Properties

Label 200.2.k.a.43.1
Level 200200
Weight 22
Character 200.43
Analytic conductor 1.5971.597
Analytic rank 11
Dimension 22
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(43,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 200.k (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.597008040431.59700804043
Analytic rank: 11
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D4]\mathrm{U}(1)[D_{4}]

Embedding invariants

Embedding label 43.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 200.43
Dual form 200.2.k.a.107.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.00000+1.00000i)q2+(2.000002.00000i)q32.00000iq4+4.00000q6+(2.00000+2.00000i)q8+5.00000iq96.00000q11+(4.00000+4.00000i)q124.00000q16+(4.00000+4.00000i)q17+(5.000005.00000i)q18+2.00000iq19+(6.000006.00000i)q228.00000iq24+(4.000004.00000i)q27+(4.000004.00000i)q32+(12.0000+12.0000i)q338.00000iq34+10.0000q36+(2.000002.00000i)q386.00000q41+(6.000006.00000i)q43+12.0000iq44+(8.00000+8.00000i)q487.00000iq49+16.0000q51+8.00000iq54+(4.000004.00000i)q57+6.00000iq59+8.00000iq6424.0000q66+(6.000006.00000i)q67+(8.00000+8.00000i)q68+(10.0000+10.0000i)q72+(12.000012.0000i)q73+4.00000q761.00000q81+(6.000006.00000i)q82+(2.000002.00000i)q83+12.0000q86+(12.000012.0000i)q8818.0000iq8916.0000q96+(12.0000+12.0000i)q97+(7.00000+7.00000i)q9830.0000iq99+O(q100)q+(-1.00000 + 1.00000i) q^{2} +(-2.00000 - 2.00000i) q^{3} -2.00000i q^{4} +4.00000 q^{6} +(2.00000 + 2.00000i) q^{8} +5.00000i q^{9} -6.00000 q^{11} +(-4.00000 + 4.00000i) q^{12} -4.00000 q^{16} +(-4.00000 + 4.00000i) q^{17} +(-5.00000 - 5.00000i) q^{18} +2.00000i q^{19} +(6.00000 - 6.00000i) q^{22} -8.00000i q^{24} +(4.00000 - 4.00000i) q^{27} +(4.00000 - 4.00000i) q^{32} +(12.0000 + 12.0000i) q^{33} -8.00000i q^{34} +10.0000 q^{36} +(-2.00000 - 2.00000i) q^{38} -6.00000 q^{41} +(-6.00000 - 6.00000i) q^{43} +12.0000i q^{44} +(8.00000 + 8.00000i) q^{48} -7.00000i q^{49} +16.0000 q^{51} +8.00000i q^{54} +(4.00000 - 4.00000i) q^{57} +6.00000i q^{59} +8.00000i q^{64} -24.0000 q^{66} +(6.00000 - 6.00000i) q^{67} +(8.00000 + 8.00000i) q^{68} +(-10.0000 + 10.0000i) q^{72} +(-12.0000 - 12.0000i) q^{73} +4.00000 q^{76} -1.00000 q^{81} +(6.00000 - 6.00000i) q^{82} +(-2.00000 - 2.00000i) q^{83} +12.0000 q^{86} +(-12.0000 - 12.0000i) q^{88} -18.0000i q^{89} -16.0000 q^{96} +(-12.0000 + 12.0000i) q^{97} +(7.00000 + 7.00000i) q^{98} -30.0000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q24q3+8q6+4q812q118q128q168q1710q18+12q22+8q27+8q32+24q33+20q364q3812q4112q43+16q48++14q98+O(q100) 2 q - 2 q^{2} - 4 q^{3} + 8 q^{6} + 4 q^{8} - 12 q^{11} - 8 q^{12} - 8 q^{16} - 8 q^{17} - 10 q^{18} + 12 q^{22} + 8 q^{27} + 8 q^{32} + 24 q^{33} + 20 q^{36} - 4 q^{38} - 12 q^{41} - 12 q^{43} + 16 q^{48}+ \cdots + 14 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/200Z)×\left(\mathbb{Z}/200\mathbb{Z}\right)^\times.

nn 101101 151151 177177
χ(n)\chi(n) 1-1 1-1 e(34)e\left(\frac{3}{4}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 + 1.00000i −0.707107 + 0.707107i
33 −2.00000 2.00000i −1.15470 1.15470i −0.985599 0.169102i 0.945913π-0.945913\pi
−0.169102 0.985599i 0.554087π-0.554087\pi
44 2.00000i 1.00000i
55 0 0
66 4.00000 1.63299
77 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
88 2.00000 + 2.00000i 0.707107 + 0.707107i
99 5.00000i 1.66667i
1010 0 0
1111 −6.00000 −1.80907 −0.904534 0.426401i 0.859781π-0.859781\pi
−0.904534 + 0.426401i 0.859781π0.859781\pi
1212 −4.00000 + 4.00000i −1.15470 + 1.15470i
1313 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
1414 0 0
1515 0 0
1616 −4.00000 −1.00000
1717 −4.00000 + 4.00000i −0.970143 + 0.970143i −0.999567 0.0294245i 0.990633π-0.990633\pi
0.0294245 + 0.999567i 0.490633π0.490633\pi
1818 −5.00000 5.00000i −1.17851 1.17851i
1919 2.00000i 0.458831i 0.973329 + 0.229416i 0.0736815π0.0736815\pi
−0.973329 + 0.229416i 0.926318π0.926318\pi
2020 0 0
2121 0 0
2222 6.00000 6.00000i 1.27920 1.27920i
2323 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
2424 8.00000i 1.63299i
2525 0 0
2626 0 0
2727 4.00000 4.00000i 0.769800 0.769800i
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 4.00000 4.00000i 0.707107 0.707107i
3333 12.0000 + 12.0000i 2.08893 + 2.08893i
3434 8.00000i 1.37199i
3535 0 0
3636 10.0000 1.66667
3737 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3838 −2.00000 2.00000i −0.324443 0.324443i
3939 0 0
4040 0 0
4141 −6.00000 −0.937043 −0.468521 0.883452i 0.655213π-0.655213\pi
−0.468521 + 0.883452i 0.655213π0.655213\pi
4242 0 0
4343 −6.00000 6.00000i −0.914991 0.914991i 0.0816682 0.996660i 0.473975π-0.473975\pi
−0.996660 + 0.0816682i 0.973975π0.973975\pi
4444 12.0000i 1.80907i
4545 0 0
4646 0 0
4747 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4848 8.00000 + 8.00000i 1.15470 + 1.15470i
4949 7.00000i 1.00000i
5050 0 0
5151 16.0000 2.24045
5252 0 0
5353 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
5454 8.00000i 1.08866i
5555 0 0
5656 0 0
5757 4.00000 4.00000i 0.529813 0.529813i
5858 0 0
5959 6.00000i 0.781133i 0.920575 + 0.390567i 0.127721π0.127721\pi
−0.920575 + 0.390567i 0.872279π0.872279\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 8.00000i 1.00000i
6565 0 0
6666 −24.0000 −2.95420
6767 6.00000 6.00000i 0.733017 0.733017i −0.238200 0.971216i 0.576557π-0.576557\pi
0.971216 + 0.238200i 0.0765572π0.0765572\pi
6868 8.00000 + 8.00000i 0.970143 + 0.970143i
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 −10.0000 + 10.0000i −1.17851 + 1.17851i
7373 −12.0000 12.0000i −1.40449 1.40449i −0.785007 0.619486i 0.787341π-0.787341\pi
−0.619486 0.785007i 0.712659π-0.712659\pi
7474 0 0
7575 0 0
7676 4.00000 0.458831
7777 0 0
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 −1.00000 −0.111111
8282 6.00000 6.00000i 0.662589 0.662589i
8383 −2.00000 2.00000i −0.219529 0.219529i 0.588771 0.808300i 0.299612π-0.299612\pi
−0.808300 + 0.588771i 0.799612π0.799612\pi
8484 0 0
8585 0 0
8686 12.0000 1.29399
8787 0 0
8888 −12.0000 12.0000i −1.27920 1.27920i
8989 18.0000i 1.90800i −0.299813 0.953998i 0.596924π-0.596924\pi
0.299813 0.953998i 0.403076π-0.403076\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 −16.0000 −1.63299
9797 −12.0000 + 12.0000i −1.21842 + 1.21842i −0.250229 + 0.968187i 0.580506π0.580506\pi
−0.968187 + 0.250229i 0.919494π0.919494\pi
9898 7.00000 + 7.00000i 0.707107 + 0.707107i
9999 30.0000i 3.01511i
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 −16.0000 + 16.0000i −1.58424 + 1.58424i
103103 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
104104 0 0
105105 0 0
106106 0 0
107107 −14.0000 + 14.0000i −1.35343 + 1.35343i −0.471640 + 0.881791i 0.656338π0.656338\pi
−0.881791 + 0.471640i 0.843662π0.843662\pi
108108 −8.00000 8.00000i −0.769800 0.769800i
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 8.00000 + 8.00000i 0.752577 + 0.752577i 0.974959 0.222383i 0.0713835π-0.0713835\pi
−0.222383 + 0.974959i 0.571383π0.571383\pi
114114 8.00000i 0.749269i
115115 0 0
116116 0 0
117117 0 0
118118 −6.00000 6.00000i −0.552345 0.552345i
119119 0 0
120120 0 0
121121 25.0000 2.27273
122122 0 0
123123 12.0000 + 12.0000i 1.08200 + 1.08200i
124124 0 0
125125 0 0
126126 0 0
127127 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
128128 −8.00000 8.00000i −0.707107 0.707107i
129129 24.0000i 2.11308i
130130 0 0
131131 −18.0000 −1.57267 −0.786334 0.617802i 0.788023π-0.788023\pi
−0.786334 + 0.617802i 0.788023π0.788023\pi
132132 24.0000 24.0000i 2.08893 2.08893i
133133 0 0
134134 12.0000i 1.03664i
135135 0 0
136136 −16.0000 −1.37199
137137 16.0000 16.0000i 1.36697 1.36697i 0.502249 0.864723i 0.332506π-0.332506\pi
0.864723 0.502249i 0.167494π-0.167494\pi
138138 0 0
139139 22.0000i 1.86602i 0.359856 + 0.933008i 0.382826π0.382826\pi
−0.359856 + 0.933008i 0.617174π0.617174\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 20.0000i 1.66667i
145145 0 0
146146 24.0000 1.98625
147147 −14.0000 + 14.0000i −1.15470 + 1.15470i
148148 0 0
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 −4.00000 + 4.00000i −0.324443 + 0.324443i
153153 −20.0000 20.0000i −1.61690 1.61690i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 1.00000 1.00000i 0.0785674 0.0785674i
163163 18.0000 + 18.0000i 1.40987 + 1.40987i 0.760319 + 0.649550i 0.225042π0.225042\pi
0.649550 + 0.760319i 0.274958π0.274958\pi
164164 12.0000i 0.937043i
165165 0 0
166166 4.00000 0.310460
167167 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
168168 0 0
169169 13.0000i 1.00000i
170170 0 0
171171 −10.0000 −0.764719
172172 −12.0000 + 12.0000i −0.914991 + 0.914991i
173173 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
174174 0 0
175175 0 0
176176 24.0000 1.80907
177177 12.0000 12.0000i 0.901975 0.901975i
178178 18.0000 + 18.0000i 1.34916 + 1.34916i
179179 18.0000i 1.34538i −0.739923 0.672692i 0.765138π-0.765138\pi
0.739923 0.672692i 0.234862π-0.234862\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 24.0000 24.0000i 1.75505 1.75505i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 16.0000 16.0000i 1.15470 1.15470i
193193 −12.0000 12.0000i −0.863779 0.863779i 0.127996 0.991775i 0.459146π-0.459146\pi
−0.991775 + 0.127996i 0.959146π0.959146\pi
194194 24.0000i 1.72310i
195195 0 0
196196 −14.0000 −1.00000
197197 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
198198 30.0000 + 30.0000i 2.13201 + 2.13201i
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 −24.0000 −1.69283
202202 0 0
203203 0 0
204204 32.0000i 2.24045i
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 12.0000i 0.830057i
210210 0 0
211211 14.0000 0.963800 0.481900 0.876226i 0.339947π-0.339947\pi
0.481900 + 0.876226i 0.339947π0.339947\pi
212212 0 0
213213 0 0
214214 28.0000i 1.91404i
215215 0 0
216216 16.0000 1.08866
217217 0 0
218218 0 0
219219 48.0000i 3.24354i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
224224 0 0
225225 0 0
226226 −16.0000 −1.06430
227227 −2.00000 + 2.00000i −0.132745 + 0.132745i −0.770357 0.637613i 0.779922π-0.779922\pi
0.637613 + 0.770357i 0.279922π0.279922\pi
228228 −8.00000 8.00000i −0.529813 0.529813i
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 4.00000 + 4.00000i 0.262049 + 0.262049i 0.825886 0.563837i 0.190675π-0.190675\pi
−0.563837 + 0.825886i 0.690675π0.690675\pi
234234 0 0
235235 0 0
236236 12.0000 0.781133
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 −26.0000 −1.67481 −0.837404 0.546585i 0.815928π-0.815928\pi
−0.837404 + 0.546585i 0.815928π0.815928\pi
242242 −25.0000 + 25.0000i −1.60706 + 1.60706i
243243 −10.0000 10.0000i −0.641500 0.641500i
244244 0 0
245245 0 0
246246 −24.0000 −1.53018
247247 0 0
248248 0 0
249249 8.00000i 0.506979i
250250 0 0
251251 −6.00000 −0.378717 −0.189358 0.981908i 0.560641π-0.560641\pi
−0.189358 + 0.981908i 0.560641π0.560641\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 16.0000 1.00000
257257 8.00000 8.00000i 0.499026 0.499026i −0.412108 0.911135i 0.635208π-0.635208\pi
0.911135 + 0.412108i 0.135208π0.135208\pi
258258 −24.0000 24.0000i −1.49417 1.49417i
259259 0 0
260260 0 0
261261 0 0
262262 18.0000 18.0000i 1.11204 1.11204i
263263 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
264264 48.0000i 2.95420i
265265 0 0
266266 0 0
267267 −36.0000 + 36.0000i −2.20316 + 2.20316i
268268 −12.0000 12.0000i −0.733017 0.733017i
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 16.0000 16.0000i 0.970143 0.970143i
273273 0 0
274274 32.0000i 1.93319i
275275 0 0
276276 0 0
277277 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
278278 −22.0000 22.0000i −1.31947 1.31947i
279279 0 0
280280 0 0
281281 −18.0000 −1.07379 −0.536895 0.843649i 0.680403π-0.680403\pi
−0.536895 + 0.843649i 0.680403π0.680403\pi
282282 0 0
283283 18.0000 + 18.0000i 1.06999 + 1.06999i 0.997359 + 0.0726300i 0.0231392π0.0231392\pi
0.0726300 + 0.997359i 0.476861π0.476861\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 20.0000 + 20.0000i 1.17851 + 1.17851i
289289 15.0000i 0.882353i
290290 0 0
291291 48.0000 2.81381
292292 −24.0000 + 24.0000i −1.40449 + 1.40449i
293293 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
294294 28.0000i 1.63299i
295295 0 0
296296 0 0
297297 −24.0000 + 24.0000i −1.39262 + 1.39262i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 8.00000i 0.458831i
305305 0 0
306306 40.0000 2.28665
307307 6.00000 6.00000i 0.342438 0.342438i −0.514845 0.857283i 0.672151π-0.672151\pi
0.857283 + 0.514845i 0.172151π0.172151\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 24.0000 + 24.0000i 1.35656 + 1.35656i 0.878120 + 0.478440i 0.158798π0.158798\pi
0.478440 + 0.878120i 0.341202π0.341202\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
318318 0 0
319319 0 0
320320 0 0
321321 56.0000 3.12562
322322 0 0
323323 −8.00000 8.00000i −0.445132 0.445132i
324324 2.00000i 0.111111i
325325 0 0
326326 −36.0000 −1.99386
327327 0 0
328328 −12.0000 12.0000i −0.662589 0.662589i
329329 0 0
330330 0 0
331331 −26.0000 −1.42909 −0.714545 0.699590i 0.753366π-0.753366\pi
−0.714545 + 0.699590i 0.753366π0.753366\pi
332332 −4.00000 + 4.00000i −0.219529 + 0.219529i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −24.0000 + 24.0000i −1.30736 + 1.30736i −0.384052 + 0.923312i 0.625472π0.625472\pi
−0.923312 + 0.384052i 0.874528π0.874528\pi
338338 −13.0000 13.0000i −0.707107 0.707107i
339339 32.0000i 1.73800i
340340 0 0
341341 0 0
342342 10.0000 10.0000i 0.540738 0.540738i
343343 0 0
344344 24.0000i 1.29399i
345345 0 0
346346 0 0
347347 26.0000 26.0000i 1.39575 1.39575i 0.583998 0.811755i 0.301488π-0.301488\pi
0.811755 0.583998i 0.198512π-0.198512\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 −24.0000 + 24.0000i −1.27920 + 1.27920i
353353 −16.0000 16.0000i −0.851594 0.851594i 0.138735 0.990329i 0.455696π-0.455696\pi
−0.990329 + 0.138735i 0.955696π0.955696\pi
354354 24.0000i 1.27559i
355355 0 0
356356 −36.0000 −1.90800
357357 0 0
358358 18.0000 + 18.0000i 0.951330 + 0.951330i
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 15.0000 0.789474
362362 0 0
363363 −50.0000 50.0000i −2.62432 2.62432i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
368368 0 0
369369 30.0000i 1.56174i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
374374 48.0000i 2.48202i
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 38.0000i 1.95193i −0.217930 0.975964i 0.569930π-0.569930\pi
0.217930 0.975964i 0.430070π-0.430070\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
384384 32.0000i 1.63299i
385385 0 0
386386 24.0000 1.22157
387387 30.0000 30.0000i 1.52499 1.52499i
388388 24.0000 + 24.0000i 1.21842 + 1.21842i
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 14.0000 14.0000i 0.707107 0.707107i
393393 36.0000 + 36.0000i 1.81596 + 1.81596i
394394 0 0
395395 0 0
396396 −60.0000 −3.01511
397397 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
398398 0 0
399399 0 0
400400 0 0
401401 −6.00000 −0.299626 −0.149813 0.988714i 0.547867π-0.547867\pi
−0.149813 + 0.988714i 0.547867π0.547867\pi
402402 24.0000 24.0000i 1.19701 1.19701i
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 32.0000 + 32.0000i 1.58424 + 1.58424i
409409 22.0000i 1.08783i 0.839140 + 0.543915i 0.183059π0.183059\pi
−0.839140 + 0.543915i 0.816941π0.816941\pi
410410 0 0
411411 −64.0000 −3.15689
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 44.0000 44.0000i 2.15469 2.15469i
418418 12.0000 + 12.0000i 0.586939 + 0.586939i
419419 18.0000i 0.879358i −0.898155 0.439679i 0.855092π-0.855092\pi
0.898155 0.439679i 0.144908π-0.144908\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 −14.0000 + 14.0000i −0.681509 + 0.681509i
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 28.0000 + 28.0000i 1.35343 + 1.35343i
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 −16.0000 + 16.0000i −0.769800 + 0.769800i
433433 −12.0000 12.0000i −0.576683 0.576683i 0.357305 0.933988i 0.383696π-0.383696\pi
−0.933988 + 0.357305i 0.883696π0.883696\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 −48.0000 48.0000i −2.29353 2.29353i
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 35.0000 1.66667
442442 0 0
443443 −2.00000 2.00000i −0.0950229 0.0950229i 0.657997 0.753020i 0.271404π-0.271404\pi
−0.753020 + 0.657997i 0.771404π0.771404\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 42.0000i 1.98210i 0.133482 + 0.991051i 0.457384π0.457384\pi
−0.133482 + 0.991051i 0.542616π0.542616\pi
450450 0 0
451451 36.0000 1.69517
452452 16.0000 16.0000i 0.752577 0.752577i
453453 0 0
454454 4.00000i 0.187729i
455455 0 0
456456 16.0000 0.749269
457457 −24.0000 + 24.0000i −1.12267 + 1.12267i −0.131335 + 0.991338i 0.541926π0.541926\pi
−0.991338 + 0.131335i 0.958074π0.958074\pi
458458 0 0
459459 32.0000i 1.49363i
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
464464 0 0
465465 0 0
466466 −8.00000 −0.370593
467467 −22.0000 + 22.0000i −1.01804 + 1.01804i −0.0182043 + 0.999834i 0.505795π0.505795\pi
−0.999834 + 0.0182043i 0.994205π0.994205\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 −12.0000 + 12.0000i −0.552345 + 0.552345i
473473 36.0000 + 36.0000i 1.65528 + 1.65528i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 26.0000 26.0000i 1.18427 1.18427i
483483 0 0
484484 50.0000i 2.27273i
485485 0 0
486486 20.0000 0.907218
487487 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
488488 0 0
489489 72.0000i 3.25595i
490490 0 0
491491 42.0000 1.89543 0.947717 0.319113i 0.103385π-0.103385\pi
0.947717 + 0.319113i 0.103385π0.103385\pi
492492 24.0000 24.0000i 1.08200 1.08200i
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 −8.00000 8.00000i −0.358489 0.358489i
499499 14.0000i 0.626726i −0.949633 0.313363i 0.898544π-0.898544\pi
0.949633 0.313363i 0.101456π-0.101456\pi
500500 0 0
501501 0 0
502502 6.00000 6.00000i 0.267793 0.267793i
503503 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
504504 0 0
505505 0 0
506506 0 0
507507 26.0000 26.0000i 1.15470 1.15470i
508508 0 0
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 −16.0000 + 16.0000i −0.707107 + 0.707107i
513513 8.00000 + 8.00000i 0.353209 + 0.353209i
514514 16.0000i 0.705730i
515515 0 0
516516 48.0000 2.11308
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −6.00000 −0.262865 −0.131432 0.991325i 0.541958π-0.541958\pi
−0.131432 + 0.991325i 0.541958π0.541958\pi
522522 0 0
523523 18.0000 + 18.0000i 0.787085 + 0.787085i 0.981015 0.193930i 0.0621236π-0.0621236\pi
−0.193930 + 0.981015i 0.562124π0.562124\pi
524524 36.0000i 1.57267i
525525 0 0
526526 0 0
527527 0 0
528528 −48.0000 48.0000i −2.08893 2.08893i
529529 23.0000i 1.00000i
530530 0 0
531531 −30.0000 −1.30189
532532 0 0
533533 0 0
534534 72.0000i 3.11574i
535535 0 0
536536 24.0000 1.03664
537537 −36.0000 + 36.0000i −1.55351 + 1.55351i
538538 0 0
539539 42.0000i 1.80907i
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 32.0000i 1.37199i
545545 0 0
546546 0 0
547547 6.00000 6.00000i 0.256541 0.256541i −0.567104 0.823646i 0.691936π-0.691936\pi
0.823646 + 0.567104i 0.191936π0.191936\pi
548548 −32.0000 32.0000i −1.36697 1.36697i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 44.0000 1.86602
557557 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
558558 0 0
559559 0 0
560560 0 0
561561 −96.0000 −4.05312
562562 18.0000 18.0000i 0.759284 0.759284i
563563 −26.0000 26.0000i −1.09577 1.09577i −0.994900 0.100870i 0.967837π-0.967837\pi
−0.100870 0.994900i 0.532163π-0.532163\pi
564564 0 0
565565 0 0
566566 −36.0000 −1.51319
567567 0 0
568568 0 0
569569 42.0000i 1.76073i 0.474295 + 0.880366i 0.342703π0.342703\pi
−0.474295 + 0.880366i 0.657297π0.657297\pi
570570 0 0
571571 22.0000 0.920671 0.460336 0.887745i 0.347729π-0.347729\pi
0.460336 + 0.887745i 0.347729π0.347729\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 −40.0000 −1.66667
577577 −24.0000 + 24.0000i −0.999133 + 0.999133i −1.00000 0.000866551i 0.999724π-0.999724\pi
0.000866551 1.00000i 0.499724π0.499724\pi
578578 15.0000 + 15.0000i 0.623918 + 0.623918i
579579 48.0000i 1.99481i
580580 0 0
581581 0 0
582582 −48.0000 + 48.0000i −1.98966 + 1.98966i
583583 0 0
584584 48.0000i 1.98625i
585585 0 0
586586 0 0
587587 −34.0000 + 34.0000i −1.40333 + 1.40333i −0.614109 + 0.789221i 0.710484π0.710484\pi
−0.789221 + 0.614109i 0.789516π0.789516\pi
588588 28.0000 + 28.0000i 1.15470 + 1.15470i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −32.0000 32.0000i −1.31408 1.31408i −0.918378 0.395705i 0.870500π-0.870500\pi
−0.395705 0.918378i 0.629500π-0.629500\pi
594594 48.0000i 1.96946i
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −46.0000 −1.87638 −0.938190 0.346122i 0.887498π-0.887498\pi
−0.938190 + 0.346122i 0.887498π0.887498\pi
602602 0 0
603603 30.0000 + 30.0000i 1.22169 + 1.22169i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 8.00000 + 8.00000i 0.324443 + 0.324443i
609609 0 0
610610 0 0
611611 0 0
612612 −40.0000 + 40.0000i −1.61690 + 1.61690i
613613 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
614614 12.0000i 0.484281i
615615 0 0
616616 0 0
617617 28.0000 28.0000i 1.12724 1.12724i 0.136613 0.990624i 0.456378π-0.456378\pi
0.990624 0.136613i 0.0436217π-0.0436217\pi
618618 0 0
619619 26.0000i 1.04503i 0.852631 + 0.522514i 0.175006π0.175006\pi
−0.852631 + 0.522514i 0.824994π0.824994\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 −48.0000 −1.91847
627627 −24.0000 + 24.0000i −0.958468 + 0.958468i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 −28.0000 28.0000i −1.11290 1.11290i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 42.0000 1.65890 0.829450 0.558581i 0.188654π-0.188654\pi
0.829450 + 0.558581i 0.188654π0.188654\pi
642642 −56.0000 + 56.0000i −2.21014 + 2.21014i
643643 −6.00000 6.00000i −0.236617 0.236617i 0.578831 0.815448i 0.303509π-0.303509\pi
−0.815448 + 0.578831i 0.803509π0.803509\pi
644644 0 0
645645 0 0
646646 16.0000 0.629512
647647 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
648648 −2.00000 2.00000i −0.0785674 0.0785674i
649649 36.0000i 1.41312i
650650 0 0
651651 0 0
652652 36.0000 36.0000i 1.40987 1.40987i
653653 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
654654 0 0
655655 0 0
656656 24.0000 0.937043
657657 60.0000 60.0000i 2.34082 2.34082i
658658 0 0
659659 18.0000i 0.701180i −0.936529 0.350590i 0.885981π-0.885981\pi
0.936529 0.350590i 0.114019π-0.114019\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 26.0000 26.0000i 1.01052 1.01052i
663663 0 0
664664 8.00000i 0.310460i
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −36.0000 36.0000i −1.38770 1.38770i −0.830134 0.557564i 0.811736π-0.811736\pi
−0.557564 0.830134i 0.688264π-0.688264\pi
674674 48.0000i 1.84889i
675675 0 0
676676 26.0000 1.00000
677677 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 32.0000 + 32.0000i 1.22895 + 1.22895i
679679 0 0
680680 0 0
681681 8.00000 0.306561
682682 0 0
683683 −22.0000 22.0000i −0.841807 0.841807i 0.147287 0.989094i 0.452946π-0.452946\pi
−0.989094 + 0.147287i 0.952946π0.952946\pi
684684 20.0000i 0.764719i
685685 0 0
686686 0 0
687687 0 0
688688 24.0000 + 24.0000i 0.914991 + 0.914991i
689689 0 0
690690 0 0
691691 −46.0000 −1.74992 −0.874961 0.484193i 0.839113π-0.839113\pi
−0.874961 + 0.484193i 0.839113π0.839113\pi
692692 0 0
693693 0 0
694694 52.0000i 1.97389i
695695 0 0
696696 0 0
697697 24.0000 24.0000i 0.909065 0.909065i
698698 0 0
699699 16.0000i 0.605176i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 48.0000i 1.80907i
705705 0 0
706706 32.0000 1.20434
707707 0 0
708708 −24.0000 24.0000i −0.901975 0.901975i
709709 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 36.0000 36.0000i 1.34916 1.34916i
713713 0 0
714714 0 0
715715 0 0
716716 −36.0000 −1.34538
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 −15.0000 + 15.0000i −0.558242 + 0.558242i
723723 52.0000 + 52.0000i 1.93390 + 1.93390i
724724 0 0
725725 0 0
726726 100.000 3.71135
727727 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
728728 0 0
729729 43.0000i 1.59259i
730730 0 0
731731 48.0000 1.77534
732732 0 0
733733 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
734734 0 0
735735 0 0
736736 0 0
737737 −36.0000 + 36.0000i −1.32608 + 1.32608i
738738 30.0000 + 30.0000i 1.10432 + 1.10432i
739739 34.0000i 1.25071i −0.780340 0.625355i 0.784954π-0.784954\pi
0.780340 0.625355i 0.215046π-0.215046\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
744744 0 0
745745 0 0
746746 0 0
747747 10.0000 10.0000i 0.365881 0.365881i
748748 −48.0000 48.0000i −1.75505 1.75505i
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 12.0000 + 12.0000i 0.437304 + 0.437304i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
758758 38.0000 + 38.0000i 1.38022 + 1.38022i
759759 0 0
760760 0 0
761761 54.0000 1.95750 0.978749 0.205061i 0.0657392π-0.0657392\pi
0.978749 + 0.205061i 0.0657392π0.0657392\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 −32.0000 32.0000i −1.15470 1.15470i
769769 22.0000i 0.793340i 0.917961 + 0.396670i 0.129834π0.129834\pi
−0.917961 + 0.396670i 0.870166π0.870166\pi
770770 0 0
771771 −32.0000 −1.15245
772772 −24.0000 + 24.0000i −0.863779 + 0.863779i
773773 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
774774 60.0000i 2.15666i
775775 0 0
776776 −48.0000 −1.72310
777777 0 0
778778 0 0
779779 12.0000i 0.429945i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 28.0000i 1.00000i
785785 0 0
786786 −72.0000 −2.56815
787787 18.0000 18.0000i 0.641631 0.641631i −0.309326 0.950956i 0.600103π-0.600103\pi
0.950956 + 0.309326i 0.100103π0.100103\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 60.0000 60.0000i 2.13201 2.13201i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
798798 0 0
799799 0 0
800800 0 0
801801 90.0000 3.17999
802802 6.00000 6.00000i 0.211867 0.211867i
803803 72.0000 + 72.0000i 2.54082 + 2.54082i
804804 48.0000i 1.69283i
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 6.00000i 0.210949i 0.994422 + 0.105474i 0.0336361π0.0336361\pi
−0.994422 + 0.105474i 0.966364π0.966364\pi
810810 0 0
811811 −38.0000 −1.33436 −0.667180 0.744896i 0.732499π-0.732499\pi
−0.667180 + 0.744896i 0.732499π0.732499\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 −64.0000 −2.24045
817817 12.0000 12.0000i 0.419827 0.419827i
818818 −22.0000 22.0000i −0.769212 0.769212i
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 64.0000 64.0000i 2.23226 2.23226i
823823 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
824824 0 0
825825 0 0
826826 0 0
827827 −14.0000 + 14.0000i −0.486828 + 0.486828i −0.907304 0.420476i 0.861863π-0.861863\pi
0.420476 + 0.907304i 0.361863π0.361863\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 0 0
833833 28.0000 + 28.0000i 0.970143 + 0.970143i
834834 88.0000i 3.04719i
835835 0 0
836836 −24.0000 −0.830057
837837 0 0
838838 18.0000 + 18.0000i 0.621800 + 0.621800i
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −29.0000 −1.00000
842842 0 0
843843 36.0000 + 36.0000i 1.23991 + 1.23991i
844844 28.0000i 0.963800i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 72.0000i 2.47103i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
854854 0 0
855855 0 0
856856 −56.0000 −1.91404
857857 16.0000 16.0000i 0.546550 0.546550i −0.378892 0.925441i 0.623695π-0.623695\pi
0.925441 + 0.378892i 0.123695π0.123695\pi
858858 0 0
859859 58.0000i 1.97893i −0.144757 0.989467i 0.546240π-0.546240\pi
0.144757 0.989467i 0.453760π-0.453760\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
864864 32.0000i 1.08866i
865865 0 0
866866 24.0000 0.815553
867867 −30.0000 + 30.0000i −1.01885 + 1.01885i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −60.0000 60.0000i −2.03069 2.03069i
874874 0 0
875875 0 0
876876 96.0000 3.24354
877877 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
878878 0 0
879879 0 0
880880 0 0
881881 −18.0000 −0.606435 −0.303218 0.952921i 0.598061π-0.598061\pi
−0.303218 + 0.952921i 0.598061π0.598061\pi
882882 −35.0000 + 35.0000i −1.17851 + 1.17851i
883883 −42.0000 42.0000i −1.41341 1.41341i −0.730502 0.682910i 0.760714π-0.760714\pi
−0.682910 0.730502i 0.739286π-0.739286\pi
884884 0 0
885885 0 0
886886 4.00000 0.134383
887887 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
888888 0 0
889889 0 0
890890 0 0
891891 6.00000 0.201008
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −42.0000 42.0000i −1.40156 1.40156i
899899 0 0
900900 0 0
901901 0 0
902902 −36.0000 + 36.0000i −1.19867 + 1.19867i
903903 0 0
904904 32.0000i 1.06430i
905905 0 0
906906 0 0
907907 −42.0000 + 42.0000i −1.39459 + 1.39459i −0.579898 + 0.814689i 0.696908π0.696908\pi
−0.814689 + 0.579898i 0.803092π0.803092\pi
908908 4.00000 + 4.00000i 0.132745 + 0.132745i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 −16.0000 + 16.0000i −0.529813 + 0.529813i
913913 12.0000 + 12.0000i 0.397142 + 0.397142i
914914 48.0000i 1.58770i
915915 0 0
916916 0 0
917917 0 0
918918 −32.0000 32.0000i −1.05616 1.05616i
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 −24.0000 −0.790827
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 54.0000i 1.77168i −0.463988 0.885841i 0.653582π-0.653582\pi
0.463988 0.885841i 0.346418π-0.346418\pi
930930 0 0
931931 14.0000 0.458831
932932 8.00000 8.00000i 0.262049 0.262049i
933933 0 0
934934 44.0000i 1.43972i
935935 0 0
936936 0 0
937937 36.0000 36.0000i 1.17607 1.17607i 0.195331 0.980737i 0.437422π-0.437422\pi
0.980737 0.195331i 0.0625783π-0.0625783\pi
938938 0 0
939939 96.0000i 3.13284i
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 24.0000i 0.781133i
945945 0 0
946946 −72.0000 −2.34092
947947 38.0000 38.0000i 1.23483 1.23483i 0.272749 0.962085i 0.412067π-0.412067\pi
0.962085 0.272749i 0.0879328π-0.0879328\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −32.0000 32.0000i −1.03658 1.03658i −0.999305 0.0372767i 0.988132π-0.988132\pi
−0.0372767 0.999305i 0.511868π-0.511868\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 31.0000 1.00000
962962 0 0
963963 −70.0000 70.0000i −2.25572 2.25572i
964964 52.0000i 1.67481i
965965 0 0
966966 0 0
967967 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
968968 50.0000 + 50.0000i 1.60706 + 1.60706i
969969 32.0000i 1.02799i
970970 0 0
971971 54.0000 1.73294 0.866471 0.499227i 0.166383π-0.166383\pi
0.866471 + 0.499227i 0.166383π0.166383\pi
972972 −20.0000 + 20.0000i −0.641500 + 0.641500i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −44.0000 + 44.0000i −1.40768 + 1.40768i −0.635975 + 0.771709i 0.719402π0.719402\pi
−0.771709 + 0.635975i 0.780598π0.780598\pi
978978 72.0000 + 72.0000i 2.30231 + 2.30231i
979979 108.000i 3.45169i
980980 0 0
981981 0 0
982982 −42.0000 + 42.0000i −1.34027 + 1.34027i
983983 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
984984 48.0000i 1.53018i
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 52.0000 + 52.0000i 1.65017 + 1.65017i
994994 0 0
995995 0 0
996996 16.0000 0.506979
997997 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
998998 14.0000 + 14.0000i 0.443162 + 0.443162i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.k.a.43.1 2
4.3 odd 2 800.2.o.d.143.1 2
5.2 odd 4 inner 200.2.k.a.107.1 yes 2
5.3 odd 4 200.2.k.d.107.1 yes 2
5.4 even 2 200.2.k.d.43.1 yes 2
8.3 odd 2 CM 200.2.k.a.43.1 2
8.5 even 2 800.2.o.d.143.1 2
20.3 even 4 800.2.o.a.207.1 2
20.7 even 4 800.2.o.d.207.1 2
20.19 odd 2 800.2.o.a.143.1 2
40.3 even 4 200.2.k.d.107.1 yes 2
40.13 odd 4 800.2.o.a.207.1 2
40.19 odd 2 200.2.k.d.43.1 yes 2
40.27 even 4 inner 200.2.k.a.107.1 yes 2
40.29 even 2 800.2.o.a.143.1 2
40.37 odd 4 800.2.o.d.207.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.k.a.43.1 2 1.1 even 1 trivial
200.2.k.a.43.1 2 8.3 odd 2 CM
200.2.k.a.107.1 yes 2 5.2 odd 4 inner
200.2.k.a.107.1 yes 2 40.27 even 4 inner
200.2.k.d.43.1 yes 2 5.4 even 2
200.2.k.d.43.1 yes 2 40.19 odd 2
200.2.k.d.107.1 yes 2 5.3 odd 4
200.2.k.d.107.1 yes 2 40.3 even 4
800.2.o.a.143.1 2 20.19 odd 2
800.2.o.a.143.1 2 40.29 even 2
800.2.o.a.207.1 2 20.3 even 4
800.2.o.a.207.1 2 40.13 odd 4
800.2.o.d.143.1 2 4.3 odd 2
800.2.o.d.143.1 2 8.5 even 2
800.2.o.d.207.1 2 20.7 even 4
800.2.o.d.207.1 2 40.37 odd 4