800151 0.400075 0.916482i \(-0.368984\pi\)
0.400075 + 0.916482i \(0.368984\pi\)
\(752\) 0 0
\(753\) 4.39840e14i 0.0662098i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 7.31380e15i − 1.06934i −0.845061 0.534670i \(-0.820436\pi\)
0.845061 0.534670i \(-0.179564\pi\)
\(758\) 0 0
\(759\) 3.66829e14 0.0528609
\(760\) 0 0
\(761\) −7.81344e15 −1.10975 −0.554877 0.831932i \(-0.687235\pi\)
−0.554877 + 0.831932i \(0.687235\pi\)
\(762\) 0 0
\(763\) − 8.80161e15i − 1.23219i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1.48663e14i − 0.0202222i
\(768\) 0 0
\(769\) −2.19554e15 −0.294405 −0.147203 0.989106i \(-0.547027\pi\)
−0.147203 + 0.989106i \(0.547027\pi\)
\(770\) 0 0
\(771\) 1.22586e16 1.62048
\(772\) 0 0
\(773\) − 1.32704e16i − 1.72940i −0.502286 0.864702i \(-0.667507\pi\)
0.502286 0.864702i \(-0.332493\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 8.56615e14i − 0.108510i
\(778\) 0 0
\(779\) 1.44599e16 1.80596
\(780\) 0 0
\(781\) 4.32208e15 0.532246
\(782\) 0 0
\(783\) 6.77266e15i 0.822375i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.40226e15i 0.165565i 0.996568 + 0.0827826i \(0.0263807\pi\)
−0.996568 + 0.0827826i \(0.973619\pi\)
\(788\) 0 0
\(789\) 1.51866e16 1.76822
\(790\) 0 0
\(791\) 1.98165e15 0.227539
\(792\) 0 0
\(793\) − 9.22415e15i − 1.04454i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.09627e15i 0.341049i 0.985353 + 0.170525i \(0.0545463\pi\)
−0.985353 + 0.170525i \(0.945454\pi\)
\(798\) 0 0
\(799\) −7.56000e15 −0.821324
\(800\) 0 0
\(801\) 2.95948e16 3.17130
\(802\) 0 0
\(803\) 1.28474e15i 0.135794i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 7.61990e15i − 0.783691i
\(808\) 0 0
\(809\) 1.62765e16 1.65137 0.825683 0.564135i \(-0.190790\pi\)
0.825683 + 0.564135i \(0.190790\pi\)
\(810\) 0 0
\(811\) 1.55106e16 1.55244 0.776219 0.630463i \(-0.217135\pi\)
0.776219 + 0.630463i \(0.217135\pi\)
\(812\) 0 0
\(813\) 3.04947e16i 3.01111i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2.71236e15i − 0.260691i
\(818\) 0 0
\(819\) −2.62217e16 −2.48656
\(820\) 0 0
\(821\) −5.57057e15 −0.521209 −0.260605 0.965446i \(-0.583922\pi\)
−0.260605 + 0.965446i \(0.583922\pi\)
\(822\) 0 0
\(823\) − 4.05461e15i − 0.374326i −0.982329 0.187163i \(-0.940071\pi\)
0.982329 0.187163i \(-0.0599292\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.59579e14i 0.0862582i 0.999070 + 0.0431291i \(0.0137327\pi\)
−0.999070 + 0.0431291i \(0.986267\pi\)
\(828\) 0 0
\(829\) 1.05269e16 0.933791 0.466895 0.884313i \(-0.345373\pi\)
0.466895 + 0.884313i \(0.345373\pi\)
\(830\) 0 0
\(831\) −2.66801e16 −2.33551
\(832\) 0 0
\(833\) 2.24078e16i 1.93576i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.20076e15i 0.101034i
\(838\) 0 0
\(839\) −6.15316e15 −0.510984 −0.255492 0.966811i \(-0.582238\pi\)
−0.255492 + 0.966811i \(0.582238\pi\)
\(840\) 0 0
\(841\) −6.63240e15 −0.543617
\(842\) 0 0
\(843\) 1.31134e16i 1.06087i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 1.01728e16i − 0.801827i
\(848\) 0 0
\(849\) 2.50543e15 0.194935
\(850\) 0 0
\(851\) −2.29723e13 −0.00176438
\(852\) 0 0
\(853\) − 1.77560e16i − 1.34625i −0.739528 0.673126i \(-0.764951\pi\)
0.739528 0.673126i \(-0.235049\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.26793e16i 1.67585i 0.545785 + 0.837925i \(0.316231\pi\)
−0.545785 + 0.837925i \(0.683769\pi\)
\(858\) 0 0
\(859\) 1.65429e15 0.120684 0.0603421 0.998178i \(-0.480781\pi\)
0.0603421 + 0.998178i \(0.480781\pi\)
\(860\) 0 0
\(861\) 5.29225e16 3.81174
\(862\) 0 0
\(863\) 2.31182e15i 0.164397i 0.996616 + 0.0821986i \(0.0261942\pi\)
−0.996616 + 0.0821986i \(0.973806\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 5.70765e15i 0.395688i
\(868\) 0 0
\(869\) 2.05651e16 1.40774
\(870\) 0 0
\(871\) −7.98606e15 −0.539800
\(872\) 0 0
\(873\) 1.34529e16i 0.897921i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.39330e16i 0.906874i 0.891288 + 0.453437i \(0.149802\pi\)
−0.891288 + 0.453437i \(0.850198\pi\)
\(878\) 0 0
\(879\) 1.32246e16 0.850050
\(880\) 0 0
\(881\) 4.04171e15 0.256565 0.128283 0.991738i \(-0.459054\pi\)
0.128283 + 0.991738i \(0.459054\pi\)
\(882\) 0 0
\(883\) 1.26327e16i 0.791975i 0.918256 + 0.395988i \(0.129598\pi\)
−0.918256 + 0.395988i \(0.870402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.96489e16i − 1.20160i −0.799401 0.600798i \(-0.794849\pi\)
0.799401 0.600798i \(-0.205151\pi\)
\(888\) 0 0
\(889\) 1.20419e16 0.727334
\(890\) 0 0
\(891\) −3.34068e15 −0.199300
\(892\) 0 0
\(893\) − 1.62387e16i − 0.956905i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.10828e15i 0.0637223i
\(898\) 0 0
\(899\) 9.87200e14 0.0560695
\(900\) 0 0
\(901\) −2.89588e15 −0.162478
\(902\) 0 0
\(903\) − 9.92712e15i − 0.550225i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.75609e15i 0.0949961i 0.998871 + 0.0474981i \(0.0151248\pi\)
−0.998871 + 0.0474981i \(0.984875\pi\)
\(908\) 0 0
\(909\) 5.16820e16 2.76209
\(910\) 0 0
\(911\) 2.30636e16 1.21780 0.608899 0.793247i \(-0.291611\pi\)
0.608899 + 0.793247i \(0.291611\pi\)
\(912\) 0 0
\(913\) − 2.42260e16i − 1.26384i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.87167e16i − 0.953229i
\(918\) 0 0
\(919\) −9.41404e14 −0.0473741 −0.0236870 0.999719i \(-0.507541\pi\)
−0.0236870 + 0.999719i \(0.507541\pi\)
\(920\) 0 0
\(921\) −3.53396e16 −1.75725
\(922\) 0 0
\(923\) 1.30581e16i 0.641607i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.85226e16i 0.888718i
\(928\) 0 0
\(929\) −1.77556e16 −0.841876 −0.420938 0.907089i \(-0.638299\pi\)
−0.420938 + 0.907089i \(0.638299\pi\)
\(930\) 0 0
\(931\) −4.81314e16 −2.25530
\(932\) 0 0
\(933\) − 3.41064e16i − 1.57938i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.10107e16i 0.498020i 0.968501 + 0.249010i \(0.0801053\pi\)
−0.968501 + 0.249010i \(0.919895\pi\)
\(938\) 0 0
\(939\) −1.41253e16 −0.631446
\(940\) 0 0
\(941\) −2.50908e16 −1.10859 −0.554295 0.832320i \(-0.687012\pi\)
−0.554295 + 0.832320i \(0.687012\pi\)
\(942\) 0 0
\(943\) − 1.41925e15i − 0.0619790i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.97365e16i 0.842064i 0.907046 + 0.421032i \(0.138332\pi\)
−0.907046 + 0.421032i \(0.861668\pi\)
\(948\) 0 0
\(949\) −3.88152e15 −0.163696
\(950\) 0 0
\(951\) 4.03992e16 1.68415
\(952\) 0 0
\(953\) − 1.28343e16i − 0.528884i −0.964402 0.264442i \(-0.914812\pi\)
0.964402 0.264442i \(-0.0851878\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.99228e16i 0.802296i
\(958\) 0 0
\(959\) −7.74699e16 −3.08411
\(960\) 0 0
\(961\) −2.52335e16 −0.993112
\(962\) 0 0
\(963\) − 4.28619e16i − 1.66773i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.73110e16i − 1.79935i −0.436558 0.899676i \(-0.643803\pi\)
0.436558 0.899676i \(-0.356197\pi\)
\(968\) 0 0
\(969\) −6.35094e16 −2.38813
\(970\) 0 0
\(971\) 2.69052e16 1.00030 0.500149 0.865939i \(-0.333278\pi\)
0.500149 + 0.865939i \(0.333278\pi\)
\(972\) 0 0
\(973\) 6.64042e16i 2.44104i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.19615e16i − 0.429899i −0.976625 0.214950i \(-0.931041\pi\)
0.976625 0.214950i \(-0.0689588\pi\)
\(978\) 0 0
\(979\) 3.69078e16 1.31164
\(980\) 0 0
\(981\) 3.67795e16 1.29249
\(982\) 0 0
\(983\) 4.93179e16i 1.71380i 0.515483 + 0.856900i \(0.327613\pi\)
−0.515483 + 0.856900i \(0.672387\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 5.94330e16i − 2.01968i
\(988\) 0 0
\(989\) −2.66221e14 −0.00894669
\(990\) 0 0
\(991\) 4.42856e16 1.47183 0.735915 0.677074i \(-0.236753\pi\)
0.735915 + 0.677074i \(0.236753\pi\)
\(992\) 0 0
\(993\) 1.35623e16i 0.445772i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2.10581e16i 0.677011i 0.940964 + 0.338506i \(0.109921\pi\)
−0.940964 + 0.338506i \(0.890079\pi\)
\(998\) 0 0
\(999\) 1.51755e15 0.0482539
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.12.c.c.49.1 4
5.2 odd 4 200.12.a.d.1.1 2
5.3 odd 4 8.12.a.b.1.2 2
5.4 even 2 inner 200.12.c.c.49.4 4
15.8 even 4 72.12.a.e.1.2 2
20.3 even 4 16.12.a.d.1.1 2
40.3 even 4 64.12.a.k.1.2 2
40.13 odd 4 64.12.a.h.1.1 2
60.23 odd 4 144.12.a.p.1.2 2
80.3 even 4 256.12.b.k.129.1 4
80.13 odd 4 256.12.b.h.129.4 4
80.43 even 4 256.12.b.k.129.4 4
80.53 odd 4 256.12.b.h.129.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.12.a.b.1.2 2 5.3 odd 4
16.12.a.d.1.1 2 20.3 even 4
64.12.a.h.1.1 2 40.13 odd 4
64.12.a.k.1.2 2 40.3 even 4
72.12.a.e.1.2 2 15.8 even 4
144.12.a.p.1.2 2 60.23 odd 4
200.12.a.d.1.1 2 5.2 odd 4
200.12.c.c.49.1 4 1.1 even 1 trivial
200.12.c.c.49.4 4 5.4 even 2 inner
256.12.b.h.129.1 4 80.53 odd 4
256.12.b.h.129.4 4 80.13 odd 4
256.12.b.k.129.1 4 80.3 even 4
256.12.b.k.129.4 4 80.43 even 4