Properties

Label 200.3.i.b.157.3
Level $200$
Weight $3$
Character 200.157
Analytic conductor $5.450$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,3,Mod(93,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.93");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 200.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.44960528721\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{21} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 157.3
Root \(1.39859 - 0.209644i\) of defining polynomial
Character \(\chi\) \(=\) 200.157
Dual form 200.3.i.b.93.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18894 + 1.60823i) q^{2} +(-2.52630 - 2.52630i) q^{3} +(-1.17282 - 3.82420i) q^{4} +(7.06650 - 1.05925i) q^{6} +(5.20520 + 5.20520i) q^{7} +(7.54462 + 2.66059i) q^{8} +3.76437i q^{9} -2.49236i q^{11} +(-6.69817 + 12.6240i) q^{12} +(-6.65988 - 6.65988i) q^{13} +(-14.5599 + 2.18248i) q^{14} +(-13.2490 + 8.97020i) q^{16} +(-21.9428 - 21.9428i) q^{17} +(-6.05398 - 4.47563i) q^{18} -17.5567 q^{19} -26.2998i q^{21} +(4.00830 + 2.96328i) q^{22} +(-20.1791 + 20.1791i) q^{23} +(-12.3385 - 25.7814i) q^{24} +(18.6289 - 2.79240i) q^{26} +(-13.2268 + 13.2268i) q^{27} +(13.8010 - 26.0105i) q^{28} -1.04754 q^{29} -2.47263 q^{31} +(1.32614 - 31.9725i) q^{32} +(-6.29646 + 6.29646i) q^{33} +(61.3780 - 9.20035i) q^{34} +(14.3957 - 4.41493i) q^{36} +(19.2786 - 19.2786i) q^{37} +(20.8740 - 28.2353i) q^{38} +33.6497i q^{39} -43.9414 q^{41} +(42.2962 + 31.2690i) q^{42} +(32.9394 + 32.9394i) q^{43} +(-9.53129 + 2.92310i) q^{44} +(-8.46086 - 56.4446i) q^{46} +(-33.7079 - 33.7079i) q^{47} +(56.1323 + 10.8095i) q^{48} +5.18827i q^{49} +110.868i q^{51} +(-17.6578 + 33.2795i) q^{52} +(-36.4034 - 36.4034i) q^{53} +(-5.54582 - 36.9976i) q^{54} +(25.4224 + 53.1202i) q^{56} +(44.3536 + 44.3536i) q^{57} +(1.24547 - 1.68469i) q^{58} -30.5963 q^{59} -23.8366i q^{61} +(2.93982 - 3.97657i) q^{62} +(-19.5943 + 19.5943i) q^{63} +(49.8425 + 40.1463i) q^{64} +(-2.64003 - 17.6123i) q^{66} +(19.9932 - 19.9932i) q^{67} +(-58.1787 + 109.649i) q^{68} +101.957 q^{69} -21.8350 q^{71} +(-10.0154 + 28.4007i) q^{72} +(-32.6450 + 32.6450i) q^{73} +(8.08328 + 53.9257i) q^{74} +(20.5909 + 67.1405i) q^{76} +(12.9733 - 12.9733i) q^{77} +(-54.1165 - 40.0076i) q^{78} -16.4124i q^{79} +100.709 q^{81} +(52.2439 - 70.6680i) q^{82} +(-0.343799 - 0.343799i) q^{83} +(-100.576 + 30.8450i) q^{84} +(-92.1373 + 13.8111i) q^{86} +(2.64640 + 2.64640i) q^{87} +(6.63116 - 18.8039i) q^{88} +84.4631i q^{89} -69.3320i q^{91} +(100.836 + 53.5025i) q^{92} +(6.24661 + 6.24661i) q^{93} +(94.2869 - 14.1333i) q^{94} +(-84.1223 + 77.4219i) q^{96} +(24.1311 + 24.1311i) q^{97} +(-8.34394 - 6.16856i) q^{98} +9.38218 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} - 16 q^{6} + 4 q^{7} - 4 q^{8} + 44 q^{12} - 56 q^{16} + 12 q^{17} - 10 q^{18} - 92 q^{22} + 4 q^{23} + 100 q^{26} - 68 q^{28} - 136 q^{31} - 128 q^{32} - 32 q^{33} + 220 q^{36} + 188 q^{38}+ \cdots - 546 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18894 + 1.60823i −0.594472 + 0.804116i
\(3\) −2.52630 2.52630i −0.842100 0.842100i 0.147032 0.989132i \(-0.453028\pi\)
−0.989132 + 0.147032i \(0.953028\pi\)
\(4\) −1.17282 3.82420i −0.293205 0.956049i
\(5\) 0 0
\(6\) 7.06650 1.05925i 1.17775 0.176541i
\(7\) 5.20520 + 5.20520i 0.743600 + 0.743600i 0.973269 0.229669i \(-0.0737642\pi\)
−0.229669 + 0.973269i \(0.573764\pi\)
\(8\) 7.54462 + 2.66059i 0.943077 + 0.332574i
\(9\) 3.76437i 0.418263i
\(10\) 0 0
\(11\) 2.49236i 0.226579i −0.993562 0.113289i \(-0.963861\pi\)
0.993562 0.113289i \(-0.0361387\pi\)
\(12\) −6.69817 + 12.6240i −0.558181 + 1.05200i
\(13\) −6.65988 6.65988i −0.512298 0.512298i 0.402932 0.915230i \(-0.367991\pi\)
−0.915230 + 0.402932i \(0.867991\pi\)
\(14\) −14.5599 + 2.18248i −1.03999 + 0.155891i
\(15\) 0 0
\(16\) −13.2490 + 8.97020i −0.828061 + 0.560638i
\(17\) −21.9428 21.9428i −1.29075 1.29075i −0.934320 0.356434i \(-0.883992\pi\)
−0.356434 0.934320i \(-0.616008\pi\)
\(18\) −6.05398 4.47563i −0.336332 0.248646i
\(19\) −17.5567 −0.924039 −0.462020 0.886870i \(-0.652875\pi\)
−0.462020 + 0.886870i \(0.652875\pi\)
\(20\) 0 0
\(21\) 26.2998i 1.25237i
\(22\) 4.00830 + 2.96328i 0.182195 + 0.134695i
\(23\) −20.1791 + 20.1791i −0.877354 + 0.877354i −0.993260 0.115906i \(-0.963023\pi\)
0.115906 + 0.993260i \(0.463023\pi\)
\(24\) −12.3385 25.7814i −0.514105 1.07423i
\(25\) 0 0
\(26\) 18.6289 2.79240i 0.716495 0.107400i
\(27\) −13.2268 + 13.2268i −0.489880 + 0.489880i
\(28\) 13.8010 26.0105i 0.492891 0.928946i
\(29\) −1.04754 −0.0361220 −0.0180610 0.999837i \(-0.505749\pi\)
−0.0180610 + 0.999837i \(0.505749\pi\)
\(30\) 0 0
\(31\) −2.47263 −0.0797623 −0.0398812 0.999204i \(-0.512698\pi\)
−0.0398812 + 0.999204i \(0.512698\pi\)
\(32\) 1.32614 31.9725i 0.0414418 0.999141i
\(33\) −6.29646 + 6.29646i −0.190802 + 0.190802i
\(34\) 61.3780 9.20035i 1.80523 0.270599i
\(35\) 0 0
\(36\) 14.3957 4.41493i 0.399880 0.122637i
\(37\) 19.2786 19.2786i 0.521043 0.521043i −0.396843 0.917886i \(-0.629894\pi\)
0.917886 + 0.396843i \(0.129894\pi\)
\(38\) 20.8740 28.2353i 0.549316 0.743035i
\(39\) 33.6497i 0.862813i
\(40\) 0 0
\(41\) −43.9414 −1.07174 −0.535871 0.844300i \(-0.680017\pi\)
−0.535871 + 0.844300i \(0.680017\pi\)
\(42\) 42.2962 + 31.2690i 1.00705 + 0.744500i
\(43\) 32.9394 + 32.9394i 0.766032 + 0.766032i 0.977405 0.211373i \(-0.0677936\pi\)
−0.211373 + 0.977405i \(0.567794\pi\)
\(44\) −9.53129 + 2.92310i −0.216620 + 0.0664340i
\(45\) 0 0
\(46\) −8.46086 56.4446i −0.183932 1.22706i
\(47\) −33.7079 33.7079i −0.717189 0.717189i 0.250840 0.968029i \(-0.419293\pi\)
−0.968029 + 0.250840i \(0.919293\pi\)
\(48\) 56.1323 + 10.8095i 1.16942 + 0.225197i
\(49\) 5.18827i 0.105883i
\(50\) 0 0
\(51\) 110.868i 2.17389i
\(52\) −17.6578 + 33.2795i −0.339574 + 0.639991i
\(53\) −36.4034 36.4034i −0.686856 0.686856i 0.274679 0.961536i \(-0.411428\pi\)
−0.961536 + 0.274679i \(0.911428\pi\)
\(54\) −5.54582 36.9976i −0.102700 0.685141i
\(55\) 0 0
\(56\) 25.4224 + 53.1202i 0.453971 + 0.948575i
\(57\) 44.3536 + 44.3536i 0.778133 + 0.778133i
\(58\) 1.24547 1.68469i 0.0214736 0.0290463i
\(59\) −30.5963 −0.518581 −0.259291 0.965799i \(-0.583489\pi\)
−0.259291 + 0.965799i \(0.583489\pi\)
\(60\) 0 0
\(61\) 23.8366i 0.390764i −0.980727 0.195382i \(-0.937405\pi\)
0.980727 0.195382i \(-0.0625947\pi\)
\(62\) 2.93982 3.97657i 0.0474165 0.0641382i
\(63\) −19.5943 + 19.5943i −0.311021 + 0.311021i
\(64\) 49.8425 + 40.1463i 0.778789 + 0.627286i
\(65\) 0 0
\(66\) −2.64003 17.6123i −0.0400004 0.266853i
\(67\) 19.9932 19.9932i 0.298407 0.298407i −0.541983 0.840390i \(-0.682326\pi\)
0.840390 + 0.541983i \(0.182326\pi\)
\(68\) −58.1787 + 109.649i −0.855569 + 1.61248i
\(69\) 101.957 1.47764
\(70\) 0 0
\(71\) −21.8350 −0.307535 −0.153767 0.988107i \(-0.549141\pi\)
−0.153767 + 0.988107i \(0.549141\pi\)
\(72\) −10.0154 + 28.4007i −0.139103 + 0.394454i
\(73\) −32.6450 + 32.6450i −0.447191 + 0.447191i −0.894420 0.447228i \(-0.852411\pi\)
0.447228 + 0.894420i \(0.352411\pi\)
\(74\) 8.08328 + 53.9257i 0.109233 + 0.728725i
\(75\) 0 0
\(76\) 20.5909 + 67.1405i 0.270933 + 0.883427i
\(77\) 12.9733 12.9733i 0.168484 0.168484i
\(78\) −54.1165 40.0076i −0.693801 0.512918i
\(79\) 16.4124i 0.207753i −0.994590 0.103876i \(-0.966875\pi\)
0.994590 0.103876i \(-0.0331246\pi\)
\(80\) 0 0
\(81\) 100.709 1.24332
\(82\) 52.2439 70.6680i 0.637121 0.861805i
\(83\) −0.343799 0.343799i −0.00414216 0.00414216i 0.705033 0.709175i \(-0.250932\pi\)
−0.709175 + 0.705033i \(0.750932\pi\)
\(84\) −100.576 + 30.8450i −1.19733 + 0.367202i
\(85\) 0 0
\(86\) −92.1373 + 13.8111i −1.07136 + 0.160594i
\(87\) 2.64640 + 2.64640i 0.0304184 + 0.0304184i
\(88\) 6.63116 18.8039i 0.0753541 0.213681i
\(89\) 84.4631i 0.949024i 0.880249 + 0.474512i \(0.157375\pi\)
−0.880249 + 0.474512i \(0.842625\pi\)
\(90\) 0 0
\(91\) 69.3320i 0.761891i
\(92\) 100.836 + 53.5025i 1.09604 + 0.581549i
\(93\) 6.24661 + 6.24661i 0.0671678 + 0.0671678i
\(94\) 94.2869 14.1333i 1.00305 0.150354i
\(95\) 0 0
\(96\) −84.1223 + 77.4219i −0.876274 + 0.806478i
\(97\) 24.1311 + 24.1311i 0.248774 + 0.248774i 0.820467 0.571693i \(-0.193713\pi\)
−0.571693 + 0.820467i \(0.693713\pi\)
\(98\) −8.34394 6.16856i −0.0851422 0.0629445i
\(99\) 9.38218 0.0947695
\(100\) 0 0
\(101\) 152.095i 1.50589i −0.658085 0.752944i \(-0.728633\pi\)
0.658085 0.752944i \(-0.271367\pi\)
\(102\) −178.302 131.816i −1.74806 1.29232i
\(103\) 120.657 120.657i 1.17143 1.17143i 0.189558 0.981870i \(-0.439295\pi\)
0.981870 0.189558i \(-0.0607054\pi\)
\(104\) −32.5270 67.9655i −0.312760 0.653514i
\(105\) 0 0
\(106\) 101.827 15.2635i 0.960629 0.143995i
\(107\) −75.2789 + 75.2789i −0.703541 + 0.703541i −0.965169 0.261628i \(-0.915741\pi\)
0.261628 + 0.965169i \(0.415741\pi\)
\(108\) 66.0944 + 35.0691i 0.611985 + 0.324714i
\(109\) −11.8614 −0.108820 −0.0544100 0.998519i \(-0.517328\pi\)
−0.0544100 + 0.998519i \(0.517328\pi\)
\(110\) 0 0
\(111\) −97.4070 −0.877541
\(112\) −115.655 22.2719i −1.03264 0.198856i
\(113\) 82.0090 82.0090i 0.725743 0.725743i −0.244025 0.969769i \(-0.578468\pi\)
0.969769 + 0.244025i \(0.0784680\pi\)
\(114\) −124.065 + 18.5969i −1.08829 + 0.163131i
\(115\) 0 0
\(116\) 1.22858 + 4.00600i 0.0105912 + 0.0345345i
\(117\) 25.0702 25.0702i 0.214276 0.214276i
\(118\) 36.3773 49.2059i 0.308282 0.416999i
\(119\) 228.434i 1.91961i
\(120\) 0 0
\(121\) 114.788 0.948662
\(122\) 38.3348 + 28.3404i 0.314220 + 0.232299i
\(123\) 111.009 + 111.009i 0.902513 + 0.902513i
\(124\) 2.89996 + 9.45584i 0.0233867 + 0.0762567i
\(125\) 0 0
\(126\) −8.21565 54.8087i −0.0652035 0.434990i
\(127\) 55.8589 + 55.8589i 0.439834 + 0.439834i 0.891956 0.452122i \(-0.149333\pi\)
−0.452122 + 0.891956i \(0.649333\pi\)
\(128\) −123.825 + 32.4266i −0.967379 + 0.253333i
\(129\) 166.429i 1.29015i
\(130\) 0 0
\(131\) 151.619i 1.15740i 0.815541 + 0.578700i \(0.196440\pi\)
−0.815541 + 0.578700i \(0.803560\pi\)
\(132\) 31.4635 + 16.6943i 0.238360 + 0.126472i
\(133\) −91.3864 91.3864i −0.687116 0.687116i
\(134\) 8.38292 + 55.9246i 0.0625591 + 0.417348i
\(135\) 0 0
\(136\) −107.169 223.931i −0.788010 1.64655i
\(137\) −68.2473 68.2473i −0.498156 0.498156i 0.412708 0.910863i \(-0.364583\pi\)
−0.910863 + 0.412708i \(0.864583\pi\)
\(138\) −121.221 + 163.971i −0.878415 + 1.18819i
\(139\) −69.7245 −0.501615 −0.250807 0.968037i \(-0.580696\pi\)
−0.250807 + 0.968037i \(0.580696\pi\)
\(140\) 0 0
\(141\) 170.312i 1.20789i
\(142\) 25.9606 35.1157i 0.182821 0.247294i
\(143\) −16.5988 + 16.5988i −0.116076 + 0.116076i
\(144\) −33.7671 49.8740i −0.234494 0.346348i
\(145\) 0 0
\(146\) −13.6876 91.3138i −0.0937509 0.625437i
\(147\) 13.1071 13.1071i 0.0891640 0.0891640i
\(148\) −96.3355 51.1148i −0.650916 0.345370i
\(149\) −78.9012 −0.529538 −0.264769 0.964312i \(-0.585296\pi\)
−0.264769 + 0.964312i \(0.585296\pi\)
\(150\) 0 0
\(151\) 197.562 1.30835 0.654177 0.756341i \(-0.273015\pi\)
0.654177 + 0.756341i \(0.273015\pi\)
\(152\) −132.459 46.7113i −0.871440 0.307311i
\(153\) 82.6009 82.6009i 0.539875 0.539875i
\(154\) 5.43953 + 36.2885i 0.0353216 + 0.235640i
\(155\) 0 0
\(156\) 128.683 39.4651i 0.824891 0.252981i
\(157\) −94.1106 + 94.1106i −0.599431 + 0.599431i −0.940161 0.340730i \(-0.889326\pi\)
0.340730 + 0.940161i \(0.389326\pi\)
\(158\) 26.3950 + 19.5135i 0.167057 + 0.123503i
\(159\) 183.932i 1.15680i
\(160\) 0 0
\(161\) −210.073 −1.30480
\(162\) −119.737 + 161.963i −0.739119 + 0.999773i
\(163\) −132.980 132.980i −0.815827 0.815827i 0.169673 0.985500i \(-0.445729\pi\)
−0.985500 + 0.169673i \(0.945729\pi\)
\(164\) 51.5354 + 168.041i 0.314240 + 1.02464i
\(165\) 0 0
\(166\) 0.961668 0.144151i 0.00579318 0.000868378i
\(167\) 51.4111 + 51.4111i 0.307851 + 0.307851i 0.844075 0.536225i \(-0.180150\pi\)
−0.536225 + 0.844075i \(0.680150\pi\)
\(168\) 69.9730 198.422i 0.416506 1.18108i
\(169\) 80.2920i 0.475101i
\(170\) 0 0
\(171\) 66.0900i 0.386492i
\(172\) 87.3347 164.599i 0.507760 0.956969i
\(173\) 183.164 + 183.164i 1.05875 + 1.05875i 0.998163 + 0.0605880i \(0.0192976\pi\)
0.0605880 + 0.998163i \(0.480702\pi\)
\(174\) −7.40244 + 1.10960i −0.0425428 + 0.00637702i
\(175\) 0 0
\(176\) 22.3570 + 33.0213i 0.127028 + 0.187621i
\(177\) 77.2954 + 77.2954i 0.436697 + 0.436697i
\(178\) −135.836 100.422i −0.763125 0.564168i
\(179\) 31.3468 0.175122 0.0875610 0.996159i \(-0.472093\pi\)
0.0875610 + 0.996159i \(0.472093\pi\)
\(180\) 0 0
\(181\) 57.4156i 0.317214i −0.987342 0.158607i \(-0.949300\pi\)
0.987342 0.158607i \(-0.0507002\pi\)
\(182\) 111.502 + 82.4320i 0.612648 + 0.452923i
\(183\) −60.2184 + 60.2184i −0.329063 + 0.329063i
\(184\) −205.932 + 98.5555i −1.11920 + 0.535628i
\(185\) 0 0
\(186\) −17.4729 + 2.61912i −0.0939401 + 0.0140813i
\(187\) −54.6895 + 54.6895i −0.292457 + 0.292457i
\(188\) −89.3723 + 168.439i −0.475385 + 0.895952i
\(189\) −137.696 −0.728550
\(190\) 0 0
\(191\) 161.923 0.847767 0.423884 0.905717i \(-0.360667\pi\)
0.423884 + 0.905717i \(0.360667\pi\)
\(192\) −24.4956 227.339i −0.127581 1.18405i
\(193\) −63.0037 + 63.0037i −0.326444 + 0.326444i −0.851233 0.524789i \(-0.824144\pi\)
0.524789 + 0.851233i \(0.324144\pi\)
\(194\) −67.4989 + 10.1179i −0.347933 + 0.0521540i
\(195\) 0 0
\(196\) 19.8410 6.08491i 0.101229 0.0310455i
\(197\) −3.96178 + 3.96178i −0.0201106 + 0.0201106i −0.717091 0.696980i \(-0.754527\pi\)
0.696980 + 0.717091i \(0.254527\pi\)
\(198\) −11.1549 + 15.0887i −0.0563378 + 0.0762056i
\(199\) 123.026i 0.618221i 0.951026 + 0.309110i \(0.100031\pi\)
−0.951026 + 0.309110i \(0.899969\pi\)
\(200\) 0 0
\(201\) −101.018 −0.502576
\(202\) 244.603 + 180.832i 1.21091 + 0.895208i
\(203\) −5.45265 5.45265i −0.0268604 0.0268604i
\(204\) 423.982 130.029i 2.07834 0.637395i
\(205\) 0 0
\(206\) 50.5900 + 337.499i 0.245582 + 1.63834i
\(207\) −75.9617 75.9617i −0.366965 0.366965i
\(208\) 147.977 + 28.4961i 0.711428 + 0.137001i
\(209\) 43.7578i 0.209367i
\(210\) 0 0
\(211\) 273.854i 1.29789i −0.760837 0.648943i \(-0.775211\pi\)
0.760837 0.648943i \(-0.224789\pi\)
\(212\) −96.5191 + 181.908i −0.455279 + 0.858059i
\(213\) 55.1617 + 55.1617i 0.258975 + 0.258975i
\(214\) −31.5635 210.568i −0.147493 0.983964i
\(215\) 0 0
\(216\) −134.982 + 64.5999i −0.624916 + 0.299074i
\(217\) −12.8706 12.8706i −0.0593113 0.0593113i
\(218\) 14.1025 19.0759i 0.0646905 0.0875040i
\(219\) 164.942 0.753159
\(220\) 0 0
\(221\) 292.273i 1.32250i
\(222\) 115.812 156.653i 0.521674 0.705644i
\(223\) −128.870 + 128.870i −0.577894 + 0.577894i −0.934323 0.356429i \(-0.883994\pi\)
0.356429 + 0.934323i \(0.383994\pi\)
\(224\) 173.326 159.521i 0.773778 0.712145i
\(225\) 0 0
\(226\) 34.3854 + 229.394i 0.152148 + 1.01502i
\(227\) 242.455 242.455i 1.06808 1.06808i 0.0705768 0.997506i \(-0.477516\pi\)
0.997506 0.0705768i \(-0.0224840\pi\)
\(228\) 117.598 221.636i 0.515781 0.972086i
\(229\) 385.669 1.68414 0.842072 0.539365i \(-0.181336\pi\)
0.842072 + 0.539365i \(0.181336\pi\)
\(230\) 0 0
\(231\) −65.5487 −0.283760
\(232\) −7.90328 2.78707i −0.0340659 0.0120132i
\(233\) −9.90826 + 9.90826i −0.0425247 + 0.0425247i −0.728049 0.685525i \(-0.759573\pi\)
0.685525 + 0.728049i \(0.259573\pi\)
\(234\) 10.5116 + 70.1259i 0.0449215 + 0.299683i
\(235\) 0 0
\(236\) 35.8840 + 117.006i 0.152051 + 0.495789i
\(237\) −41.4627 + 41.4627i −0.174948 + 0.174948i
\(238\) 367.374 + 271.595i 1.54359 + 1.14116i
\(239\) 44.7391i 0.187193i 0.995610 + 0.0935965i \(0.0298364\pi\)
−0.995610 + 0.0935965i \(0.970164\pi\)
\(240\) 0 0
\(241\) −21.4785 −0.0891223 −0.0445611 0.999007i \(-0.514189\pi\)
−0.0445611 + 0.999007i \(0.514189\pi\)
\(242\) −136.477 + 184.606i −0.563953 + 0.762835i
\(243\) −135.380 135.380i −0.557118 0.557118i
\(244\) −91.1560 + 27.9561i −0.373590 + 0.114574i
\(245\) 0 0
\(246\) −310.512 + 46.5448i −1.26224 + 0.189206i
\(247\) 116.926 + 116.926i 0.473384 + 0.473384i
\(248\) −18.6551 6.57866i −0.0752220 0.0265269i
\(249\) 1.73708i 0.00697623i
\(250\) 0 0
\(251\) 149.651i 0.596218i −0.954532 0.298109i \(-0.903644\pi\)
0.954532 0.298109i \(-0.0963560\pi\)
\(252\) 97.9131 + 51.9519i 0.388544 + 0.206158i
\(253\) 50.2938 + 50.2938i 0.198790 + 0.198790i
\(254\) −156.247 + 23.4209i −0.615146 + 0.0922084i
\(255\) 0 0
\(256\) 95.0710 237.692i 0.371371 0.928485i
\(257\) −244.045 244.045i −0.949590 0.949590i 0.0491992 0.998789i \(-0.484333\pi\)
−0.998789 + 0.0491992i \(0.984333\pi\)
\(258\) 267.657 + 197.875i 1.03743 + 0.766959i
\(259\) 200.698 0.774896
\(260\) 0 0
\(261\) 3.94332i 0.0151085i
\(262\) −243.839 180.267i −0.930683 0.688042i
\(263\) 241.557 241.557i 0.918467 0.918467i −0.0784512 0.996918i \(-0.524997\pi\)
0.996918 + 0.0784512i \(0.0249975\pi\)
\(264\) −64.2566 + 30.7521i −0.243396 + 0.116485i
\(265\) 0 0
\(266\) 255.624 38.3172i 0.960992 0.144050i
\(267\) 213.379 213.379i 0.799172 0.799172i
\(268\) −99.9066 53.0096i −0.372786 0.197797i
\(269\) −350.619 −1.30342 −0.651708 0.758470i \(-0.725947\pi\)
−0.651708 + 0.758470i \(0.725947\pi\)
\(270\) 0 0
\(271\) −298.610 −1.10188 −0.550940 0.834545i \(-0.685731\pi\)
−0.550940 + 0.834545i \(0.685731\pi\)
\(272\) 487.552 + 93.8885i 1.79247 + 0.345178i
\(273\) −175.153 + 175.153i −0.641588 + 0.641588i
\(274\) 190.900 28.6153i 0.696715 0.104435i
\(275\) 0 0
\(276\) −119.577 389.904i −0.433252 1.41270i
\(277\) 275.798 275.798i 0.995660 0.995660i −0.00433109 0.999991i \(-0.501379\pi\)
0.999991 + 0.00433109i \(0.00137863\pi\)
\(278\) 82.8985 112.133i 0.298196 0.403357i
\(279\) 9.30790i 0.0333617i
\(280\) 0 0
\(281\) 13.2859 0.0472808 0.0236404 0.999721i \(-0.492474\pi\)
0.0236404 + 0.999721i \(0.492474\pi\)
\(282\) −273.902 202.492i −0.971283 0.718057i
\(283\) −253.189 253.189i −0.894662 0.894662i 0.100296 0.994958i \(-0.468021\pi\)
−0.994958 + 0.100296i \(0.968021\pi\)
\(284\) 25.6085 + 83.5013i 0.0901709 + 0.294019i
\(285\) 0 0
\(286\) −6.95969 46.4299i −0.0243346 0.162342i
\(287\) −228.724 228.724i −0.796948 0.796948i
\(288\) 120.356 + 4.99207i 0.417904 + 0.0173336i
\(289\) 673.975i 2.33209i
\(290\) 0 0
\(291\) 121.925i 0.418985i
\(292\) 163.128 + 86.5541i 0.558656 + 0.296418i
\(293\) −143.408 143.408i −0.489447 0.489447i 0.418685 0.908132i \(-0.362491\pi\)
−0.908132 + 0.418685i \(0.862491\pi\)
\(294\) 5.49565 + 36.6629i 0.0186927 + 0.124704i
\(295\) 0 0
\(296\) 196.742 94.1572i 0.664669 0.318099i
\(297\) 32.9659 + 32.9659i 0.110996 + 0.110996i
\(298\) 93.8092 126.891i 0.314796 0.425810i
\(299\) 268.781 0.898934
\(300\) 0 0
\(301\) 342.912i 1.13924i
\(302\) −234.890 + 317.725i −0.777781 + 1.05207i
\(303\) −384.236 + 384.236i −1.26811 + 1.26811i
\(304\) 232.609 157.488i 0.765161 0.518051i
\(305\) 0 0
\(306\) 34.6335 + 231.049i 0.113181 + 0.755063i
\(307\) −357.761 + 357.761i −1.16535 + 1.16535i −0.182059 + 0.983288i \(0.558276\pi\)
−0.983288 + 0.182059i \(0.941724\pi\)
\(308\) −64.8276 34.3970i −0.210479 0.111679i
\(309\) −609.631 −1.97292
\(310\) 0 0
\(311\) −380.204 −1.22252 −0.611261 0.791429i \(-0.709337\pi\)
−0.611261 + 0.791429i \(0.709337\pi\)
\(312\) −89.5280 + 253.874i −0.286949 + 0.813699i
\(313\) −270.798 + 270.798i −0.865169 + 0.865169i −0.991933 0.126764i \(-0.959541\pi\)
0.126764 + 0.991933i \(0.459541\pi\)
\(314\) −39.4594 263.244i −0.125667 0.838357i
\(315\) 0 0
\(316\) −62.7645 + 19.2489i −0.198622 + 0.0609141i
\(317\) −238.939 + 238.939i −0.753752 + 0.753752i −0.975177 0.221426i \(-0.928929\pi\)
0.221426 + 0.975177i \(0.428929\pi\)
\(318\) −295.805 218.685i −0.930204 0.687687i
\(319\) 2.61085i 0.00818448i
\(320\) 0 0
\(321\) 380.354 1.18490
\(322\) 249.765 337.846i 0.775668 1.04921i
\(323\) 385.245 + 385.245i 1.19271 + 1.19271i
\(324\) −118.113 385.131i −0.364548 1.18867i
\(325\) 0 0
\(326\) 371.968 55.7568i 1.14101 0.171033i
\(327\) 29.9654 + 29.9654i 0.0916373 + 0.0916373i
\(328\) −331.521 116.910i −1.01074 0.356433i
\(329\) 350.913i 1.06660i
\(330\) 0 0
\(331\) 73.0725i 0.220763i 0.993889 + 0.110381i \(0.0352072\pi\)
−0.993889 + 0.110381i \(0.964793\pi\)
\(332\) −0.911542 + 1.71797i −0.00274561 + 0.00517462i
\(333\) 72.5718 + 72.5718i 0.217933 + 0.217933i
\(334\) −143.806 + 21.5560i −0.430557 + 0.0645390i
\(335\) 0 0
\(336\) 235.914 + 348.445i 0.702126 + 1.03704i
\(337\) 207.932 + 207.932i 0.617008 + 0.617008i 0.944763 0.327755i \(-0.106292\pi\)
−0.327755 + 0.944763i \(0.606292\pi\)
\(338\) 129.128 + 95.4627i 0.382036 + 0.282434i
\(339\) −414.358 −1.22230
\(340\) 0 0
\(341\) 6.16270i 0.0180724i
\(342\) 106.288 + 78.5774i 0.310784 + 0.229759i
\(343\) 228.049 228.049i 0.664866 0.664866i
\(344\) 160.877 + 336.153i 0.467665 + 0.977189i
\(345\) 0 0
\(346\) −512.342 + 76.7983i −1.48076 + 0.221961i
\(347\) 150.516 150.516i 0.433765 0.433765i −0.456142 0.889907i \(-0.650769\pi\)
0.889907 + 0.456142i \(0.150769\pi\)
\(348\) 7.01659 13.2241i 0.0201626 0.0380003i
\(349\) 159.797 0.457871 0.228935 0.973442i \(-0.426476\pi\)
0.228935 + 0.973442i \(0.426476\pi\)
\(350\) 0 0
\(351\) 176.177 0.501930
\(352\) −79.6871 3.30521i −0.226384 0.00938981i
\(353\) −31.8920 + 31.8920i −0.0903455 + 0.0903455i −0.750835 0.660490i \(-0.770349\pi\)
0.660490 + 0.750835i \(0.270349\pi\)
\(354\) −216.209 + 32.4090i −0.610759 + 0.0915508i
\(355\) 0 0
\(356\) 323.004 99.0601i 0.907314 0.278259i
\(357\) −577.092 + 577.092i −1.61650 + 1.61650i
\(358\) −37.2697 + 50.4130i −0.104105 + 0.140818i
\(359\) 374.114i 1.04210i −0.853526 0.521050i \(-0.825541\pi\)
0.853526 0.521050i \(-0.174459\pi\)
\(360\) 0 0
\(361\) −52.7608 −0.146152
\(362\) 92.3377 + 68.2640i 0.255076 + 0.188575i
\(363\) −289.989 289.989i −0.798868 0.798868i
\(364\) −265.139 + 81.3141i −0.728405 + 0.223390i
\(365\) 0 0
\(366\) −25.2488 168.442i −0.0689859 0.460223i
\(367\) −195.775 195.775i −0.533446 0.533446i 0.388150 0.921596i \(-0.373114\pi\)
−0.921596 + 0.388150i \(0.873114\pi\)
\(368\) 86.3421 448.364i 0.234625 1.21838i
\(369\) 165.412i 0.448270i
\(370\) 0 0
\(371\) 378.974i 1.02149i
\(372\) 16.5621 31.2144i 0.0445218 0.0839097i
\(373\) 342.423 + 342.423i 0.918023 + 0.918023i 0.996885 0.0788627i \(-0.0251289\pi\)
−0.0788627 + 0.996885i \(0.525129\pi\)
\(374\) −22.9306 152.976i −0.0613118 0.409027i
\(375\) 0 0
\(376\) −164.630 343.996i −0.437846 0.914883i
\(377\) 6.97649 + 6.97649i 0.0185053 + 0.0185053i
\(378\) 163.713 221.447i 0.433103 0.585839i
\(379\) −607.050 −1.60171 −0.800857 0.598855i \(-0.795622\pi\)
−0.800857 + 0.598855i \(0.795622\pi\)
\(380\) 0 0
\(381\) 282.232i 0.740767i
\(382\) −192.518 + 260.411i −0.503974 + 0.681703i
\(383\) 154.687 154.687i 0.403882 0.403882i −0.475717 0.879599i \(-0.657811\pi\)
0.879599 + 0.475717i \(0.157811\pi\)
\(384\) 394.737 + 230.898i 1.02796 + 0.601298i
\(385\) 0 0
\(386\) −26.4167 176.233i −0.0684370 0.456561i
\(387\) −123.996 + 123.996i −0.320403 + 0.320403i
\(388\) 63.9806 120.584i 0.164899 0.310782i
\(389\) 323.730 0.832210 0.416105 0.909317i \(-0.363395\pi\)
0.416105 + 0.909317i \(0.363395\pi\)
\(390\) 0 0
\(391\) 885.575 2.26490
\(392\) −13.8039 + 39.1435i −0.0352139 + 0.0998559i
\(393\) 383.036 383.036i 0.974645 0.974645i
\(394\) −1.66113 11.0818i −0.00421605 0.0281264i
\(395\) 0 0
\(396\) −11.0036 35.8793i −0.0277869 0.0906043i
\(397\) 376.174 376.174i 0.947543 0.947543i −0.0511485 0.998691i \(-0.516288\pi\)
0.998691 + 0.0511485i \(0.0162882\pi\)
\(398\) −197.854 146.271i −0.497121 0.367515i
\(399\) 461.739i 1.15724i
\(400\) 0 0
\(401\) −401.761 −1.00190 −0.500948 0.865477i \(-0.667015\pi\)
−0.500948 + 0.865477i \(0.667015\pi\)
\(402\) 120.105 162.460i 0.298768 0.404130i
\(403\) 16.4674 + 16.4674i 0.0408621 + 0.0408621i
\(404\) −581.640 + 178.380i −1.43970 + 0.441534i
\(405\) 0 0
\(406\) 15.2520 2.28623i 0.0375666 0.00563111i
\(407\) −48.0493 48.0493i −0.118057 0.118057i
\(408\) −294.975 + 836.459i −0.722978 + 2.05014i
\(409\) 166.880i 0.408020i −0.978969 0.204010i \(-0.934603\pi\)
0.978969 0.204010i \(-0.0653974\pi\)
\(410\) 0 0
\(411\) 344.826i 0.838993i
\(412\) −602.925 319.907i −1.46341 0.776474i
\(413\) −159.260 159.260i −0.385617 0.385617i
\(414\) 212.478 31.8498i 0.513233 0.0769319i
\(415\) 0 0
\(416\) −221.765 + 204.101i −0.533089 + 0.490628i
\(417\) 176.145 + 176.145i 0.422410 + 0.422410i
\(418\) −70.3727 52.0256i −0.168356 0.124463i
\(419\) 533.694 1.27373 0.636866 0.770974i \(-0.280230\pi\)
0.636866 + 0.770974i \(0.280230\pi\)
\(420\) 0 0
\(421\) 214.523i 0.509556i 0.967000 + 0.254778i \(0.0820023\pi\)
−0.967000 + 0.254778i \(0.917998\pi\)
\(422\) 440.421 + 325.597i 1.04365 + 0.771558i
\(423\) 126.889 126.889i 0.299974 0.299974i
\(424\) −177.795 371.504i −0.419328 0.876189i
\(425\) 0 0
\(426\) −154.297 + 23.1286i −0.362199 + 0.0542925i
\(427\) 124.074 124.074i 0.290573 0.290573i
\(428\) 376.170 + 199.593i 0.878902 + 0.466338i
\(429\) 83.8673 0.195495
\(430\) 0 0
\(431\) −525.371 −1.21896 −0.609479 0.792802i \(-0.708621\pi\)
−0.609479 + 0.792802i \(0.708621\pi\)
\(432\) 56.5944 293.888i 0.131006 0.680296i
\(433\) 262.829 262.829i 0.606994 0.606994i −0.335165 0.942159i \(-0.608792\pi\)
0.942159 + 0.335165i \(0.108792\pi\)
\(434\) 36.0012 5.39646i 0.0829521 0.0124342i
\(435\) 0 0
\(436\) 13.9113 + 45.3603i 0.0319066 + 0.104037i
\(437\) 354.280 354.280i 0.810709 0.810709i
\(438\) −196.107 + 265.265i −0.447732 + 0.605627i
\(439\) 419.145i 0.954771i −0.878694 0.477386i \(-0.841584\pi\)
0.878694 0.477386i \(-0.158416\pi\)
\(440\) 0 0
\(441\) −19.5306 −0.0442870
\(442\) −470.043 347.497i −1.06345 0.786191i
\(443\) −119.234 119.234i −0.269152 0.269152i 0.559606 0.828758i \(-0.310952\pi\)
−0.828758 + 0.559606i \(0.810952\pi\)
\(444\) 114.241 + 372.504i 0.257300 + 0.838972i
\(445\) 0 0
\(446\) −54.0337 360.473i −0.121152 0.808236i
\(447\) 199.328 + 199.328i 0.445924 + 0.445924i
\(448\) 50.4709 + 468.410i 0.112658 + 1.04556i
\(449\) 596.070i 1.32755i −0.747932 0.663775i \(-0.768953\pi\)
0.747932 0.663775i \(-0.231047\pi\)
\(450\) 0 0
\(451\) 109.518i 0.242834i
\(452\) −409.801 217.437i −0.906639 0.481055i
\(453\) −499.099 499.099i −1.10176 1.10176i
\(454\) 101.658 + 678.189i 0.223917 + 1.49381i
\(455\) 0 0
\(456\) 216.624 + 452.637i 0.475053 + 0.992626i
\(457\) −144.279 144.279i −0.315708 0.315708i 0.531408 0.847116i \(-0.321663\pi\)
−0.847116 + 0.531408i \(0.821663\pi\)
\(458\) −458.539 + 620.245i −1.00118 + 1.35425i
\(459\) 580.465 1.26463
\(460\) 0 0
\(461\) 743.994i 1.61387i −0.590640 0.806935i \(-0.701125\pi\)
0.590640 0.806935i \(-0.298875\pi\)
\(462\) 77.9337 105.417i 0.168688 0.228176i
\(463\) −446.519 + 446.519i −0.964404 + 0.964404i −0.999388 0.0349842i \(-0.988862\pi\)
0.0349842 + 0.999388i \(0.488862\pi\)
\(464\) 13.8788 9.39664i 0.0299113 0.0202514i
\(465\) 0 0
\(466\) −4.15441 27.7152i −0.00891504 0.0594746i
\(467\) 5.61916 5.61916i 0.0120325 0.0120325i −0.701065 0.713097i \(-0.747292\pi\)
0.713097 + 0.701065i \(0.247292\pi\)
\(468\) −125.276 66.4707i −0.267685 0.142031i
\(469\) 208.138 0.443791
\(470\) 0 0
\(471\) 475.503 1.00956
\(472\) −230.837 81.4042i −0.489062 0.172467i
\(473\) 82.0969 82.0969i 0.173566 0.173566i
\(474\) −17.3848 115.979i −0.0366768 0.244681i
\(475\) 0 0
\(476\) −873.576 + 267.912i −1.83524 + 0.562840i
\(477\) 137.036 137.036i 0.287287 0.287287i
\(478\) −71.9509 53.1923i −0.150525 0.111281i
\(479\) 765.340i 1.59779i 0.601472 + 0.798894i \(0.294581\pi\)
−0.601472 + 0.798894i \(0.705419\pi\)
\(480\) 0 0
\(481\) −256.786 −0.533859
\(482\) 25.5367 34.5424i 0.0529807 0.0716647i
\(483\) 530.707 + 530.707i 1.09877 + 1.09877i
\(484\) −134.626 438.973i −0.278153 0.906968i
\(485\) 0 0
\(486\) 378.681 56.7630i 0.779179 0.116796i
\(487\) 611.323 + 611.323i 1.25528 + 1.25528i 0.953320 + 0.301963i \(0.0976420\pi\)
0.301963 + 0.953320i \(0.402358\pi\)
\(488\) 63.4195 179.838i 0.129958 0.368521i
\(489\) 671.893i 1.37402i
\(490\) 0 0
\(491\) 899.211i 1.83139i 0.401877 + 0.915694i \(0.368358\pi\)
−0.401877 + 0.915694i \(0.631642\pi\)
\(492\) 294.327 554.715i 0.598226 1.12747i
\(493\) 22.9860 + 22.9860i 0.0466247 + 0.0466247i
\(494\) −327.062 + 49.0255i −0.662069 + 0.0992419i
\(495\) 0 0
\(496\) 32.7599 22.1800i 0.0660481 0.0447178i
\(497\) −113.655 113.655i −0.228683 0.228683i
\(498\) −2.79363 2.06529i −0.00560969 0.00414717i
\(499\) −755.350 −1.51373 −0.756864 0.653572i \(-0.773270\pi\)
−0.756864 + 0.653572i \(0.773270\pi\)
\(500\) 0 0
\(501\) 259.760i 0.518482i
\(502\) 240.673 + 177.927i 0.479429 + 0.354435i
\(503\) 505.226 505.226i 1.00443 1.00443i 0.00443600 0.999990i \(-0.498588\pi\)
0.999990 0.00443600i \(-0.00141203\pi\)
\(504\) −199.964 + 95.6991i −0.396754 + 0.189879i
\(505\) 0 0
\(506\) −140.681 + 21.0876i −0.278025 + 0.0416750i
\(507\) −202.842 + 202.842i −0.400082 + 0.400082i
\(508\) 148.103 279.128i 0.291541 0.549464i
\(509\) 594.029 1.16705 0.583526 0.812095i \(-0.301673\pi\)
0.583526 + 0.812095i \(0.301673\pi\)
\(510\) 0 0
\(511\) −339.847 −0.665063
\(512\) 269.230 + 435.499i 0.525840 + 0.850584i
\(513\) 232.219 232.219i 0.452668 0.452668i
\(514\) 682.636 102.325i 1.32809 0.199076i
\(515\) 0 0
\(516\) −636.459 + 195.192i −1.23345 + 0.378279i
\(517\) −84.0123 + 84.0123i −0.162500 + 0.162500i
\(518\) −238.619 + 322.769i −0.460654 + 0.623106i
\(519\) 925.453i 1.78315i
\(520\) 0 0
\(521\) 871.615 1.67297 0.836483 0.547993i \(-0.184608\pi\)
0.836483 + 0.547993i \(0.184608\pi\)
\(522\) 6.34178 + 4.68839i 0.0121490 + 0.00898160i
\(523\) 601.907 + 601.907i 1.15087 + 1.15087i 0.986378 + 0.164497i \(0.0526001\pi\)
0.164497 + 0.986378i \(0.447400\pi\)
\(524\) 579.822 177.822i 1.10653 0.339356i
\(525\) 0 0
\(526\) 101.282 + 675.677i 0.192551 + 1.28456i
\(527\) 54.2566 + 54.2566i 0.102954 + 0.102954i
\(528\) 26.9411 139.902i 0.0510249 0.264966i
\(529\) 285.396i 0.539500i
\(530\) 0 0
\(531\) 115.176i 0.216903i
\(532\) −242.300 + 456.660i −0.455451 + 0.858383i
\(533\) 292.645 + 292.645i 0.549052 + 0.549052i
\(534\) 89.4672 + 596.859i 0.167542 + 1.11771i
\(535\) 0 0
\(536\) 204.035 97.6475i 0.380663 0.182178i
\(537\) −79.1915 79.1915i −0.147470 0.147470i
\(538\) 416.867 563.877i 0.774845 1.04810i
\(539\) 12.9311 0.0239908
\(540\) 0 0
\(541\) 109.548i 0.202492i 0.994861 + 0.101246i \(0.0322830\pi\)
−0.994861 + 0.101246i \(0.967717\pi\)
\(542\) 355.030 480.233i 0.655037 0.886040i
\(543\) −145.049 + 145.049i −0.267125 + 0.267125i
\(544\) −730.666 + 672.468i −1.34314 + 1.23615i
\(545\) 0 0
\(546\) −73.4397 489.935i −0.134505 0.897317i
\(547\) −330.968 + 330.968i −0.605060 + 0.605060i −0.941651 0.336591i \(-0.890726\pi\)
0.336591 + 0.941651i \(0.390726\pi\)
\(548\) −180.949 + 341.033i −0.330200 + 0.622323i
\(549\) 89.7299 0.163442
\(550\) 0 0
\(551\) 18.3914 0.0333782
\(552\) 769.227 + 271.266i 1.39353 + 0.491424i
\(553\) 85.4301 85.4301i 0.154485 0.154485i
\(554\) 115.639 + 771.455i 0.208734 + 1.39252i
\(555\) 0 0
\(556\) 81.7744 + 266.640i 0.147076 + 0.479569i
\(557\) −62.7080 + 62.7080i −0.112582 + 0.112582i −0.761153 0.648572i \(-0.775367\pi\)
0.648572 + 0.761153i \(0.275367\pi\)
\(558\) 14.9693 + 11.0666i 0.0268266 + 0.0198326i
\(559\) 438.745i 0.784874i
\(560\) 0 0
\(561\) 276.324 0.492556
\(562\) −15.7962 + 21.3668i −0.0281071 + 0.0380193i
\(563\) −116.120 116.120i −0.206252 0.206252i 0.596420 0.802672i \(-0.296589\pi\)
−0.802672 + 0.596420i \(0.796589\pi\)
\(564\) 651.308 199.746i 1.15480 0.354159i
\(565\) 0 0
\(566\) 708.215 106.159i 1.25126 0.187560i
\(567\) 524.210 + 524.210i 0.924533 + 0.924533i
\(568\) −164.737 58.0939i −0.290029 0.102278i
\(569\) 323.733i 0.568950i 0.958683 + 0.284475i \(0.0918193\pi\)
−0.958683 + 0.284475i \(0.908181\pi\)
\(570\) 0 0
\(571\) 433.708i 0.759558i 0.925077 + 0.379779i \(0.124000\pi\)
−0.925077 + 0.379779i \(0.876000\pi\)
\(572\) 82.9447 + 44.0098i 0.145008 + 0.0769402i
\(573\) −409.067 409.067i −0.713904 0.713904i
\(574\) 639.782 95.9011i 1.11460 0.167075i
\(575\) 0 0
\(576\) −151.125 + 187.626i −0.262370 + 0.325739i
\(577\) −27.1282 27.1282i −0.0470159 0.0470159i 0.683208 0.730224i \(-0.260584\pi\)
−0.730224 + 0.683208i \(0.760584\pi\)
\(578\) −1083.91 801.319i −1.87527 1.38637i
\(579\) 318.332 0.549797
\(580\) 0 0
\(581\) 3.57909i 0.00616023i
\(582\) 196.083 + 144.962i 0.336913 + 0.249075i
\(583\) −90.7305 + 90.7305i −0.155627 + 0.155627i
\(584\) −333.149 + 159.439i −0.570460 + 0.273012i
\(585\) 0 0
\(586\) 401.137 60.1291i 0.684535 0.102609i
\(587\) −163.733 + 163.733i −0.278932 + 0.278932i −0.832682 0.553751i \(-0.813196\pi\)
0.553751 + 0.832682i \(0.313196\pi\)
\(588\) −65.4965 34.7519i −0.111389 0.0591019i
\(589\) 43.4114 0.0737035
\(590\) 0 0
\(591\) 20.0173 0.0338702
\(592\) −82.4889 + 428.355i −0.139339 + 0.723572i
\(593\) −280.606 + 280.606i −0.473198 + 0.473198i −0.902948 0.429750i \(-0.858602\pi\)
0.429750 + 0.902948i \(0.358602\pi\)
\(594\) −92.2115 + 13.8222i −0.155238 + 0.0232697i
\(595\) 0 0
\(596\) 92.5370 + 301.734i 0.155263 + 0.506265i
\(597\) 310.800 310.800i 0.520603 0.520603i
\(598\) −319.566 + 432.263i −0.534392 + 0.722848i
\(599\) 639.232i 1.06716i 0.845748 + 0.533582i \(0.179155\pi\)
−0.845748 + 0.533582i \(0.820845\pi\)
\(600\) 0 0
\(601\) −332.979 −0.554041 −0.277021 0.960864i \(-0.589347\pi\)
−0.277021 + 0.960864i \(0.589347\pi\)
\(602\) −551.482 407.704i −0.916084 0.677249i
\(603\) 75.2619 + 75.2619i 0.124812 + 0.124812i
\(604\) −231.704 755.514i −0.383617 1.25085i
\(605\) 0 0
\(606\) −161.106 1074.78i −0.265851 1.77356i
\(607\) −681.745 681.745i −1.12314 1.12314i −0.991267 0.131873i \(-0.957901\pi\)
−0.131873 0.991267i \(-0.542099\pi\)
\(608\) −23.2826 + 561.333i −0.0382938 + 0.923245i
\(609\) 27.5501i 0.0452382i
\(610\) 0 0
\(611\) 448.981i 0.734830i
\(612\) −412.758 219.006i −0.674442 0.357853i
\(613\) 378.926 + 378.926i 0.618150 + 0.618150i 0.945057 0.326907i \(-0.106006\pi\)
−0.326907 + 0.945057i \(0.606006\pi\)
\(614\) −150.005 1000.72i −0.244308 1.62984i
\(615\) 0 0
\(616\) 132.395 63.3617i 0.214927 0.102860i
\(617\) 68.3041 + 68.3041i 0.110704 + 0.110704i 0.760289 0.649585i \(-0.225057\pi\)
−0.649585 + 0.760289i \(0.725057\pi\)
\(618\) 724.818 980.429i 1.17284 1.58645i
\(619\) −1009.69 −1.63116 −0.815580 0.578645i \(-0.803582\pi\)
−0.815580 + 0.578645i \(0.803582\pi\)
\(620\) 0 0
\(621\) 533.810i 0.859597i
\(622\) 452.042 611.456i 0.726755 0.983049i
\(623\) −439.648 + 439.648i −0.705694 + 0.705694i
\(624\) −301.845 445.824i −0.483725 0.714462i
\(625\) 0 0
\(626\) −113.542 757.470i −0.181377 1.21002i
\(627\) 110.545 110.545i 0.176308 0.176308i
\(628\) 470.273 + 249.523i 0.748842 + 0.397329i
\(629\) −846.054 −1.34508
\(630\) 0 0
\(631\) −867.965 −1.37554 −0.687769 0.725929i \(-0.741410\pi\)
−0.687769 + 0.725929i \(0.741410\pi\)
\(632\) 43.6668 123.826i 0.0690930 0.195927i
\(633\) −691.837 + 691.837i −1.09295 + 1.09295i
\(634\) −100.184 668.355i −0.158019 1.05419i
\(635\) 0 0
\(636\) 703.391 215.719i 1.10596 0.339181i
\(637\) 34.5532 34.5532i 0.0542437 0.0542437i
\(638\) −4.19885 3.10415i −0.00658127 0.00486545i
\(639\) 82.1949i 0.128631i
\(640\) 0 0
\(641\) 116.032 0.181017 0.0905083 0.995896i \(-0.471151\pi\)
0.0905083 + 0.995896i \(0.471151\pi\)
\(642\) −452.220 + 611.697i −0.704392 + 0.952799i
\(643\) −429.493 429.493i −0.667951 0.667951i 0.289290 0.957241i \(-0.406581\pi\)
−0.957241 + 0.289290i \(0.906581\pi\)
\(644\) 246.378 + 803.361i 0.382575 + 1.24745i
\(645\) 0 0
\(646\) −1077.60 + 161.528i −1.66811 + 0.250044i
\(647\) −511.695 511.695i −0.790873 0.790873i 0.190763 0.981636i \(-0.438904\pi\)
−0.981636 + 0.190763i \(0.938904\pi\)
\(648\) 759.810 + 267.945i 1.17255 + 0.413495i
\(649\) 76.2571i 0.117499i
\(650\) 0 0
\(651\) 65.0297i 0.0998920i
\(652\) −352.580 + 664.503i −0.540766 + 1.01918i
\(653\) −777.556 777.556i −1.19074 1.19074i −0.976859 0.213886i \(-0.931388\pi\)
−0.213886 0.976859i \(-0.568612\pi\)
\(654\) −83.8186 + 12.5641i −0.128163 + 0.0192112i
\(655\) 0 0
\(656\) 582.179 394.163i 0.887468 0.600859i
\(657\) −122.888 122.888i −0.187044 0.187044i
\(658\) 564.349 + 417.216i 0.857673 + 0.634067i
\(659\) −734.265 −1.11421 −0.557105 0.830442i \(-0.688088\pi\)
−0.557105 + 0.830442i \(0.688088\pi\)
\(660\) 0 0
\(661\) 799.237i 1.20913i 0.796555 + 0.604567i \(0.206654\pi\)
−0.796555 + 0.604567i \(0.793346\pi\)
\(662\) −117.518 86.8791i −0.177519 0.131237i
\(663\) 738.369 738.369i 1.11368 1.11368i
\(664\) −1.67913 3.50855i −0.00252880 0.00528395i
\(665\) 0 0
\(666\) −202.996 + 30.4284i −0.304799 + 0.0456883i
\(667\) 21.1384 21.1384i 0.0316918 0.0316918i
\(668\) 136.310 256.902i 0.204057 0.384584i
\(669\) 651.130 0.973288
\(670\) 0 0
\(671\) −59.4096 −0.0885388
\(672\) −840.870 34.8771i −1.25130 0.0519005i
\(673\) 185.806 185.806i 0.276087 0.276087i −0.555458 0.831545i \(-0.687457\pi\)
0.831545 + 0.555458i \(0.187457\pi\)
\(674\) −581.622 + 87.1832i −0.862940 + 0.129352i
\(675\) 0 0
\(676\) −307.053 + 94.1682i −0.454220 + 0.139302i
\(677\) −448.763 + 448.763i −0.662870 + 0.662870i −0.956055 0.293186i \(-0.905285\pi\)
0.293186 + 0.956055i \(0.405285\pi\)
\(678\) 492.649 666.385i 0.726621 0.982868i
\(679\) 251.214i 0.369977i
\(680\) 0 0
\(681\) −1225.03 −1.79886
\(682\) −9.91105 7.32711i −0.0145323 0.0107436i
\(683\) −67.1358 67.1358i −0.0982955 0.0982955i 0.656249 0.754544i \(-0.272142\pi\)
−0.754544 + 0.656249i \(0.772142\pi\)
\(684\) −252.741 + 77.5118i −0.369505 + 0.113321i
\(685\) 0 0
\(686\) 95.6181 + 637.893i 0.139385 + 0.929873i
\(687\) −974.315 974.315i −1.41822 1.41822i
\(688\) −731.886 140.940i −1.06379 0.204855i
\(689\) 484.884i 0.703751i
\(690\) 0 0
\(691\) 533.282i 0.771753i −0.922550 0.385877i \(-0.873899\pi\)
0.922550 0.385877i \(-0.126101\pi\)
\(692\) 485.636 915.274i 0.701787 1.32265i
\(693\) 48.8361 + 48.8361i 0.0704706 + 0.0704706i
\(694\) 63.1097 + 421.021i 0.0909362 + 0.606659i
\(695\) 0 0
\(696\) 12.9251 + 27.0070i 0.0185705 + 0.0388032i
\(697\) 964.199 + 964.199i 1.38336 + 1.38336i
\(698\) −189.990 + 256.991i −0.272192 + 0.368181i
\(699\) 50.0625 0.0716201
\(700\) 0 0
\(701\) 1203.60i 1.71697i −0.512835 0.858487i \(-0.671405\pi\)
0.512835 0.858487i \(-0.328595\pi\)
\(702\) −209.465 + 283.334i −0.298383 + 0.403610i
\(703\) −338.469 + 338.469i −0.481464 + 0.481464i
\(704\) 100.059 124.226i 0.142129 0.176457i
\(705\) 0 0
\(706\) −13.3719 89.2075i −0.0189404 0.126356i
\(707\) 791.683 791.683i 1.11978 1.11978i
\(708\) 204.939 386.246i 0.289462 0.545546i
\(709\) 456.445 0.643788 0.321894 0.946776i \(-0.395681\pi\)
0.321894 + 0.946776i \(0.395681\pi\)
\(710\) 0 0
\(711\) 61.7825 0.0868952
\(712\) −224.722 + 637.242i −0.315620 + 0.895003i
\(713\) 49.8956 49.8956i 0.0699798 0.0699798i
\(714\) −241.967 1614.23i −0.338890 2.26082i
\(715\) 0 0
\(716\) −36.7642 119.877i −0.0513467 0.167425i
\(717\) 113.024 113.024i 0.157635 0.157635i
\(718\) 601.662 + 444.800i 0.837969 + 0.619499i
\(719\) 63.2841i 0.0880168i −0.999031 0.0440084i \(-0.985987\pi\)
0.999031 0.0440084i \(-0.0140128\pi\)
\(720\) 0 0
\(721\) 1256.09 1.74215
\(722\) 62.7297 84.8517i 0.0868833 0.117523i
\(723\) 54.2610 + 54.2610i 0.0750498 + 0.0750498i
\(724\) −219.569 + 67.3383i −0.303272 + 0.0930087i
\(725\) 0 0
\(726\) 811.151 121.589i 1.11729 0.167478i
\(727\) −408.139 408.139i −0.561401 0.561401i 0.368304 0.929705i \(-0.379939\pi\)
−0.929705 + 0.368304i \(0.879939\pi\)
\(728\) 184.464 523.084i 0.253385 0.718522i
\(729\) 222.361i 0.305021i
\(730\) 0 0
\(731\) 1445.57i 1.97752i
\(732\) 300.913 + 159.662i 0.411083 + 0.218117i
\(733\) −90.0317 90.0317i −0.122826 0.122826i 0.643022 0.765848i \(-0.277681\pi\)
−0.765848 + 0.643022i \(0.777681\pi\)
\(734\) 547.616 82.0858i 0.746071 0.111834i
\(735\) 0 0
\(736\) 618.418 + 671.938i 0.840241 + 0.912959i
\(737\) −49.8304 49.8304i −0.0676125 0.0676125i
\(738\) 266.020 + 196.665i 0.360461 + 0.266484i
\(739\) 875.498 1.18471 0.592353 0.805679i \(-0.298199\pi\)
0.592353 + 0.805679i \(0.298199\pi\)
\(740\) 0 0
\(741\) 590.779i 0.797272i
\(742\) 609.478 + 450.579i 0.821399 + 0.607250i
\(743\) −282.061 + 282.061i −0.379624 + 0.379624i −0.870967 0.491342i \(-0.836506\pi\)
0.491342 + 0.870967i \(0.336506\pi\)
\(744\) 30.5086 + 63.7479i 0.0410062 + 0.0856827i
\(745\) 0 0
\(746\) −957.816 + 143.573i −1.28394 + 0.192458i
\(747\) 1.29419 1.29419i 0.00173251 0.00173251i
\(748\) 273.285 + 145.002i 0.365354 + 0.193854i
\(749\) −783.683 −1.04631
\(750\) 0 0
\(751\) 606.986 0.808237 0.404119 0.914707i \(-0.367578\pi\)
0.404119 + 0.914707i \(0.367578\pi\)
\(752\) 748.962 + 144.229i 0.995960 + 0.191793i
\(753\) −378.063 + 378.063i −0.502075 + 0.502075i
\(754\) −19.5145 + 2.92515i −0.0258812 + 0.00387951i
\(755\) 0 0
\(756\) 161.493 + 526.577i 0.213615 + 0.696530i
\(757\) −173.075 + 173.075i −0.228633 + 0.228633i −0.812121 0.583488i \(-0.801687\pi\)
0.583488 + 0.812121i \(0.301687\pi\)
\(758\) 721.749 976.277i 0.952175 1.28796i
\(759\) 254.114i 0.334801i
\(760\) 0 0
\(761\) 100.678 0.132297 0.0661483 0.997810i \(-0.478929\pi\)
0.0661483 + 0.997810i \(0.478929\pi\)
\(762\) 453.895 + 335.559i 0.595663 + 0.440366i
\(763\) −61.7409 61.7409i −0.0809187 0.0809187i
\(764\) −189.907 619.228i −0.248570 0.810507i
\(765\) 0 0
\(766\) 64.8582 + 432.686i 0.0846713 + 0.564864i
\(767\) 203.768 + 203.768i 0.265668 + 0.265668i
\(768\) −840.659 + 360.303i −1.09461 + 0.469145i
\(769\) 370.732i 0.482097i −0.970513 0.241048i \(-0.922509\pi\)
0.970513 0.241048i \(-0.0774913\pi\)
\(770\) 0 0
\(771\) 1233.06i 1.59930i
\(772\) 314.831 + 167.047i 0.407812 + 0.216382i
\(773\) −319.455 319.455i −0.413267 0.413267i 0.469608 0.882875i \(-0.344395\pi\)
−0.882875 + 0.469608i \(0.844395\pi\)
\(774\) −51.9900 346.839i −0.0671705 0.448112i
\(775\) 0 0
\(776\) 117.857 + 246.263i 0.151877 + 0.317349i
\(777\) −507.023 507.023i −0.652539 0.652539i
\(778\) −384.897 + 520.633i −0.494726 + 0.669194i
\(779\) 771.468 0.990331
\(780\) 0 0
\(781\) 54.4207i 0.0696808i
\(782\) −1052.90 + 1424.21i −1.34642 + 1.82124i
\(783\) 13.8556 13.8556i 0.0176955 0.0176955i
\(784\) −46.5398 68.7393i −0.0593620 0.0876776i
\(785\) 0 0
\(786\) 160.602 + 1071.42i 0.204328 + 1.36313i
\(787\) −1104.16 + 1104.16i −1.40300 + 1.40300i −0.612627 + 0.790372i \(0.709887\pi\)
−0.790372 + 0.612627i \(0.790113\pi\)
\(788\) 19.7971 + 10.5042i 0.0251232 + 0.0133302i
\(789\) −1220.49 −1.54688
\(790\) 0 0
\(791\) 853.747 1.07933
\(792\) 70.7849 + 24.9621i 0.0893749 + 0.0315178i
\(793\) −158.749 + 158.749i −0.200188 + 0.200188i
\(794\) 157.725 + 1052.23i 0.198646 + 1.32522i
\(795\) 0 0
\(796\) 470.476 144.287i 0.591050 0.181266i
\(797\) 434.605 434.605i 0.545301 0.545301i −0.379777 0.925078i \(-0.623999\pi\)
0.925078 + 0.379777i \(0.123999\pi\)
\(798\) −742.583 548.982i −0.930555 0.687947i
\(799\) 1479.29i 1.85143i
\(800\) 0 0
\(801\) −317.950 −0.396942
\(802\) 477.671 646.124i 0.595600 0.805641i
\(803\) 81.3631 + 81.3631i 0.101324 + 0.101324i
\(804\) 118.476 + 386.312i 0.147358 + 0.480488i
\(805\) 0 0
\(806\) −46.0623 + 6.90459i −0.0571493 + 0.00856649i
\(807\) 885.768 + 885.768i 1.09761 + 1.09761i
\(808\) 404.662 1147.50i 0.500819 1.42017i
\(809\) 164.175i 0.202935i −0.994839 0.101468i \(-0.967646\pi\)
0.994839 0.101468i \(-0.0323538\pi\)
\(810\) 0 0
\(811\) 1283.08i 1.58210i −0.611752 0.791049i \(-0.709535\pi\)
0.611752 0.791049i \(-0.290465\pi\)
\(812\) −14.4570 + 27.2470i −0.0178042 + 0.0335554i
\(813\) 754.377 + 754.377i 0.927893 + 0.927893i
\(814\) 134.402 20.1465i 0.165113 0.0247500i
\(815\) 0 0
\(816\) −994.511 1468.89i −1.21876 1.80011i
\(817\) −578.308 578.308i −0.707843 0.707843i
\(818\) 268.382 + 198.411i 0.328095 + 0.242556i
\(819\) 260.991 0.318671
\(820\) 0 0
\(821\) 1292.43i 1.57421i 0.616817 + 0.787106i \(0.288422\pi\)
−0.616817 + 0.787106i \(0.711578\pi\)
\(822\) −554.561 409.979i −0.674648 0.498758i
\(823\) −38.6290 + 38.6290i −0.0469368 + 0.0469368i −0.730186 0.683249i \(-0.760566\pi\)
0.683249 + 0.730186i \(0.260566\pi\)
\(824\) 1231.33 589.292i 1.49433 0.715160i
\(825\) 0 0
\(826\) 445.478 66.7757i 0.539320 0.0808422i
\(827\) −432.150 + 432.150i −0.522552 + 0.522552i −0.918341 0.395789i \(-0.870471\pi\)
0.395789 + 0.918341i \(0.370471\pi\)
\(828\) −201.403 + 379.582i −0.243241 + 0.458433i
\(829\) 684.217 0.825353 0.412676 0.910878i \(-0.364594\pi\)
0.412676 + 0.910878i \(0.364594\pi\)
\(830\) 0 0
\(831\) −1393.49 −1.67689
\(832\) −64.5758 599.315i −0.0776151 0.720330i
\(833\) 113.845 113.845i 0.136669 0.136669i
\(834\) −492.708 + 73.8553i −0.590777 + 0.0885556i
\(835\) 0 0
\(836\) 167.338 51.3201i 0.200166 0.0613876i
\(837\) 32.7049 32.7049i 0.0390740 0.0390740i
\(838\) −634.533 + 858.304i −0.757199 + 1.02423i
\(839\) 579.065i 0.690184i −0.938569 0.345092i \(-0.887848\pi\)
0.938569 0.345092i \(-0.112152\pi\)
\(840\) 0 0
\(841\) −839.903 −0.998695
\(842\) −345.003 255.056i −0.409742 0.302917i
\(843\) −33.5642 33.5642i −0.0398151 0.0398151i
\(844\) −1047.27 + 321.182i −1.24084 + 0.380547i
\(845\) 0 0
\(846\) 53.2029 + 354.931i 0.0628876 + 0.419540i
\(847\) 597.495 + 597.495i 0.705426 + 0.705426i
\(848\) 808.854 + 155.762i 0.953837 + 0.183682i
\(849\) 1279.26i 1.50679i
\(850\) 0 0
\(851\) 778.051i 0.914279i
\(852\) 146.254 275.644i 0.171660 0.323526i
\(853\) 89.6610 + 89.6610i 0.105113 + 0.105113i 0.757707 0.652595i \(-0.226320\pi\)
−0.652595 + 0.757707i \(0.726320\pi\)
\(854\) 52.0229 + 347.058i 0.0609167 + 0.406391i
\(855\) 0 0
\(856\) −768.237 + 367.664i −0.897473 + 0.429514i
\(857\) 409.705 + 409.705i 0.478069 + 0.478069i 0.904514 0.426445i \(-0.140234\pi\)
−0.426445 + 0.904514i \(0.640234\pi\)
\(858\) −99.7135 + 134.878i −0.116216 + 0.157201i
\(859\) −799.305 −0.930507 −0.465253 0.885178i \(-0.654037\pi\)
−0.465253 + 0.885178i \(0.654037\pi\)
\(860\) 0 0
\(861\) 1155.65i 1.34222i
\(862\) 624.637 844.918i 0.724637 0.980184i
\(863\) −1116.04 + 1116.04i −1.29321 + 1.29321i −0.360414 + 0.932793i \(0.617364\pi\)
−0.932793 + 0.360414i \(0.882636\pi\)
\(864\) 405.352 + 440.433i 0.469158 + 0.509761i
\(865\) 0 0
\(866\) 110.201 + 735.178i 0.127253 + 0.848935i
\(867\) 1702.66 1702.66i 1.96386 1.96386i
\(868\) −34.1247 + 64.3144i −0.0393142 + 0.0740949i
\(869\) −40.9058 −0.0470723
\(870\) 0 0
\(871\) −266.305 −0.305746
\(872\) −89.4897 31.5583i −0.102626 0.0361907i
\(873\) −90.8383 + 90.8383i −0.104053 + 0.104053i
\(874\) 148.545 + 990.984i 0.169960 + 1.13385i
\(875\) 0 0
\(876\) −193.447 630.770i −0.220830 0.720058i
\(877\) −98.3606 + 98.3606i −0.112156 + 0.112156i −0.760957 0.648802i \(-0.775270\pi\)
0.648802 + 0.760957i \(0.275270\pi\)
\(878\) 674.082 + 498.340i 0.767747 + 0.567585i
\(879\) 724.582i 0.824326i
\(880\) 0 0
\(881\) −654.962 −0.743430 −0.371715 0.928347i \(-0.621230\pi\)
−0.371715 + 0.928347i \(0.621230\pi\)
\(882\) 23.2207 31.4097i 0.0263274 0.0356119i
\(883\) −963.144 963.144i −1.09076 1.09076i −0.995447 0.0953158i \(-0.969614\pi\)
−0.0953158 0.995447i \(-0.530386\pi\)
\(884\) 1117.71 342.784i 1.26438 0.387765i
\(885\) 0 0
\(886\) 333.520 49.9935i 0.376433 0.0564260i
\(887\) 588.066 + 588.066i 0.662983 + 0.662983i 0.956082 0.293099i \(-0.0946866\pi\)
−0.293099 + 0.956082i \(0.594687\pi\)
\(888\) −734.899 259.160i −0.827588 0.291847i
\(889\) 581.514i 0.654121i
\(890\) 0 0
\(891\) 251.003i 0.281709i
\(892\) 643.968 + 341.684i 0.721937 + 0.383054i
\(893\) 591.801 + 591.801i 0.662711 + 0.662711i
\(894\) −557.556 + 83.5758i −0.623664 + 0.0934852i
\(895\) 0 0
\(896\) −813.319 475.745i −0.907722 0.530965i
\(897\) −679.022 679.022i −0.756992 0.756992i
\(898\) 958.619 + 708.694i 1.06750 + 0.789192i
\(899\) 2.59018 0.00288118
\(900\) 0 0
\(901\) 1597.59i 1.77313i
\(902\) −176.130 130.211i −0.195267 0.144358i
\(903\) 866.299 866.299i 0.959356 0.959356i
\(904\) 836.919 400.534i 0.925795 0.443069i
\(905\) 0 0
\(906\) 1396.07 209.266i 1.54092 0.230978i
\(907\) 692.104 692.104i 0.763069 0.763069i −0.213807 0.976876i \(-0.568586\pi\)
0.976876 + 0.213807i \(0.0685863\pi\)
\(908\) −1211.55 642.839i −1.33431 0.707973i
\(909\) 572.540 0.629857
\(910\) 0 0
\(911\) −45.1707 −0.0495836 −0.0247918 0.999693i \(-0.507892\pi\)
−0.0247918 + 0.999693i \(0.507892\pi\)
\(912\) −985.500 189.779i −1.08059 0.208091i
\(913\) −0.856873 + 0.856873i −0.000938525 + 0.000938525i
\(914\) 403.573 60.4943i 0.441546 0.0661863i
\(915\) 0 0
\(916\) −452.321 1474.87i −0.493800 1.61013i
\(917\) −789.209 + 789.209i −0.860643 + 0.860643i
\(918\) −690.141 + 933.523i −0.751788 + 1.01691i
\(919\) 1598.45i 1.73934i −0.493637 0.869668i \(-0.664333\pi\)
0.493637 0.869668i \(-0.335667\pi\)
\(920\) 0 0
\(921\) 1807.62 1.96268
\(922\) 1196.52 + 884.568i 1.29774 + 0.959402i
\(923\) 145.418 + 145.418i 0.157550 + 0.157550i
\(924\) 76.8769 + 250.671i 0.0832001 + 0.271289i
\(925\) 0 0
\(926\) −187.220 1248.99i −0.202181 1.34880i
\(927\) 454.197 + 454.197i 0.489965 + 0.489965i
\(928\) −1.38918 + 33.4925i −0.00149696 + 0.0360910i
\(929\) 887.585i 0.955420i −0.878518 0.477710i \(-0.841467\pi\)
0.878518 0.477710i \(-0.158533\pi\)
\(930\) 0 0
\(931\) 91.0891i 0.0978400i
\(932\) 49.5118 + 26.2705i 0.0531242 + 0.0281873i
\(933\) 960.509 + 960.509i 1.02948 + 1.02948i
\(934\) 2.35604 + 15.7178i 0.00252253 + 0.0168285i
\(935\) 0 0
\(936\) 255.847 122.444i 0.273341 0.130816i
\(937\) −1241.34 1241.34i −1.32480 1.32480i −0.909841 0.414958i \(-0.863796\pi\)
−0.414958 0.909841i \(-0.636204\pi\)
\(938\) −247.464 + 334.734i −0.263821 + 0.356859i
\(939\) 1368.23 1.45712
\(940\) 0 0
\(941\) 328.028i 0.348595i 0.984693 + 0.174298i \(0.0557654\pi\)
−0.984693 + 0.174298i \(0.944235\pi\)
\(942\) −565.347 + 764.719i −0.600156 + 0.811804i
\(943\) 886.700 886.700i 0.940297 0.940297i
\(944\) 405.370 274.455i 0.429417 0.290736i
\(945\) 0 0
\(946\) 34.4222 + 229.640i 0.0363871 + 0.242748i
\(947\) −228.351 + 228.351i −0.241131 + 0.241131i −0.817318 0.576187i \(-0.804540\pi\)
0.576187 + 0.817318i \(0.304540\pi\)
\(948\) 207.190 + 109.933i 0.218555 + 0.115963i
\(949\) 434.823 0.458191
\(950\) 0 0
\(951\) 1207.26 1.26947
\(952\) 607.769 1723.45i 0.638412 1.81034i
\(953\) 1291.50 1291.50i 1.35519 1.35519i 0.475451 0.879742i \(-0.342285\pi\)
0.879742 0.475451i \(-0.157715\pi\)
\(954\) 57.4574 + 383.313i 0.0602279 + 0.401796i
\(955\) 0 0
\(956\) 171.091 52.4710i 0.178966 0.0548860i
\(957\) 6.59578 6.59578i 0.00689215 0.00689215i
\(958\) −1230.84 909.947i −1.28481 0.949840i
\(959\) 710.482i 0.740857i
\(960\) 0 0
\(961\) −954.886 −0.993638
\(962\) 305.305 412.972i 0.317365 0.429285i
\(963\) −283.377 283.377i −0.294265 0.294265i
\(964\) 25.1904 + 82.1379i 0.0261311 + 0.0852053i
\(965\) 0 0
\(966\) −1484.48 + 222.519i −1.53673 + 0.230351i
\(967\) −486.969 486.969i −0.503588 0.503588i 0.408963 0.912551i \(-0.365890\pi\)
−0.912551 + 0.408963i \(0.865890\pi\)
\(968\) 866.033 + 305.404i 0.894662 + 0.315500i
\(969\) 1946.49i 2.00876i
\(970\) 0 0
\(971\) 361.550i 0.372348i −0.982517 0.186174i \(-0.940391\pi\)
0.982517 0.186174i \(-0.0596088\pi\)
\(972\) −358.943 + 676.495i −0.369282 + 0.695983i
\(973\) −362.930 362.930i −0.373001 0.373001i
\(974\) −1709.98 + 256.320i −1.75562 + 0.263162i
\(975\) 0 0
\(976\) 213.819 + 315.811i 0.219077 + 0.323577i
\(977\) 1073.65 + 1073.65i 1.09892 + 1.09892i 0.994537 + 0.104387i \(0.0332881\pi\)
0.104387 + 0.994537i \(0.466712\pi\)
\(978\) −1080.56 798.844i −1.10487 0.816814i
\(979\) 210.513 0.215028
\(980\) 0 0
\(981\) 44.6506i 0.0455154i
\(982\) −1446.14 1069.11i −1.47265 1.08871i
\(983\) −122.156 + 122.156i −0.124269 + 0.124269i −0.766506 0.642237i \(-0.778006\pi\)
0.642237 + 0.766506i \(0.278006\pi\)
\(984\) 542.172 + 1132.87i 0.550988 + 1.15129i
\(985\) 0 0
\(986\) −64.2958 + 9.63773i −0.0652088 + 0.00977458i
\(987\) −886.510 + 886.510i −0.898187 + 0.898187i
\(988\) 310.014 584.280i 0.313780 0.591377i
\(989\) −1329.38 −1.34416
\(990\) 0 0
\(991\) 324.300 0.327245 0.163623 0.986523i \(-0.447682\pi\)
0.163623 + 0.986523i \(0.447682\pi\)
\(992\) −3.27905 + 79.0563i −0.00330549 + 0.0796938i
\(993\) 184.603 184.603i 0.185904 0.185904i
\(994\) 317.914 47.6543i 0.319833 0.0479420i
\(995\) 0 0
\(996\) 6.64294 2.03728i 0.00666962 0.00204547i
\(997\) 743.909 743.909i 0.746148 0.746148i −0.227606 0.973753i \(-0.573090\pi\)
0.973753 + 0.227606i \(0.0730897\pi\)
\(998\) 898.070 1214.78i 0.899869 1.21721i
\(999\) 509.987i 0.510498i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.3.i.b.157.3 20
4.3 odd 2 800.3.m.b.657.8 20
5.2 odd 4 40.3.i.a.13.2 20
5.3 odd 4 inner 200.3.i.b.93.9 20
5.4 even 2 40.3.i.a.37.8 yes 20
8.3 odd 2 800.3.m.b.657.3 20
8.5 even 2 inner 200.3.i.b.157.9 20
15.2 even 4 360.3.u.b.253.9 20
15.14 odd 2 360.3.u.b.37.3 20
20.3 even 4 800.3.m.b.593.3 20
20.7 even 4 160.3.m.a.113.8 20
20.19 odd 2 160.3.m.a.17.3 20
40.3 even 4 800.3.m.b.593.8 20
40.13 odd 4 inner 200.3.i.b.93.3 20
40.19 odd 2 160.3.m.a.17.8 20
40.27 even 4 160.3.m.a.113.3 20
40.29 even 2 40.3.i.a.37.2 yes 20
40.37 odd 4 40.3.i.a.13.8 yes 20
120.29 odd 2 360.3.u.b.37.9 20
120.77 even 4 360.3.u.b.253.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.i.a.13.2 20 5.2 odd 4
40.3.i.a.13.8 yes 20 40.37 odd 4
40.3.i.a.37.2 yes 20 40.29 even 2
40.3.i.a.37.8 yes 20 5.4 even 2
160.3.m.a.17.3 20 20.19 odd 2
160.3.m.a.17.8 20 40.19 odd 2
160.3.m.a.113.3 20 40.27 even 4
160.3.m.a.113.8 20 20.7 even 4
200.3.i.b.93.3 20 40.13 odd 4 inner
200.3.i.b.93.9 20 5.3 odd 4 inner
200.3.i.b.157.3 20 1.1 even 1 trivial
200.3.i.b.157.9 20 8.5 even 2 inner
360.3.u.b.37.3 20 15.14 odd 2
360.3.u.b.37.9 20 120.29 odd 2
360.3.u.b.253.3 20 120.77 even 4
360.3.u.b.253.9 20 15.2 even 4
800.3.m.b.593.3 20 20.3 even 4
800.3.m.b.593.8 20 40.3 even 4
800.3.m.b.657.3 20 8.3 odd 2
800.3.m.b.657.8 20 4.3 odd 2