Properties

Label 40.3.i.a.13.2
Level $40$
Weight $3$
Character 40.13
Analytic conductor $1.090$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,3,Mod(13,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.13");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 40.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08992105744\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.2
Root \(1.39859 + 0.209644i\) of defining polynomial
Character \(\chi\) \(=\) 40.13
Dual form 40.3.i.a.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.60823 - 1.18894i) q^{2} +(-2.52630 + 2.52630i) q^{3} +(1.17282 + 3.82420i) q^{4} +(3.09141 + 3.92978i) q^{5} +(7.06650 - 1.05925i) q^{6} +(-5.20520 + 5.20520i) q^{7} +(2.66059 - 7.54462i) q^{8} -3.76437i q^{9} +(-0.299408 - 9.99552i) q^{10} -2.49236i q^{11} +(-12.6240 - 6.69817i) q^{12} +(-6.65988 + 6.65988i) q^{13} +(14.5599 - 2.18248i) q^{14} +(-17.7376 - 2.11798i) q^{15} +(-13.2490 + 8.97020i) q^{16} +(21.9428 - 21.9428i) q^{17} +(-4.47563 + 6.05398i) q^{18} +17.5567 q^{19} +(-11.4026 + 16.4311i) q^{20} -26.2998i q^{21} +(-2.96328 + 4.00830i) q^{22} +(20.1791 + 20.1791i) q^{23} +(12.3385 + 25.7814i) q^{24} +(-5.88639 + 24.2971i) q^{25} +(18.6289 - 2.79240i) q^{26} +(-13.2268 - 13.2268i) q^{27} +(-26.0105 - 13.8010i) q^{28} +1.04754 q^{29} +(26.0081 + 24.4953i) q^{30} -2.47263 q^{31} +(31.9725 + 1.32614i) q^{32} +(6.29646 + 6.29646i) q^{33} +(-61.3780 + 9.20035i) q^{34} +(-36.5467 - 4.36391i) q^{35} +(14.3957 - 4.41493i) q^{36} +(19.2786 + 19.2786i) q^{37} +(-28.2353 - 20.8740i) q^{38} -33.6497i q^{39} +(37.8737 - 12.8680i) q^{40} -43.9414 q^{41} +(-31.2690 + 42.2962i) q^{42} +(32.9394 - 32.9394i) q^{43} +(9.53129 - 2.92310i) q^{44} +(14.7932 - 11.6372i) q^{45} +(-8.46086 - 56.4446i) q^{46} +(33.7079 - 33.7079i) q^{47} +(10.8095 - 56.1323i) q^{48} -5.18827i q^{49} +(38.3546 - 32.0768i) q^{50} +110.868i q^{51} +(-33.2795 - 17.6578i) q^{52} +(-36.4034 + 36.4034i) q^{53} +(5.54582 + 36.9976i) q^{54} +(9.79445 - 7.70491i) q^{55} +(25.4224 + 53.1202i) q^{56} +(-44.3536 + 44.3536i) q^{57} +(-1.68469 - 1.24547i) q^{58} +30.5963 q^{59} +(-12.7035 - 70.3162i) q^{60} -23.8366i q^{61} +(3.97657 + 2.93982i) q^{62} +(19.5943 + 19.5943i) q^{63} +(-49.8425 - 40.1463i) q^{64} +(-46.7603 - 5.58347i) q^{65} +(-2.64003 - 17.6123i) q^{66} +(19.9932 + 19.9932i) q^{67} +(109.649 + 58.1787i) q^{68} -101.957 q^{69} +(53.5872 + 50.4702i) q^{70} -21.8350 q^{71} +(-28.4007 - 10.0154i) q^{72} +(32.6450 + 32.6450i) q^{73} +(-8.08328 - 53.9257i) q^{74} +(-46.5110 - 76.2526i) q^{75} +(20.5909 + 67.1405i) q^{76} +(12.9733 + 12.9733i) q^{77} +(-40.0076 + 54.1165i) q^{78} +16.4124i q^{79} +(-76.2090 - 24.3351i) q^{80} +100.709 q^{81} +(70.6680 + 52.2439i) q^{82} +(-0.343799 + 0.343799i) q^{83} +(100.576 - 30.8450i) q^{84} +(154.065 + 18.3963i) q^{85} +(-92.1373 + 13.8111i) q^{86} +(-2.64640 + 2.64640i) q^{87} +(-18.8039 - 6.63116i) q^{88} -84.4631i q^{89} +(-37.6268 + 1.12708i) q^{90} -69.3320i q^{91} +(-53.5025 + 100.836i) q^{92} +(6.24661 - 6.24661i) q^{93} +(-94.2869 + 14.1333i) q^{94} +(54.2751 + 68.9942i) q^{95} +(-84.1223 + 77.4219i) q^{96} +(-24.1311 + 24.1311i) q^{97} +(-6.16856 + 8.34394i) q^{98} -9.38218 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 16 q^{6} - 4 q^{7} + 4 q^{8} + 6 q^{10} - 44 q^{12} - 4 q^{15} - 56 q^{16} - 12 q^{17} + 10 q^{18} - 24 q^{20} + 92 q^{22} - 4 q^{23} - 28 q^{25} + 100 q^{26} + 68 q^{28} + 100 q^{30} - 136 q^{31}+ \cdots + 546 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/40\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.60823 1.18894i −0.804116 0.594472i
\(3\) −2.52630 + 2.52630i −0.842100 + 0.842100i −0.989132 0.147032i \(-0.953028\pi\)
0.147032 + 0.989132i \(0.453028\pi\)
\(4\) 1.17282 + 3.82420i 0.293205 + 0.956049i
\(5\) 3.09141 + 3.92978i 0.618282 + 0.785957i
\(6\) 7.06650 1.05925i 1.17775 0.176541i
\(7\) −5.20520 + 5.20520i −0.743600 + 0.743600i −0.973269 0.229669i \(-0.926236\pi\)
0.229669 + 0.973269i \(0.426236\pi\)
\(8\) 2.66059 7.54462i 0.332574 0.943077i
\(9\) 3.76437i 0.418263i
\(10\) −0.299408 9.99552i −0.0299408 0.999552i
\(11\) 2.49236i 0.226579i −0.993562 0.113289i \(-0.963861\pi\)
0.993562 0.113289i \(-0.0361387\pi\)
\(12\) −12.6240 6.69817i −1.05200 0.558181i
\(13\) −6.65988 + 6.65988i −0.512298 + 0.512298i −0.915230 0.402932i \(-0.867991\pi\)
0.402932 + 0.915230i \(0.367991\pi\)
\(14\) 14.5599 2.18248i 1.03999 0.155891i
\(15\) −17.7376 2.11798i −1.18251 0.141199i
\(16\) −13.2490 + 8.97020i −0.828061 + 0.560638i
\(17\) 21.9428 21.9428i 1.29075 1.29075i 0.356434 0.934320i \(-0.383992\pi\)
0.934320 0.356434i \(-0.116008\pi\)
\(18\) −4.47563 + 6.05398i −0.248646 + 0.336332i
\(19\) 17.5567 0.924039 0.462020 0.886870i \(-0.347125\pi\)
0.462020 + 0.886870i \(0.347125\pi\)
\(20\) −11.4026 + 16.4311i −0.570130 + 0.821555i
\(21\) 26.2998i 1.25237i
\(22\) −2.96328 + 4.00830i −0.134695 + 0.182195i
\(23\) 20.1791 + 20.1791i 0.877354 + 0.877354i 0.993260 0.115906i \(-0.0369772\pi\)
−0.115906 + 0.993260i \(0.536977\pi\)
\(24\) 12.3385 + 25.7814i 0.514105 + 1.07423i
\(25\) −5.88639 + 24.2971i −0.235455 + 0.971885i
\(26\) 18.6289 2.79240i 0.716495 0.107400i
\(27\) −13.2268 13.2268i −0.489880 0.489880i
\(28\) −26.0105 13.8010i −0.928946 0.492891i
\(29\) 1.04754 0.0361220 0.0180610 0.999837i \(-0.494251\pi\)
0.0180610 + 0.999837i \(0.494251\pi\)
\(30\) 26.0081 + 24.4953i 0.866935 + 0.816509i
\(31\) −2.47263 −0.0797623 −0.0398812 0.999204i \(-0.512698\pi\)
−0.0398812 + 0.999204i \(0.512698\pi\)
\(32\) 31.9725 + 1.32614i 0.999141 + 0.0414418i
\(33\) 6.29646 + 6.29646i 0.190802 + 0.190802i
\(34\) −61.3780 + 9.20035i −1.80523 + 0.270599i
\(35\) −36.5467 4.36391i −1.04419 0.124683i
\(36\) 14.3957 4.41493i 0.399880 0.122637i
\(37\) 19.2786 + 19.2786i 0.521043 + 0.521043i 0.917886 0.396843i \(-0.129894\pi\)
−0.396843 + 0.917886i \(0.629894\pi\)
\(38\) −28.2353 20.8740i −0.743035 0.549316i
\(39\) 33.6497i 0.862813i
\(40\) 37.8737 12.8680i 0.946842 0.321699i
\(41\) −43.9414 −1.07174 −0.535871 0.844300i \(-0.680017\pi\)
−0.535871 + 0.844300i \(0.680017\pi\)
\(42\) −31.2690 + 42.2962i −0.744500 + 1.00705i
\(43\) 32.9394 32.9394i 0.766032 0.766032i −0.211373 0.977405i \(-0.567794\pi\)
0.977405 + 0.211373i \(0.0677936\pi\)
\(44\) 9.53129 2.92310i 0.216620 0.0664340i
\(45\) 14.7932 11.6372i 0.328737 0.258604i
\(46\) −8.46086 56.4446i −0.183932 1.22706i
\(47\) 33.7079 33.7079i 0.717189 0.717189i −0.250840 0.968029i \(-0.580707\pi\)
0.968029 + 0.250840i \(0.0807067\pi\)
\(48\) 10.8095 56.1323i 0.225197 1.16942i
\(49\) 5.18827i 0.105883i
\(50\) 38.3546 32.0768i 0.767092 0.641537i
\(51\) 110.868i 2.17389i
\(52\) −33.2795 17.6578i −0.639991 0.339574i
\(53\) −36.4034 + 36.4034i −0.686856 + 0.686856i −0.961536 0.274679i \(-0.911428\pi\)
0.274679 + 0.961536i \(0.411428\pi\)
\(54\) 5.54582 + 36.9976i 0.102700 + 0.685141i
\(55\) 9.79445 7.70491i 0.178081 0.140089i
\(56\) 25.4224 + 53.1202i 0.453971 + 0.948575i
\(57\) −44.3536 + 44.3536i −0.778133 + 0.778133i
\(58\) −1.68469 1.24547i −0.0290463 0.0214736i
\(59\) 30.5963 0.518581 0.259291 0.965799i \(-0.416511\pi\)
0.259291 + 0.965799i \(0.416511\pi\)
\(60\) −12.7035 70.3162i −0.211725 1.17194i
\(61\) 23.8366i 0.390764i −0.980727 0.195382i \(-0.937405\pi\)
0.980727 0.195382i \(-0.0625947\pi\)
\(62\) 3.97657 + 2.93982i 0.0641382 + 0.0474165i
\(63\) 19.5943 + 19.5943i 0.311021 + 0.311021i
\(64\) −49.8425 40.1463i −0.778789 0.627286i
\(65\) −46.7603 5.58347i −0.719389 0.0858996i
\(66\) −2.64003 17.6123i −0.0400004 0.266853i
\(67\) 19.9932 + 19.9932i 0.298407 + 0.298407i 0.840390 0.541983i \(-0.182326\pi\)
−0.541983 + 0.840390i \(0.682326\pi\)
\(68\) 109.649 + 58.1787i 1.61248 + 0.855569i
\(69\) −101.957 −1.47764
\(70\) 53.5872 + 50.4702i 0.765531 + 0.721003i
\(71\) −21.8350 −0.307535 −0.153767 0.988107i \(-0.549141\pi\)
−0.153767 + 0.988107i \(0.549141\pi\)
\(72\) −28.4007 10.0154i −0.394454 0.139103i
\(73\) 32.6450 + 32.6450i 0.447191 + 0.447191i 0.894420 0.447228i \(-0.147589\pi\)
−0.447228 + 0.894420i \(0.647589\pi\)
\(74\) −8.08328 53.9257i −0.109233 0.728725i
\(75\) −46.5110 76.2526i −0.620147 1.01670i
\(76\) 20.5909 + 67.1405i 0.270933 + 0.883427i
\(77\) 12.9733 + 12.9733i 0.168484 + 0.168484i
\(78\) −40.0076 + 54.1165i −0.512918 + 0.693801i
\(79\) 16.4124i 0.207753i 0.994590 + 0.103876i \(0.0331246\pi\)
−0.994590 + 0.103876i \(0.966875\pi\)
\(80\) −76.2090 24.3351i −0.952612 0.304188i
\(81\) 100.709 1.24332
\(82\) 70.6680 + 52.2439i 0.861805 + 0.637121i
\(83\) −0.343799 + 0.343799i −0.00414216 + 0.00414216i −0.709175 0.705033i \(-0.750932\pi\)
0.705033 + 0.709175i \(0.250932\pi\)
\(84\) 100.576 30.8450i 1.19733 0.367202i
\(85\) 154.065 + 18.3963i 1.81253 + 0.216427i
\(86\) −92.1373 + 13.8111i −1.07136 + 0.160594i
\(87\) −2.64640 + 2.64640i −0.0304184 + 0.0304184i
\(88\) −18.8039 6.63116i −0.213681 0.0753541i
\(89\) 84.4631i 0.949024i −0.880249 0.474512i \(-0.842625\pi\)
0.880249 0.474512i \(-0.157375\pi\)
\(90\) −37.6268 + 1.12708i −0.418076 + 0.0125232i
\(91\) 69.3320i 0.761891i
\(92\) −53.5025 + 100.836i −0.581549 + 1.09604i
\(93\) 6.24661 6.24661i 0.0671678 0.0671678i
\(94\) −94.2869 + 14.1333i −1.00305 + 0.150354i
\(95\) 54.2751 + 68.9942i 0.571316 + 0.726255i
\(96\) −84.1223 + 77.4219i −0.876274 + 0.806478i
\(97\) −24.1311 + 24.1311i −0.248774 + 0.248774i −0.820467 0.571693i \(-0.806287\pi\)
0.571693 + 0.820467i \(0.306287\pi\)
\(98\) −6.16856 + 8.34394i −0.0629445 + 0.0851422i
\(99\) −9.38218 −0.0947695
\(100\) −99.8207 + 5.98548i −0.998207 + 0.0598548i
\(101\) 152.095i 1.50589i −0.658085 0.752944i \(-0.728633\pi\)
0.658085 0.752944i \(-0.271367\pi\)
\(102\) 131.816 178.302i 1.29232 1.74806i
\(103\) −120.657 120.657i −1.17143 1.17143i −0.981870 0.189558i \(-0.939295\pi\)
−0.189558 0.981870i \(-0.560705\pi\)
\(104\) 32.5270 + 67.9655i 0.312760 + 0.653514i
\(105\) 103.352 81.3034i 0.984309 0.774318i
\(106\) 101.827 15.2635i 0.960629 0.143995i
\(107\) −75.2789 75.2789i −0.703541 0.703541i 0.261628 0.965169i \(-0.415741\pi\)
−0.965169 + 0.261628i \(0.915741\pi\)
\(108\) 35.0691 66.0944i 0.324714 0.611985i
\(109\) 11.8614 0.108820 0.0544100 0.998519i \(-0.482672\pi\)
0.0544100 + 0.998519i \(0.482672\pi\)
\(110\) −24.9125 + 0.746235i −0.226477 + 0.00678395i
\(111\) −97.4070 −0.877541
\(112\) 22.2719 115.655i 0.198856 1.03264i
\(113\) −82.0090 82.0090i −0.725743 0.725743i 0.244025 0.969769i \(-0.421532\pi\)
−0.969769 + 0.244025i \(0.921532\pi\)
\(114\) 124.065 18.5969i 1.08829 0.163131i
\(115\) −16.9177 + 141.682i −0.147110 + 1.23201i
\(116\) 1.22858 + 4.00600i 0.0105912 + 0.0345345i
\(117\) 25.0702 + 25.0702i 0.214276 + 0.214276i
\(118\) −49.2059 36.3773i −0.416999 0.308282i
\(119\) 228.434i 1.91961i
\(120\) −63.1719 + 128.189i −0.526433 + 1.06824i
\(121\) 114.788 0.948662
\(122\) −28.3404 + 38.3348i −0.232299 + 0.314220i
\(123\) 111.009 111.009i 0.902513 0.902513i
\(124\) −2.89996 9.45584i −0.0233867 0.0762567i
\(125\) −113.680 + 51.9801i −0.909437 + 0.415841i
\(126\) −8.21565 54.8087i −0.0652035 0.434990i
\(127\) −55.8589 + 55.8589i −0.439834 + 0.439834i −0.891956 0.452122i \(-0.850667\pi\)
0.452122 + 0.891956i \(0.350667\pi\)
\(128\) 32.4266 + 123.825i 0.253333 + 0.967379i
\(129\) 166.429i 1.29015i
\(130\) 68.5630 + 64.5749i 0.527407 + 0.496730i
\(131\) 151.619i 1.15740i 0.815541 + 0.578700i \(0.196440\pi\)
−0.815541 + 0.578700i \(0.803560\pi\)
\(132\) −16.6943 + 31.4635i −0.126472 + 0.238360i
\(133\) −91.3864 + 91.3864i −0.687116 + 0.687116i
\(134\) −8.38292 55.9246i −0.0625591 0.417348i
\(135\) 11.0890 92.8677i 0.0821406 0.687909i
\(136\) −107.169 223.931i −0.788010 1.64655i
\(137\) 68.2473 68.2473i 0.498156 0.498156i −0.412708 0.910863i \(-0.635417\pi\)
0.910863 + 0.412708i \(0.135417\pi\)
\(138\) 163.971 + 121.221i 1.18819 + 0.878415i
\(139\) 69.7245 0.501615 0.250807 0.968037i \(-0.419304\pi\)
0.250807 + 0.968037i \(0.419304\pi\)
\(140\) −26.1743 144.880i −0.186959 1.03486i
\(141\) 170.312i 1.20789i
\(142\) 35.1157 + 25.9606i 0.247294 + 0.182821i
\(143\) 16.5988 + 16.5988i 0.116076 + 0.116076i
\(144\) 33.7671 + 49.8740i 0.234494 + 0.346348i
\(145\) 3.23837 + 4.11660i 0.0223336 + 0.0283904i
\(146\) −13.6876 91.3138i −0.0937509 0.625437i
\(147\) 13.1071 + 13.1071i 0.0891640 + 0.0891640i
\(148\) −51.1148 + 96.3355i −0.345370 + 0.650916i
\(149\) 78.9012 0.529538 0.264769 0.964312i \(-0.414704\pi\)
0.264769 + 0.964312i \(0.414704\pi\)
\(150\) −15.8595 + 177.931i −0.105730 + 1.18621i
\(151\) 197.562 1.30835 0.654177 0.756341i \(-0.273015\pi\)
0.654177 + 0.756341i \(0.273015\pi\)
\(152\) 46.7113 132.459i 0.307311 0.871440i
\(153\) −82.6009 82.6009i −0.539875 0.539875i
\(154\) −5.43953 36.2885i −0.0353216 0.235640i
\(155\) −7.64392 9.71691i −0.0493156 0.0626897i
\(156\) 128.683 39.4651i 0.824891 0.252981i
\(157\) −94.1106 94.1106i −0.599431 0.599431i 0.340730 0.940161i \(-0.389326\pi\)
−0.940161 + 0.340730i \(0.889326\pi\)
\(158\) 19.5135 26.3950i 0.123503 0.167057i
\(159\) 183.932i 1.15680i
\(160\) 93.6287 + 129.745i 0.585179 + 0.810904i
\(161\) −210.073 −1.30480
\(162\) −161.963 119.737i −0.999773 0.739119i
\(163\) −132.980 + 132.980i −0.815827 + 0.815827i −0.985500 0.169673i \(-0.945729\pi\)
0.169673 + 0.985500i \(0.445729\pi\)
\(164\) −51.5354 168.041i −0.314240 1.02464i
\(165\) −5.27879 + 44.2086i −0.0319926 + 0.267931i
\(166\) 0.961668 0.144151i 0.00579318 0.000868378i
\(167\) −51.4111 + 51.4111i −0.307851 + 0.307851i −0.844075 0.536225i \(-0.819850\pi\)
0.536225 + 0.844075i \(0.319850\pi\)
\(168\) −198.422 69.9730i −1.18108 0.416506i
\(169\) 80.2920i 0.475101i
\(170\) −225.900 212.760i −1.32882 1.25153i
\(171\) 66.0900i 0.386492i
\(172\) 164.599 + 87.3347i 0.956969 + 0.507760i
\(173\) 183.164 183.164i 1.05875 1.05875i 0.0605880 0.998163i \(-0.480702\pi\)
0.998163 0.0605880i \(-0.0192976\pi\)
\(174\) 7.40244 1.10960i 0.0425428 0.00637702i
\(175\) −95.8316 157.111i −0.547609 0.897779i
\(176\) 22.3570 + 33.0213i 0.127028 + 0.187621i
\(177\) −77.2954 + 77.2954i −0.436697 + 0.436697i
\(178\) −100.422 + 135.836i −0.564168 + 0.763125i
\(179\) −31.3468 −0.175122 −0.0875610 0.996159i \(-0.527907\pi\)
−0.0875610 + 0.996159i \(0.527907\pi\)
\(180\) 61.8527 + 42.9236i 0.343626 + 0.238464i
\(181\) 57.4156i 0.317214i −0.987342 0.158607i \(-0.949300\pi\)
0.987342 0.158607i \(-0.0507002\pi\)
\(182\) −82.4320 + 111.502i −0.452923 + 0.612648i
\(183\) 60.2184 + 60.2184i 0.329063 + 0.329063i
\(184\) 205.932 98.5555i 1.11920 0.535628i
\(185\) −16.1627 + 135.359i −0.0873659 + 0.731669i
\(186\) −17.4729 + 2.61912i −0.0939401 + 0.0140813i
\(187\) −54.6895 54.6895i −0.292457 0.292457i
\(188\) 168.439 + 89.3723i 0.895952 + 0.475385i
\(189\) 137.696 0.728550
\(190\) −5.25664 175.489i −0.0276665 0.923625i
\(191\) 161.923 0.847767 0.423884 0.905717i \(-0.360667\pi\)
0.423884 + 0.905717i \(0.360667\pi\)
\(192\) 227.339 24.4956i 1.18405 0.127581i
\(193\) 63.0037 + 63.0037i 0.326444 + 0.326444i 0.851233 0.524789i \(-0.175856\pi\)
−0.524789 + 0.851233i \(0.675856\pi\)
\(194\) 67.4989 10.1179i 0.347933 0.0521540i
\(195\) 132.236 104.025i 0.678133 0.533461i
\(196\) 19.8410 6.08491i 0.101229 0.0310455i
\(197\) −3.96178 3.96178i −0.0201106 0.0201106i 0.696980 0.717091i \(-0.254527\pi\)
−0.717091 + 0.696980i \(0.754527\pi\)
\(198\) 15.0887 + 11.1549i 0.0762056 + 0.0563378i
\(199\) 123.026i 0.618221i −0.951026 0.309110i \(-0.899969\pi\)
0.951026 0.309110i \(-0.100031\pi\)
\(200\) 167.651 + 109.055i 0.838256 + 0.545276i
\(201\) −101.018 −0.502576
\(202\) −180.832 + 244.603i −0.895208 + 1.21091i
\(203\) −5.45265 + 5.45265i −0.0268604 + 0.0268604i
\(204\) −423.982 + 130.029i −2.07834 + 0.637395i
\(205\) −135.841 172.680i −0.662639 0.842343i
\(206\) 50.5900 + 337.499i 0.245582 + 1.63834i
\(207\) 75.9617 75.9617i 0.366965 0.366965i
\(208\) 28.4961 147.977i 0.137001 0.711428i
\(209\) 43.7578i 0.209367i
\(210\) −262.880 + 7.87438i −1.25181 + 0.0374970i
\(211\) 273.854i 1.29789i −0.760837 0.648943i \(-0.775211\pi\)
0.760837 0.648943i \(-0.224789\pi\)
\(212\) −181.908 96.5191i −0.858059 0.455279i
\(213\) 55.1617 55.1617i 0.258975 0.258975i
\(214\) 31.5635 + 210.568i 0.147493 + 0.983964i
\(215\) 231.274 + 27.6155i 1.07569 + 0.128444i
\(216\) −134.982 + 64.5999i −0.624916 + 0.299074i
\(217\) 12.8706 12.8706i 0.0593113 0.0593113i
\(218\) −19.0759 14.1025i −0.0875040 0.0646905i
\(219\) −164.942 −0.753159
\(220\) 40.9523 + 28.4194i 0.186147 + 0.129179i
\(221\) 292.273i 1.32250i
\(222\) 156.653 + 115.812i 0.705644 + 0.521674i
\(223\) 128.870 + 128.870i 0.577894 + 0.577894i 0.934323 0.356429i \(-0.116006\pi\)
−0.356429 + 0.934323i \(0.616006\pi\)
\(224\) −173.326 + 159.521i −0.773778 + 0.712145i
\(225\) 91.4634 + 22.1585i 0.406504 + 0.0984824i
\(226\) 34.3854 + 229.394i 0.152148 + 1.01502i
\(227\) 242.455 + 242.455i 1.06808 + 1.06808i 0.997506 + 0.0705768i \(0.0224840\pi\)
0.0705768 + 0.997506i \(0.477516\pi\)
\(228\) −221.636 117.598i −0.972086 0.515781i
\(229\) −385.669 −1.68414 −0.842072 0.539365i \(-0.818664\pi\)
−0.842072 + 0.539365i \(0.818664\pi\)
\(230\) 195.659 207.743i 0.850692 0.903229i
\(231\) −65.5487 −0.283760
\(232\) 2.78707 7.90328i 0.0120132 0.0340659i
\(233\) 9.90826 + 9.90826i 0.0425247 + 0.0425247i 0.728049 0.685525i \(-0.240427\pi\)
−0.685525 + 0.728049i \(0.740427\pi\)
\(234\) −10.5116 70.1259i −0.0449215 0.299683i
\(235\) 236.669 + 28.2598i 1.00710 + 0.120255i
\(236\) 35.8840 + 117.006i 0.152051 + 0.495789i
\(237\) −41.4627 41.4627i −0.174948 0.174948i
\(238\) 271.595 367.374i 1.14116 1.54359i
\(239\) 44.7391i 0.187193i −0.995610 0.0935965i \(-0.970164\pi\)
0.995610 0.0935965i \(-0.0298364\pi\)
\(240\) 254.004 131.049i 1.05835 0.546037i
\(241\) −21.4785 −0.0891223 −0.0445611 0.999007i \(-0.514189\pi\)
−0.0445611 + 0.999007i \(0.514189\pi\)
\(242\) −184.606 136.477i −0.762835 0.563953i
\(243\) −135.380 + 135.380i −0.557118 + 0.557118i
\(244\) 91.1560 27.9561i 0.373590 0.114574i
\(245\) 20.3888 16.0391i 0.0832194 0.0654655i
\(246\) −310.512 + 46.5448i −1.26224 + 0.189206i
\(247\) −116.926 + 116.926i −0.473384 + 0.473384i
\(248\) −6.57866 + 18.6551i −0.0265269 + 0.0752220i
\(249\) 1.73708i 0.00697623i
\(250\) 244.625 + 51.5627i 0.978499 + 0.206251i
\(251\) 149.651i 0.596218i −0.954532 0.298109i \(-0.903644\pi\)
0.954532 0.298109i \(-0.0963560\pi\)
\(252\) −51.9519 + 97.9131i −0.206158 + 0.388544i
\(253\) 50.2938 50.2938i 0.198790 0.198790i
\(254\) 156.247 23.4209i 0.615146 0.0922084i
\(255\) −435.688 + 342.739i −1.70858 + 1.34407i
\(256\) 95.0710 237.692i 0.371371 0.928485i
\(257\) 244.045 244.045i 0.949590 0.949590i −0.0491992 0.998789i \(-0.515667\pi\)
0.998789 + 0.0491992i \(0.0156669\pi\)
\(258\) 197.875 267.657i 0.766959 1.03743i
\(259\) −200.698 −0.774896
\(260\) −33.4892 185.369i −0.128804 0.712958i
\(261\) 3.94332i 0.0151085i
\(262\) 180.267 243.839i 0.688042 0.930683i
\(263\) −241.557 241.557i −0.918467 0.918467i 0.0784512 0.996918i \(-0.475003\pi\)
−0.996918 + 0.0784512i \(0.975003\pi\)
\(264\) 64.2566 30.7521i 0.243396 0.116485i
\(265\) −255.595 30.5197i −0.964510 0.115169i
\(266\) 255.624 38.3172i 0.960992 0.144050i
\(267\) 213.379 + 213.379i 0.799172 + 0.799172i
\(268\) −53.0096 + 99.9066i −0.197797 + 0.372786i
\(269\) 350.619 1.30342 0.651708 0.758470i \(-0.274053\pi\)
0.651708 + 0.758470i \(0.274053\pi\)
\(270\) −128.248 + 136.169i −0.474993 + 0.504328i
\(271\) −298.610 −1.10188 −0.550940 0.834545i \(-0.685731\pi\)
−0.550940 + 0.834545i \(0.685731\pi\)
\(272\) −93.8885 + 487.552i −0.345178 + 1.79247i
\(273\) 175.153 + 175.153i 0.641588 + 0.641588i
\(274\) −190.900 + 28.6153i −0.696715 + 0.104435i
\(275\) 60.5573 + 14.6710i 0.220208 + 0.0533492i
\(276\) −119.577 389.904i −0.433252 1.41270i
\(277\) 275.798 + 275.798i 0.995660 + 0.995660i 0.999991 0.00433109i \(-0.00137863\pi\)
−0.00433109 + 0.999991i \(0.501379\pi\)
\(278\) −112.133 82.8985i −0.403357 0.298196i
\(279\) 9.30790i 0.0333617i
\(280\) −130.160 + 264.120i −0.464857 + 0.943287i
\(281\) 13.2859 0.0472808 0.0236404 0.999721i \(-0.492474\pi\)
0.0236404 + 0.999721i \(0.492474\pi\)
\(282\) 202.492 273.902i 0.718057 0.971283i
\(283\) −253.189 + 253.189i −0.894662 + 0.894662i −0.994958 0.100296i \(-0.968021\pi\)
0.100296 + 0.994958i \(0.468021\pi\)
\(284\) −25.6085 83.5013i −0.0901709 0.294019i
\(285\) −311.415 37.1849i −1.09268 0.130473i
\(286\) −6.95969 46.4299i −0.0243346 0.162342i
\(287\) 228.724 228.724i 0.796948 0.796948i
\(288\) 4.99207 120.356i 0.0173336 0.417904i
\(289\) 673.975i 2.33209i
\(290\) −0.313642 10.4707i −0.00108152 0.0361058i
\(291\) 121.925i 0.418985i
\(292\) −86.5541 + 163.128i −0.296418 + 0.558656i
\(293\) −143.408 + 143.408i −0.489447 + 0.489447i −0.908132 0.418685i \(-0.862491\pi\)
0.418685 + 0.908132i \(0.362491\pi\)
\(294\) −5.49565 36.6629i −0.0186927 0.124704i
\(295\) 94.5856 + 120.237i 0.320629 + 0.407582i
\(296\) 196.742 94.1572i 0.664669 0.318099i
\(297\) −32.9659 + 32.9659i −0.110996 + 0.110996i
\(298\) −126.891 93.8092i −0.425810 0.314796i
\(299\) −268.781 −0.898934
\(300\) 237.056 267.298i 0.790186 0.890993i
\(301\) 342.912i 1.13924i
\(302\) −317.725 234.890i −1.05207 0.777781i
\(303\) 384.236 + 384.236i 1.26811 + 1.26811i
\(304\) −232.609 + 157.488i −0.765161 + 0.518051i
\(305\) 93.6728 73.6888i 0.307124 0.241602i
\(306\) 34.6335 + 231.049i 0.113181 + 0.755063i
\(307\) −357.761 357.761i −1.16535 1.16535i −0.983288 0.182059i \(-0.941724\pi\)
−0.182059 0.983288i \(-0.558276\pi\)
\(308\) −34.3970 + 64.8276i −0.111679 + 0.210479i
\(309\) 609.631 1.97292
\(310\) 0.740327 + 24.7152i 0.00238815 + 0.0797266i
\(311\) −380.204 −1.22252 −0.611261 0.791429i \(-0.709337\pi\)
−0.611261 + 0.791429i \(0.709337\pi\)
\(312\) −253.874 89.5280i −0.813699 0.286949i
\(313\) 270.798 + 270.798i 0.865169 + 0.865169i 0.991933 0.126764i \(-0.0404591\pi\)
−0.126764 + 0.991933i \(0.540459\pi\)
\(314\) 39.4594 + 263.244i 0.125667 + 0.838357i
\(315\) −16.4274 + 137.575i −0.0521503 + 0.436747i
\(316\) −62.7645 + 19.2489i −0.198622 + 0.0609141i
\(317\) −238.939 238.939i −0.753752 0.753752i 0.221426 0.975177i \(-0.428929\pi\)
−0.975177 + 0.221426i \(0.928929\pi\)
\(318\) −218.685 + 295.805i −0.687687 + 0.930204i
\(319\) 2.61085i 0.00818448i
\(320\) 3.68258 319.979i 0.0115081 0.999934i
\(321\) 380.354 1.18490
\(322\) 337.846 + 249.765i 1.04921 + 0.775668i
\(323\) 385.245 385.245i 1.19271 1.19271i
\(324\) 118.113 + 385.131i 0.364548 + 1.18867i
\(325\) −122.613 201.019i −0.377272 0.618519i
\(326\) 371.968 55.7568i 1.14101 0.171033i
\(327\) −29.9654 + 29.9654i −0.0916373 + 0.0916373i
\(328\) −116.910 + 331.521i −0.356433 + 1.01074i
\(329\) 350.913i 1.06660i
\(330\) 61.0511 64.8215i 0.185003 0.196429i
\(331\) 73.0725i 0.220763i 0.993889 + 0.110381i \(0.0352072\pi\)
−0.993889 + 0.110381i \(0.964793\pi\)
\(332\) −1.71797 0.911542i −0.00517462 0.00274561i
\(333\) 72.5718 72.5718i 0.217933 0.217933i
\(334\) 143.806 21.5560i 0.430557 0.0645390i
\(335\) −16.7618 + 140.376i −0.0500353 + 0.419034i
\(336\) 235.914 + 348.445i 0.702126 + 1.03704i
\(337\) −207.932 + 207.932i −0.617008 + 0.617008i −0.944763 0.327755i \(-0.893708\pi\)
0.327755 + 0.944763i \(0.393708\pi\)
\(338\) 95.4627 129.128i 0.282434 0.382036i
\(339\) 414.358 1.22230
\(340\) 110.339 + 610.750i 0.324528 + 1.79632i
\(341\) 6.16270i 0.0180724i
\(342\) −78.5774 + 106.288i −0.229759 + 0.310784i
\(343\) −228.049 228.049i −0.664866 0.664866i
\(344\) −160.877 336.153i −0.467665 0.977189i
\(345\) −315.191 400.669i −0.913597 1.16136i
\(346\) −512.342 + 76.7983i −1.48076 + 0.221961i
\(347\) 150.516 + 150.516i 0.433765 + 0.433765i 0.889907 0.456142i \(-0.150769\pi\)
−0.456142 + 0.889907i \(0.650769\pi\)
\(348\) −13.2241 7.01659i −0.0380003 0.0201626i
\(349\) −159.797 −0.457871 −0.228935 0.973442i \(-0.573524\pi\)
−0.228935 + 0.973442i \(0.573524\pi\)
\(350\) −32.6771 + 366.610i −0.0933632 + 1.04746i
\(351\) 176.177 0.501930
\(352\) 3.30521 79.6871i 0.00938981 0.226384i
\(353\) 31.8920 + 31.8920i 0.0903455 + 0.0903455i 0.750835 0.660490i \(-0.229651\pi\)
−0.660490 + 0.750835i \(0.729651\pi\)
\(354\) 216.209 32.4090i 0.610759 0.0915508i
\(355\) −67.5008 85.8067i −0.190143 0.241709i
\(356\) 323.004 99.0601i 0.907314 0.278259i
\(357\) −577.092 577.092i −1.61650 1.61650i
\(358\) 50.4130 + 37.2697i 0.140818 + 0.104105i
\(359\) 374.114i 1.04210i 0.853526 + 0.521050i \(0.174459\pi\)
−0.853526 + 0.521050i \(0.825541\pi\)
\(360\) −48.4397 142.571i −0.134555 0.396029i
\(361\) −52.7608 −0.146152
\(362\) −68.2640 + 92.3377i −0.188575 + 0.255076i
\(363\) −289.989 + 289.989i −0.798868 + 0.798868i
\(364\) 265.139 81.3141i 0.728405 0.223390i
\(365\) −27.3687 + 229.207i −0.0749828 + 0.627963i
\(366\) −25.2488 168.442i −0.0689859 0.460223i
\(367\) 195.775 195.775i 0.533446 0.533446i −0.388150 0.921596i \(-0.626886\pi\)
0.921596 + 0.388150i \(0.126886\pi\)
\(368\) −448.364 86.3421i −1.21838 0.234625i
\(369\) 165.412i 0.448270i
\(370\) 186.927 198.472i 0.505209 0.536410i
\(371\) 378.974i 1.02149i
\(372\) 31.2144 + 16.5621i 0.0839097 + 0.0445218i
\(373\) 342.423 342.423i 0.918023 0.918023i −0.0788627 0.996885i \(-0.525129\pi\)
0.996885 + 0.0788627i \(0.0251289\pi\)
\(374\) 22.9306 + 152.976i 0.0613118 + 0.409027i
\(375\) 155.871 418.506i 0.415657 1.11602i
\(376\) −164.630 343.996i −0.437846 0.914883i
\(377\) −6.97649 + 6.97649i −0.0185053 + 0.0185053i
\(378\) −221.447 163.713i −0.585839 0.433103i
\(379\) 607.050 1.60171 0.800857 0.598855i \(-0.204378\pi\)
0.800857 + 0.598855i \(0.204378\pi\)
\(380\) −200.192 + 288.476i −0.526822 + 0.759148i
\(381\) 282.232i 0.740767i
\(382\) −260.411 192.518i −0.681703 0.503974i
\(383\) −154.687 154.687i −0.403882 0.403882i 0.475717 0.879599i \(-0.342189\pi\)
−0.879599 + 0.475717i \(0.842189\pi\)
\(384\) −394.737 230.898i −1.02796 0.601298i
\(385\) −10.8764 + 91.0877i −0.0282505 + 0.236592i
\(386\) −26.4167 176.233i −0.0684370 0.456561i
\(387\) −123.996 123.996i −0.320403 0.320403i
\(388\) −120.584 63.9806i −0.310782 0.164899i
\(389\) −323.730 −0.832210 −0.416105 0.909317i \(-0.636605\pi\)
−0.416105 + 0.909317i \(0.636605\pi\)
\(390\) −336.346 + 10.0750i −0.862426 + 0.0258333i
\(391\) 885.575 2.26490
\(392\) −39.1435 13.8039i −0.0998559 0.0352139i
\(393\) −383.036 383.036i −0.974645 0.974645i
\(394\) 1.66113 + 11.0818i 0.00421605 + 0.0281264i
\(395\) −64.4974 + 50.7376i −0.163284 + 0.128450i
\(396\) −11.0036 35.8793i −0.0277869 0.0906043i
\(397\) 376.174 + 376.174i 0.947543 + 0.947543i 0.998691 0.0511485i \(-0.0162882\pi\)
−0.0511485 + 0.998691i \(0.516288\pi\)
\(398\) −146.271 + 197.854i −0.367515 + 0.497121i
\(399\) 461.739i 1.15724i
\(400\) −139.962 374.714i −0.349904 0.936786i
\(401\) −401.761 −1.00190 −0.500948 0.865477i \(-0.667015\pi\)
−0.500948 + 0.865477i \(0.667015\pi\)
\(402\) 162.460 + 120.105i 0.404130 + 0.298768i
\(403\) 16.4674 16.4674i 0.0408621 0.0408621i
\(404\) 581.640 178.380i 1.43970 0.441534i
\(405\) 311.332 + 395.764i 0.768721 + 0.977195i
\(406\) 15.2520 2.28623i 0.0375666 0.00563111i
\(407\) 48.0493 48.0493i 0.118057 0.118057i
\(408\) 836.459 + 294.975i 2.05014 + 0.722978i
\(409\) 166.880i 0.408020i 0.978969 + 0.204010i \(0.0653974\pi\)
−0.978969 + 0.204010i \(0.934603\pi\)
\(410\) 13.1564 + 439.217i 0.0320889 + 1.07126i
\(411\) 344.826i 0.838993i
\(412\) 319.907 602.925i 0.776474 1.46341i
\(413\) −159.260 + 159.260i −0.385617 + 0.385617i
\(414\) −212.478 + 31.8498i −0.513233 + 0.0769319i
\(415\) −2.41388 0.288233i −0.00581658 0.000694536i
\(416\) −221.765 + 204.101i −0.533089 + 0.490628i
\(417\) −176.145 + 176.145i −0.422410 + 0.422410i
\(418\) −52.0256 + 70.3727i −0.124463 + 0.168356i
\(419\) −533.694 −1.27373 −0.636866 0.770974i \(-0.719770\pi\)
−0.636866 + 0.770974i \(0.719770\pi\)
\(420\) 432.134 + 299.886i 1.02889 + 0.714014i
\(421\) 214.523i 0.509556i 0.967000 + 0.254778i \(0.0820023\pi\)
−0.967000 + 0.254778i \(0.917998\pi\)
\(422\) −325.597 + 440.421i −0.771558 + 1.04365i
\(423\) −126.889 126.889i −0.299974 0.299974i
\(424\) 177.795 + 371.504i 0.419328 + 0.876189i
\(425\) 403.984 + 662.312i 0.950550 + 1.55838i
\(426\) −154.297 + 23.1286i −0.362199 + 0.0542925i
\(427\) 124.074 + 124.074i 0.290573 + 0.290573i
\(428\) 199.593 376.170i 0.466338 0.878902i
\(429\) −83.8673 −0.195495
\(430\) −339.108 319.384i −0.788624 0.742753i
\(431\) −525.371 −1.21896 −0.609479 0.792802i \(-0.708621\pi\)
−0.609479 + 0.792802i \(0.708621\pi\)
\(432\) 293.888 + 56.5944i 0.680296 + 0.131006i
\(433\) −262.829 262.829i −0.606994 0.606994i 0.335165 0.942159i \(-0.391208\pi\)
−0.942159 + 0.335165i \(0.891208\pi\)
\(434\) −36.0012 + 5.39646i −0.0829521 + 0.0124342i
\(435\) −18.5809 2.21867i −0.0427146 0.00510039i
\(436\) 13.9113 + 45.3603i 0.0319066 + 0.104037i
\(437\) 354.280 + 354.280i 0.810709 + 0.810709i
\(438\) 265.265 + 196.107i 0.605627 + 0.447732i
\(439\) 419.145i 0.954771i 0.878694 + 0.477386i \(0.158416\pi\)
−0.878694 + 0.477386i \(0.841584\pi\)
\(440\) −32.0716 94.3950i −0.0728900 0.214534i
\(441\) −19.5306 −0.0442870
\(442\) 347.497 470.043i 0.786191 1.06345i
\(443\) −119.234 + 119.234i −0.269152 + 0.269152i −0.828758 0.559606i \(-0.810952\pi\)
0.559606 + 0.828758i \(0.310952\pi\)
\(444\) −114.241 372.504i −0.257300 0.838972i
\(445\) 331.922 261.110i 0.745891 0.586764i
\(446\) −54.0337 360.473i −0.121152 0.808236i
\(447\) −199.328 + 199.328i −0.445924 + 0.445924i
\(448\) 468.410 50.4709i 1.04556 0.112658i
\(449\) 596.070i 1.32755i 0.747932 + 0.663775i \(0.231047\pi\)
−0.747932 + 0.663775i \(0.768953\pi\)
\(450\) −120.749 144.381i −0.268331 0.320846i
\(451\) 109.518i 0.242834i
\(452\) 217.437 409.801i 0.481055 0.906639i
\(453\) −499.099 + 499.099i −1.10176 + 1.10176i
\(454\) −101.658 678.189i −0.223917 1.49381i
\(455\) 272.460 214.334i 0.598813 0.471063i
\(456\) 216.624 + 452.637i 0.475053 + 0.992626i
\(457\) 144.279 144.279i 0.315708 0.315708i −0.531408 0.847116i \(-0.678337\pi\)
0.847116 + 0.531408i \(0.178337\pi\)
\(458\) 620.245 + 458.539i 1.35425 + 1.00118i
\(459\) −580.465 −1.26463
\(460\) −561.660 + 101.471i −1.22100 + 0.220588i
\(461\) 743.994i 1.61387i −0.590640 0.806935i \(-0.701125\pi\)
0.590640 0.806935i \(-0.298875\pi\)
\(462\) 105.417 + 77.9337i 0.228176 + 0.168688i
\(463\) 446.519 + 446.519i 0.964404 + 0.964404i 0.999388 0.0349842i \(-0.0111381\pi\)
−0.0349842 + 0.999388i \(0.511138\pi\)
\(464\) −13.8788 + 9.39664i −0.0299113 + 0.0202514i
\(465\) 43.8586 + 5.23700i 0.0943196 + 0.0112624i
\(466\) −4.15441 27.7152i −0.00891504 0.0594746i
\(467\) 5.61916 + 5.61916i 0.0120325 + 0.0120325i 0.713097 0.701065i \(-0.247292\pi\)
−0.701065 + 0.713097i \(0.747292\pi\)
\(468\) −66.4707 + 125.276i −0.142031 + 0.267685i
\(469\) −208.138 −0.443791
\(470\) −347.020 326.835i −0.738341 0.695394i
\(471\) 475.503 1.00956
\(472\) 81.4042 230.837i 0.172467 0.489062i
\(473\) −82.0969 82.0969i −0.173566 0.173566i
\(474\) 17.3848 + 115.979i 0.0366768 + 0.244681i
\(475\) −103.346 + 426.578i −0.217570 + 0.898060i
\(476\) −873.576 + 267.912i −1.83524 + 0.562840i
\(477\) 137.036 + 137.036i 0.287287 + 0.287287i
\(478\) −53.1923 + 71.9509i −0.111281 + 0.150525i
\(479\) 765.340i 1.59779i −0.601472 0.798894i \(-0.705419\pi\)
0.601472 0.798894i \(-0.294581\pi\)
\(480\) −564.308 91.2398i −1.17564 0.190083i
\(481\) −256.786 −0.533859
\(482\) 34.5424 + 25.5367i 0.0716647 + 0.0529807i
\(483\) 530.707 530.707i 1.09877 1.09877i
\(484\) 134.626 + 438.973i 0.278153 + 0.906968i
\(485\) −169.429 20.2309i −0.349338 0.0417132i
\(486\) 378.681 56.7630i 0.779179 0.116796i
\(487\) −611.323 + 611.323i −1.25528 + 1.25528i −0.301963 + 0.953320i \(0.597642\pi\)
−0.953320 + 0.301963i \(0.902358\pi\)
\(488\) −179.838 63.4195i −0.368521 0.129958i
\(489\) 671.893i 1.37402i
\(490\) −51.8594 + 1.55341i −0.105836 + 0.00317023i
\(491\) 899.211i 1.83139i 0.401877 + 0.915694i \(0.368358\pi\)
−0.401877 + 0.915694i \(0.631642\pi\)
\(492\) 554.715 + 294.327i 1.12747 + 0.598226i
\(493\) 22.9860 22.9860i 0.0466247 0.0466247i
\(494\) 327.062 49.0255i 0.662069 0.0992419i
\(495\) −29.0041 36.8699i −0.0585942 0.0744847i
\(496\) 32.7599 22.1800i 0.0660481 0.0447178i
\(497\) 113.655 113.655i 0.228683 0.228683i
\(498\) −2.06529 + 2.79363i −0.00414717 + 0.00560969i
\(499\) 755.350 1.51373 0.756864 0.653572i \(-0.226730\pi\)
0.756864 + 0.653572i \(0.226730\pi\)
\(500\) −332.108 373.770i −0.664216 0.747540i
\(501\) 259.760i 0.518482i
\(502\) −177.927 + 240.673i −0.354435 + 0.479429i
\(503\) −505.226 505.226i −1.00443 1.00443i −0.999990 0.00443600i \(-0.998588\pi\)
−0.00443600 0.999990i \(-0.501412\pi\)
\(504\) 199.964 95.6991i 0.396754 0.189879i
\(505\) 597.699 470.187i 1.18356 0.931063i
\(506\) −140.681 + 21.0876i −0.278025 + 0.0416750i
\(507\) −202.842 202.842i −0.400082 0.400082i
\(508\) −279.128 148.103i −0.549464 0.291541i
\(509\) −594.029 −1.16705 −0.583526 0.812095i \(-0.698327\pi\)
−0.583526 + 0.812095i \(0.698327\pi\)
\(510\) 1108.19 33.1949i 2.17291 0.0650880i
\(511\) −339.847 −0.665063
\(512\) −435.499 + 269.230i −0.850584 + 0.525840i
\(513\) −232.219 232.219i −0.452668 0.452668i
\(514\) −682.636 + 102.325i −1.32809 + 0.199076i
\(515\) 101.156 847.156i 0.196419 1.64496i
\(516\) −636.459 + 195.192i −1.23345 + 0.378279i
\(517\) −84.0123 84.0123i −0.162500 0.162500i
\(518\) 322.769 + 238.619i 0.623106 + 0.460654i
\(519\) 925.453i 1.78315i
\(520\) −166.535 + 337.933i −0.320260 + 0.649871i
\(521\) 871.615 1.67297 0.836483 0.547993i \(-0.184608\pi\)
0.836483 + 0.547993i \(0.184608\pi\)
\(522\) −4.68839 + 6.34178i −0.00898160 + 0.0121490i
\(523\) 601.907 601.907i 1.15087 1.15087i 0.164497 0.986378i \(-0.447400\pi\)
0.986378 0.164497i \(-0.0526001\pi\)
\(524\) −579.822 + 177.822i −1.10653 + 0.339356i
\(525\) 639.009 + 154.811i 1.21716 + 0.294878i
\(526\) 101.282 + 675.677i 0.192551 + 1.28456i
\(527\) −54.2566 + 54.2566i −0.102954 + 0.102954i
\(528\) −139.902 26.9411i −0.264966 0.0510249i
\(529\) 285.396i 0.539500i
\(530\) 374.770 + 352.971i 0.707114 + 0.665983i
\(531\) 115.176i 0.216903i
\(532\) −456.660 242.300i −0.858383 0.455451i
\(533\) 292.645 292.645i 0.549052 0.549052i
\(534\) −89.4672 596.859i −0.167542 1.11771i
\(535\) 63.1119 528.547i 0.117966 0.987939i
\(536\) 204.035 97.6475i 0.380663 0.182178i
\(537\) 79.1915 79.1915i 0.147470 0.147470i
\(538\) −563.877 416.867i −1.04810 0.774845i
\(539\) −12.9311 −0.0239908
\(540\) 368.150 66.5107i 0.681759 0.123168i
\(541\) 109.548i 0.202492i 0.994861 + 0.101246i \(0.0322830\pi\)
−0.994861 + 0.101246i \(0.967717\pi\)
\(542\) 480.233 + 355.030i 0.886040 + 0.655037i
\(543\) 145.049 + 145.049i 0.267125 + 0.267125i
\(544\) 730.666 672.468i 1.34314 1.23615i
\(545\) 36.6684 + 46.6127i 0.0672815 + 0.0855279i
\(546\) −73.4397 489.935i −0.134505 0.897317i
\(547\) −330.968 330.968i −0.605060 0.605060i 0.336591 0.941651i \(-0.390726\pi\)
−0.941651 + 0.336591i \(0.890726\pi\)
\(548\) 341.033 + 180.949i 0.622323 + 0.330200i
\(549\) −89.7299 −0.163442
\(550\) −79.9471 95.5937i −0.145358 0.173807i
\(551\) 18.3914 0.0333782
\(552\) −271.266 + 769.227i −0.491424 + 1.39353i
\(553\) −85.4301 85.4301i −0.154485 0.154485i
\(554\) −115.639 771.455i −0.208734 1.39252i
\(555\) −301.125 382.788i −0.542567 0.689709i
\(556\) 81.7744 + 266.640i 0.147076 + 0.479569i
\(557\) −62.7080 62.7080i −0.112582 0.112582i 0.648572 0.761153i \(-0.275367\pi\)
−0.761153 + 0.648572i \(0.775367\pi\)
\(558\) 11.0666 14.9693i 0.0198326 0.0268266i
\(559\) 438.745i 0.784874i
\(560\) 523.352 270.014i 0.934557 0.482168i
\(561\) 276.324 0.492556
\(562\) −21.3668 15.7962i −0.0380193 0.0281071i
\(563\) −116.120 + 116.120i −0.206252 + 0.206252i −0.802672 0.596420i \(-0.796589\pi\)
0.596420 + 0.802672i \(0.296589\pi\)
\(564\) −651.308 + 199.746i −1.15480 + 0.354159i
\(565\) 68.7543 575.801i 0.121689 1.01912i
\(566\) 708.215 106.159i 1.25126 0.187560i
\(567\) −524.210 + 524.210i −0.924533 + 0.924533i
\(568\) −58.0939 + 164.737i −0.102278 + 0.290029i
\(569\) 323.733i 0.568950i −0.958683 0.284475i \(-0.908181\pi\)
0.958683 0.284475i \(-0.0918193\pi\)
\(570\) 456.617 + 430.057i 0.801082 + 0.754486i
\(571\) 433.708i 0.759558i 0.925077 + 0.379779i \(0.124000\pi\)
−0.925077 + 0.379779i \(0.876000\pi\)
\(572\) −44.0098 + 82.9447i −0.0769402 + 0.145008i
\(573\) −409.067 + 409.067i −0.713904 + 0.713904i
\(574\) −639.782 + 95.9011i −1.11460 + 0.167075i
\(575\) −609.078 + 371.513i −1.05927 + 0.646110i
\(576\) −151.125 + 187.626i −0.262370 + 0.325739i
\(577\) 27.1282 27.1282i 0.0470159 0.0470159i −0.683208 0.730224i \(-0.739416\pi\)
0.730224 + 0.683208i \(0.239416\pi\)
\(578\) −801.319 + 1083.91i −1.38637 + 1.87527i
\(579\) −318.332 −0.549797
\(580\) −11.9447 + 17.2122i −0.0205943 + 0.0296762i
\(581\) 3.57909i 0.00616023i
\(582\) −144.962 + 196.083i −0.249075 + 0.336913i
\(583\) 90.7305 + 90.7305i 0.155627 + 0.155627i
\(584\) 333.149 159.439i 0.570460 0.273012i
\(585\) −21.0182 + 176.023i −0.0359286 + 0.300894i
\(586\) 401.137 60.1291i 0.684535 0.102609i
\(587\) −163.733 163.733i −0.278932 0.278932i 0.553751 0.832682i \(-0.313196\pi\)
−0.832682 + 0.553751i \(0.813196\pi\)
\(588\) −34.7519 + 65.4965i −0.0591019 + 0.111389i
\(589\) −43.4114 −0.0737035
\(590\) −9.16078 305.826i −0.0155268 0.518349i
\(591\) 20.0173 0.0338702
\(592\) −428.355 82.4889i −0.723572 0.139339i
\(593\) 280.606 + 280.606i 0.473198 + 0.473198i 0.902948 0.429750i \(-0.141398\pi\)
−0.429750 + 0.902948i \(0.641398\pi\)
\(594\) 92.2115 13.8222i 0.155238 0.0232697i
\(595\) −897.695 + 706.182i −1.50873 + 1.18686i
\(596\) 92.5370 + 301.734i 0.155263 + 0.506265i
\(597\) 310.800 + 310.800i 0.520603 + 0.520603i
\(598\) 432.263 + 319.566i 0.722848 + 0.534392i
\(599\) 639.232i 1.06716i −0.845748 0.533582i \(-0.820845\pi\)
0.845748 0.533582i \(-0.179155\pi\)
\(600\) −699.043 + 148.031i −1.16507 + 0.246718i
\(601\) −332.979 −0.554041 −0.277021 0.960864i \(-0.589347\pi\)
−0.277021 + 0.960864i \(0.589347\pi\)
\(602\) 407.704 551.482i 0.677249 0.916084i
\(603\) 75.2619 75.2619i 0.124812 0.124812i
\(604\) 231.704 + 755.514i 0.383617 + 1.25085i
\(605\) 354.857 + 451.092i 0.586540 + 0.745607i
\(606\) −161.106 1074.78i −0.265851 1.77356i
\(607\) 681.745 681.745i 1.12314 1.12314i 0.131873 0.991267i \(-0.457901\pi\)
0.991267 0.131873i \(-0.0420990\pi\)
\(608\) 561.333 + 23.2826i 0.923245 + 0.0382938i
\(609\) 27.5501i 0.0452382i
\(610\) −238.259 + 7.13689i −0.390589 + 0.0116998i
\(611\) 448.981i 0.734830i
\(612\) 219.006 412.758i 0.357853 0.674442i
\(613\) 378.926 378.926i 0.618150 0.618150i −0.326907 0.945057i \(-0.606006\pi\)
0.945057 + 0.326907i \(0.106006\pi\)
\(614\) 150.005 + 1000.72i 0.244308 + 1.62984i
\(615\) 779.417 + 93.0672i 1.26734 + 0.151329i
\(616\) 132.395 63.3617i 0.214927 0.102860i
\(617\) −68.3041 + 68.3041i −0.110704 + 0.110704i −0.760289 0.649585i \(-0.774943\pi\)
0.649585 + 0.760289i \(0.274943\pi\)
\(618\) −980.429 724.818i −1.58645 1.17284i
\(619\) 1009.69 1.63116 0.815580 0.578645i \(-0.196418\pi\)
0.815580 + 0.578645i \(0.196418\pi\)
\(620\) 28.1944 40.6281i 0.0454749 0.0655291i
\(621\) 533.810i 0.859597i
\(622\) 611.456 + 452.042i 0.983049 + 0.726755i
\(623\) 439.648 + 439.648i 0.705694 + 0.705694i
\(624\) 301.845 + 445.824i 0.483725 + 0.714462i
\(625\) −555.701 286.045i −0.889121 0.457671i
\(626\) −113.542 757.470i −0.181377 1.21002i
\(627\) 110.545 + 110.545i 0.176308 + 0.176308i
\(628\) 249.523 470.273i 0.397329 0.748842i
\(629\) 846.054 1.34508
\(630\) 189.988 201.722i 0.301569 0.320193i
\(631\) −867.965 −1.37554 −0.687769 0.725929i \(-0.741410\pi\)
−0.687769 + 0.725929i \(0.741410\pi\)
\(632\) 123.826 + 43.6668i 0.195927 + 0.0690930i
\(633\) 691.837 + 691.837i 1.09295 + 1.09295i
\(634\) 100.184 + 668.355i 0.158019 + 1.05419i
\(635\) −392.196 46.8307i −0.617631 0.0737491i
\(636\) 703.391 215.719i 1.10596 0.339181i
\(637\) 34.5532 + 34.5532i 0.0542437 + 0.0542437i
\(638\) −3.10415 + 4.19885i −0.00486545 + 0.00658127i
\(639\) 82.1949i 0.128631i
\(640\) −386.360 + 510.222i −0.603687 + 0.797222i
\(641\) 116.032 0.181017 0.0905083 0.995896i \(-0.471151\pi\)
0.0905083 + 0.995896i \(0.471151\pi\)
\(642\) −611.697 452.220i −0.952799 0.704392i
\(643\) −429.493 + 429.493i −0.667951 + 0.667951i −0.957241 0.289290i \(-0.906581\pi\)
0.289290 + 0.957241i \(0.406581\pi\)
\(644\) −246.378 803.361i −0.382575 1.24745i
\(645\) −654.031 + 514.501i −1.01400 + 0.797676i
\(646\) −1077.60 + 161.528i −1.66811 + 0.250044i
\(647\) 511.695 511.695i 0.790873 0.790873i −0.190763 0.981636i \(-0.561096\pi\)
0.981636 + 0.190763i \(0.0610963\pi\)
\(648\) 267.945 759.810i 0.413495 1.17255i
\(649\) 76.2571i 0.117499i
\(650\) −41.8093 + 469.065i −0.0643220 + 0.721638i
\(651\) 65.0297i 0.0998920i
\(652\) −664.503 352.580i −1.01918 0.540766i
\(653\) −777.556 + 777.556i −1.19074 + 1.19074i −0.213886 + 0.976859i \(0.568612\pi\)
−0.976859 + 0.213886i \(0.931388\pi\)
\(654\) 83.8186 12.5641i 0.128163 0.0192112i
\(655\) −595.831 + 468.717i −0.909666 + 0.715599i
\(656\) 582.179 394.163i 0.887468 0.600859i
\(657\) 122.888 122.888i 0.187044 0.187044i
\(658\) 417.216 564.349i 0.634067 0.857673i
\(659\) 734.265 1.11421 0.557105 0.830442i \(-0.311912\pi\)
0.557105 + 0.830442i \(0.311912\pi\)
\(660\) −175.254 + 31.6617i −0.265536 + 0.0479723i
\(661\) 799.237i 1.20913i 0.796555 + 0.604567i \(0.206654\pi\)
−0.796555 + 0.604567i \(0.793346\pi\)
\(662\) 86.8791 117.518i 0.131237 0.177519i
\(663\) −738.369 738.369i −1.11368 1.11368i
\(664\) 1.67913 + 3.50855i 0.00252880 + 0.00528395i
\(665\) −641.641 76.6160i −0.964874 0.115212i
\(666\) −202.996 + 30.4284i −0.304799 + 0.0456883i
\(667\) 21.1384 + 21.1384i 0.0316918 + 0.0316918i
\(668\) −256.902 136.310i −0.384584 0.204057i
\(669\) −651.130 −0.973288
\(670\) 193.857 205.829i 0.289338 0.307207i
\(671\) −59.4096 −0.0885388
\(672\) 34.8771 840.870i 0.0519005 1.25130i
\(673\) −185.806 185.806i −0.276087 0.276087i 0.555458 0.831545i \(-0.312543\pi\)
−0.831545 + 0.555458i \(0.812543\pi\)
\(674\) 581.622 87.1832i 0.862940 0.129352i
\(675\) 399.230 243.515i 0.591452 0.360762i
\(676\) −307.053 + 94.1682i −0.454220 + 0.139302i
\(677\) −448.763 448.763i −0.662870 0.662870i 0.293186 0.956055i \(-0.405285\pi\)
−0.956055 + 0.293186i \(0.905285\pi\)
\(678\) −666.385 492.649i −0.982868 0.726621i
\(679\) 251.214i 0.369977i
\(680\) 548.696 1113.41i 0.806907 1.63737i
\(681\) −1225.03 −1.79886
\(682\) 7.32711 9.91105i 0.0107436 0.0145323i
\(683\) −67.1358 + 67.1358i −0.0982955 + 0.0982955i −0.754544 0.656249i \(-0.772142\pi\)
0.656249 + 0.754544i \(0.272142\pi\)
\(684\) 252.741 77.5118i 0.369505 0.113321i
\(685\) 479.178 + 57.2168i 0.699529 + 0.0835282i
\(686\) 95.6181 + 637.893i 0.139385 + 0.929873i
\(687\) 974.315 974.315i 1.41822 1.41822i
\(688\) −140.940 + 731.886i −0.204855 + 1.06379i
\(689\) 484.884i 0.703751i
\(690\) 30.5268 + 1019.11i 0.0442417 + 1.47698i
\(691\) 533.282i 0.771753i −0.922550 0.385877i \(-0.873899\pi\)
0.922550 0.385877i \(-0.126101\pi\)
\(692\) 915.274 + 485.636i 1.32265 + 0.701787i
\(693\) 48.8361 48.8361i 0.0704706 0.0704706i
\(694\) −63.1097 421.021i −0.0909362 0.606659i
\(695\) 215.547 + 274.002i 0.310139 + 0.394248i
\(696\) 12.9251 + 27.0070i 0.0185705 + 0.0388032i
\(697\) −964.199 + 964.199i −1.38336 + 1.38336i
\(698\) 256.991 + 189.990i 0.368181 + 0.272192i
\(699\) −50.0625 −0.0716201
\(700\) 488.431 550.743i 0.697759 0.786775i
\(701\) 1203.60i 1.71697i −0.512835 0.858487i \(-0.671405\pi\)
0.512835 0.858487i \(-0.328595\pi\)
\(702\) −283.334 209.465i −0.403610 0.298383i
\(703\) 338.469 + 338.469i 0.481464 + 0.481464i
\(704\) −100.059 + 124.226i −0.142129 + 0.176457i
\(705\) −669.291 + 526.505i −0.949348 + 0.746816i
\(706\) −13.3719 89.2075i −0.0189404 0.126356i
\(707\) 791.683 + 791.683i 1.11978 + 1.11978i
\(708\) −386.246 204.939i −0.545546 0.289462i
\(709\) −456.445 −0.643788 −0.321894 0.946776i \(-0.604319\pi\)
−0.321894 + 0.946776i \(0.604319\pi\)
\(710\) 6.53757 + 218.252i 0.00920785 + 0.307397i
\(711\) 61.7825 0.0868952
\(712\) −637.242 224.722i −0.895003 0.315620i
\(713\) −49.8956 49.8956i −0.0699798 0.0699798i
\(714\) 241.967 + 1614.23i 0.338890 + 2.26082i
\(715\) −13.9160 + 116.544i −0.0194630 + 0.162998i
\(716\) −36.7642 119.877i −0.0513467 0.167425i
\(717\) 113.024 + 113.024i 0.157635 + 0.157635i
\(718\) 444.800 601.662i 0.619499 0.837969i
\(719\) 63.2841i 0.0880168i 0.999031 + 0.0440084i \(0.0140128\pi\)
−0.999031 + 0.0440084i \(0.985987\pi\)
\(720\) −91.6061 + 286.879i −0.127231 + 0.398443i
\(721\) 1256.09 1.74215
\(722\) 84.8517 + 62.7297i 0.117523 + 0.0868833i
\(723\) 54.2610 54.2610i 0.0750498 0.0750498i
\(724\) 219.569 67.3383i 0.303272 0.0930087i
\(725\) −6.16622 + 25.4522i −0.00850513 + 0.0351065i
\(726\) 811.151 121.589i 1.11729 0.167478i
\(727\) 408.139 408.139i 0.561401 0.561401i −0.368304 0.929705i \(-0.620061\pi\)
0.929705 + 0.368304i \(0.120061\pi\)
\(728\) −523.084 184.464i −0.718522 0.253385i
\(729\) 222.361i 0.305021i
\(730\) 316.529 336.078i 0.433602 0.460380i
\(731\) 1445.57i 1.97752i
\(732\) −159.662 + 300.913i −0.218117 + 0.411083i
\(733\) −90.0317 + 90.0317i −0.122826 + 0.122826i −0.765848 0.643022i \(-0.777681\pi\)
0.643022 + 0.765848i \(0.277681\pi\)
\(734\) −547.616 + 82.0858i −0.746071 + 0.111834i
\(735\) −10.9887 + 92.0275i −0.0149506 + 0.125208i
\(736\) 618.418 + 671.938i 0.840241 + 0.912959i
\(737\) 49.8304 49.8304i 0.0676125 0.0676125i
\(738\) 196.665 266.020i 0.266484 0.360461i
\(739\) −875.498 −1.18471 −0.592353 0.805679i \(-0.701801\pi\)
−0.592353 + 0.805679i \(0.701801\pi\)
\(740\) −536.595 + 96.9423i −0.725128 + 0.131003i
\(741\) 590.779i 0.797272i
\(742\) −450.579 + 609.478i −0.607250 + 0.821399i
\(743\) 282.061 + 282.061i 0.379624 + 0.379624i 0.870967 0.491342i \(-0.163494\pi\)
−0.491342 + 0.870967i \(0.663494\pi\)
\(744\) −30.5086 63.7479i −0.0410062 0.0856827i
\(745\) 243.916 + 310.065i 0.327404 + 0.416194i
\(746\) −957.816 + 143.573i −1.28394 + 0.192458i
\(747\) 1.29419 + 1.29419i 0.00173251 + 0.00173251i
\(748\) 145.002 273.285i 0.193854 0.365354i
\(749\) 783.683 1.04631
\(750\) −748.258 + 487.732i −0.997677 + 0.650310i
\(751\) 606.986 0.808237 0.404119 0.914707i \(-0.367578\pi\)
0.404119 + 0.914707i \(0.367578\pi\)
\(752\) −144.229 + 748.962i −0.191793 + 0.995960i
\(753\) 378.063 + 378.063i 0.502075 + 0.502075i
\(754\) 19.5145 2.92515i 0.0258812 0.00387951i
\(755\) 610.743 + 776.374i 0.808932 + 1.02831i
\(756\) 161.493 + 526.577i 0.213615 + 0.696530i
\(757\) −173.075 173.075i −0.228633 0.228633i 0.583488 0.812121i \(-0.301687\pi\)
−0.812121 + 0.583488i \(0.801687\pi\)
\(758\) −976.277 721.749i −1.28796 0.952175i
\(759\) 254.114i 0.334801i
\(760\) 664.938 225.919i 0.874919 0.297262i
\(761\) 100.678 0.132297 0.0661483 0.997810i \(-0.478929\pi\)
0.0661483 + 0.997810i \(0.478929\pi\)
\(762\) −335.559 + 453.895i −0.440366 + 0.595663i
\(763\) −61.7409 + 61.7409i −0.0809187 + 0.0809187i
\(764\) 189.907 + 619.228i 0.248570 + 0.810507i
\(765\) 69.2505 579.957i 0.0905235 0.758113i
\(766\) 64.8582 + 432.686i 0.0846713 + 0.564864i
\(767\) −203.768 + 203.768i −0.265668 + 0.265668i
\(768\) 360.303 + 840.659i 0.469145 + 1.09461i
\(769\) 370.732i 0.482097i 0.970513 + 0.241048i \(0.0774913\pi\)
−0.970513 + 0.241048i \(0.922509\pi\)
\(770\) 125.790 133.559i 0.163364 0.173453i
\(771\) 1233.06i 1.59930i
\(772\) −167.047 + 314.831i −0.216382 + 0.407812i
\(773\) −319.455 + 319.455i −0.413267 + 0.413267i −0.882875 0.469608i \(-0.844395\pi\)
0.469608 + 0.882875i \(0.344395\pi\)
\(774\) 51.9900 + 346.839i 0.0671705 + 0.448112i
\(775\) 14.5549 60.0779i 0.0187805 0.0775198i
\(776\) 117.857 + 246.263i 0.151877 + 0.317349i
\(777\) 507.023 507.023i 0.652539 0.652539i
\(778\) 520.633 + 384.897i 0.669194 + 0.494726i
\(779\) −771.468 −0.990331
\(780\) 552.901 + 383.694i 0.708848 + 0.491915i
\(781\) 54.4207i 0.0696808i
\(782\) −1424.21 1052.90i −1.82124 1.34642i
\(783\) −13.8556 13.8556i −0.0176955 0.0176955i
\(784\) 46.5398 + 68.7393i 0.0593620 + 0.0876776i
\(785\) 78.8999 660.769i 0.100509 0.841744i
\(786\) 160.602 + 1071.42i 0.204328 + 1.36313i
\(787\) −1104.16 1104.16i −1.40300 1.40300i −0.790372 0.612627i \(-0.790113\pi\)
−0.612627 0.790372i \(-0.709887\pi\)
\(788\) 10.5042 19.7971i 0.0133302 0.0251232i
\(789\) 1220.49 1.54688
\(790\) 164.051 4.91402i 0.207659 0.00622028i
\(791\) 853.747 1.07933
\(792\) −24.9621 + 70.7849i −0.0315178 + 0.0893749i
\(793\) 158.749 + 158.749i 0.200188 + 0.200188i
\(794\) −157.725 1052.23i −0.198646 1.32522i
\(795\) 722.811 568.608i 0.909197 0.715230i
\(796\) 470.476 144.287i 0.591050 0.181266i
\(797\) 434.605 + 434.605i 0.545301 + 0.545301i 0.925078 0.379777i \(-0.123999\pi\)
−0.379777 + 0.925078i \(0.623999\pi\)
\(798\) −548.982 + 742.583i −0.687947 + 0.930555i
\(799\) 1479.29i 1.85143i
\(800\) −220.424 + 769.034i −0.275530 + 0.961293i
\(801\) −317.950 −0.396942
\(802\) 646.124 + 477.671i 0.805641 + 0.595600i
\(803\) 81.3631 81.3631i 0.101324 0.101324i
\(804\) −118.476 386.312i −0.147358 0.480488i
\(805\) −649.422 825.542i −0.806735 1.02552i
\(806\) −46.0623 + 6.90459i −0.0571493 + 0.00856649i
\(807\) −885.768 + 885.768i −1.09761 + 1.09761i
\(808\) −1147.50 404.662i −1.42017 0.500819i
\(809\) 164.175i 0.202935i 0.994839 + 0.101468i \(0.0323538\pi\)
−0.994839 + 0.101468i \(0.967646\pi\)
\(810\) −30.1531 1006.64i −0.0372260 1.24276i
\(811\) 1283.08i 1.58210i −0.611752 0.791049i \(-0.709535\pi\)
0.611752 0.791049i \(-0.290465\pi\)
\(812\) −27.2470 14.4570i −0.0335554 0.0178042i
\(813\) 754.377 754.377i 0.927893 0.927893i
\(814\) −134.402 + 20.1465i −0.165113 + 0.0247500i
\(815\) −933.677 111.487i −1.14562 0.136794i
\(816\) −994.511 1468.89i −1.21876 1.80011i
\(817\) 578.308 578.308i 0.707843 0.707843i
\(818\) 198.411 268.382i 0.242556 0.328095i
\(819\) −260.991 −0.318671
\(820\) 501.046 722.006i 0.611032 0.880495i
\(821\) 1292.43i 1.57421i 0.616817 + 0.787106i \(0.288422\pi\)
−0.616817 + 0.787106i \(0.711578\pi\)
\(822\) 409.979 554.561i 0.498758 0.674648i
\(823\) 38.6290 + 38.6290i 0.0469368 + 0.0469368i 0.730186 0.683249i \(-0.239434\pi\)
−0.683249 + 0.730186i \(0.739434\pi\)
\(824\) −1231.33 + 589.292i −1.49433 + 0.715160i
\(825\) −190.049 + 115.922i −0.230363 + 0.140512i
\(826\) 445.478 66.7757i 0.539320 0.0808422i
\(827\) −432.150 432.150i −0.522552 0.522552i 0.395789 0.918341i \(-0.370471\pi\)
−0.918341 + 0.395789i \(0.870471\pi\)
\(828\) 379.582 + 201.403i 0.458433 + 0.243241i
\(829\) −684.217 −0.825353 −0.412676 0.910878i \(-0.635406\pi\)
−0.412676 + 0.910878i \(0.635406\pi\)
\(830\) 3.53939 + 3.33352i 0.00426432 + 0.00401629i
\(831\) −1393.49 −1.67689
\(832\) 599.315 64.5758i 0.720330 0.0776151i
\(833\) −113.845 113.845i −0.136669 0.136669i
\(834\) 492.708 73.8553i 0.590777 0.0885556i
\(835\) −360.967 43.1017i −0.432296 0.0516189i
\(836\) 167.338 51.3201i 0.200166 0.0613876i
\(837\) 32.7049 + 32.7049i 0.0390740 + 0.0390740i
\(838\) 858.304 + 634.533i 1.02423 + 0.757199i
\(839\) 579.065i 0.690184i 0.938569 + 0.345092i \(0.112152\pi\)
−0.938569 + 0.345092i \(0.887848\pi\)
\(840\) −338.424 996.070i −0.402886 1.18580i
\(841\) −839.903 −0.998695
\(842\) 255.056 345.003i 0.302917 0.409742i
\(843\) −33.5642 + 33.5642i −0.0398151 + 0.0398151i
\(844\) 1047.27 321.182i 1.24084 0.380547i
\(845\) −315.530 + 248.215i −0.373408 + 0.293746i
\(846\) 53.2029 + 354.931i 0.0628876 + 0.419540i
\(847\) −597.495 + 597.495i −0.705426 + 0.705426i
\(848\) 155.762 808.854i 0.183682 0.953837i
\(849\) 1279.26i 1.50679i
\(850\) 137.752 1545.47i 0.162062 1.81819i
\(851\) 778.051i 0.914279i
\(852\) 275.644 + 146.254i 0.323526 + 0.171660i
\(853\) 89.6610 89.6610i 0.105113 0.105113i −0.652595 0.757707i \(-0.726320\pi\)
0.757707 + 0.652595i \(0.226320\pi\)
\(854\) −52.0229 347.058i −0.0609167 0.406391i
\(855\) 259.720 204.311i 0.303766 0.238961i
\(856\) −768.237 + 367.664i −0.897473 + 0.429514i
\(857\) −409.705 + 409.705i −0.478069 + 0.478069i −0.904514 0.426445i \(-0.859766\pi\)
0.426445 + 0.904514i \(0.359766\pi\)
\(858\) 134.878 + 99.7135i 0.157201 + 0.116216i
\(859\) 799.305 0.930507 0.465253 0.885178i \(-0.345963\pi\)
0.465253 + 0.885178i \(0.345963\pi\)
\(860\) 165.635 + 916.824i 0.192599 + 1.06607i
\(861\) 1155.65i 1.34222i
\(862\) 844.918 + 624.637i 0.980184 + 0.724637i
\(863\) 1116.04 + 1116.04i 1.29321 + 1.29321i 0.932793 + 0.360414i \(0.117364\pi\)
0.360414 + 0.932793i \(0.382636\pi\)
\(864\) −405.352 440.433i −0.469158 0.509761i
\(865\) 1286.03 + 153.560i 1.48674 + 0.177526i
\(866\) 110.201 + 735.178i 0.127253 + 0.848935i
\(867\) 1702.66 + 1702.66i 1.96386 + 1.96386i
\(868\) 64.3144 + 34.1247i 0.0740949 + 0.0393142i
\(869\) 40.9058 0.0470723
\(870\) 27.2445 + 25.6598i 0.0313155 + 0.0294940i
\(871\) −266.305 −0.305746
\(872\) 31.5583 89.4897i 0.0361907 0.102626i
\(873\) 90.8383 + 90.8383i 0.104053 + 0.104053i
\(874\) −148.545 990.984i −0.169960 1.13385i
\(875\) 321.159 862.293i 0.367038 0.985477i
\(876\) −193.447 630.770i −0.220830 0.720058i
\(877\) −98.3606 98.3606i −0.112156 0.112156i 0.648802 0.760957i \(-0.275270\pi\)
−0.760957 + 0.648802i \(0.775270\pi\)
\(878\) 498.340 674.082i 0.567585 0.767747i
\(879\) 724.582i 0.824326i
\(880\) −60.6518 + 189.940i −0.0689225 + 0.215841i
\(881\) −654.962 −0.743430 −0.371715 0.928347i \(-0.621230\pi\)
−0.371715 + 0.928347i \(0.621230\pi\)
\(882\) 31.4097 + 23.2207i 0.0356119 + 0.0263274i
\(883\) −963.144 + 963.144i −1.09076 + 1.09076i −0.0953158 + 0.995447i \(0.530386\pi\)
−0.995447 + 0.0953158i \(0.969614\pi\)
\(884\) −1117.71 + 342.784i −1.26438 + 0.387765i
\(885\) −542.705 64.8024i −0.613227 0.0732231i
\(886\) 333.520 49.9935i 0.376433 0.0564260i
\(887\) −588.066 + 588.066i −0.662983 + 0.662983i −0.956082 0.293099i \(-0.905313\pi\)
0.293099 + 0.956082i \(0.405313\pi\)
\(888\) −259.160 + 734.899i −0.291847 + 0.827588i
\(889\) 581.514i 0.654121i
\(890\) −844.252 + 25.2890i −0.948598 + 0.0284146i
\(891\) 251.003i 0.281709i
\(892\) −341.684 + 643.968i −0.383054 + 0.721937i
\(893\) 591.801 591.801i 0.662711 0.662711i
\(894\) 557.556 83.5758i 0.623664 0.0934852i
\(895\) −96.9059 123.186i −0.108275 0.137638i
\(896\) −813.319 475.745i −0.907722 0.530965i
\(897\) 679.022 679.022i 0.756992 0.756992i
\(898\) 708.694 958.619i 0.789192 1.06750i
\(899\) −2.59018 −0.00288118
\(900\) 22.5316 + 375.762i 0.0250351 + 0.417513i
\(901\) 1597.59i 1.77313i
\(902\) 130.211 176.130i 0.144358 0.195267i
\(903\) −866.299 866.299i −0.959356 0.959356i
\(904\) −836.919 + 400.534i −0.925795 + 0.443069i
\(905\) 225.631 177.495i 0.249316 0.196127i
\(906\) 1396.07 209.266i 1.54092 0.230978i
\(907\) 692.104 + 692.104i 0.763069 + 0.763069i 0.976876 0.213807i \(-0.0685863\pi\)
−0.213807 + 0.976876i \(0.568586\pi\)
\(908\) −642.839 + 1211.55i −0.707973 + 1.33431i
\(909\) −572.540 −0.629857
\(910\) −693.010 + 20.7586i −0.761549 + 0.0228116i
\(911\) −45.1707 −0.0495836 −0.0247918 0.999693i \(-0.507892\pi\)
−0.0247918 + 0.999693i \(0.507892\pi\)
\(912\) 189.779 985.500i 0.208091 1.08059i
\(913\) 0.856873 + 0.856873i 0.000938525 + 0.000938525i
\(914\) −403.573 + 60.4943i −0.441546 + 0.0661863i
\(915\) −50.4856 + 422.805i −0.0551755 + 0.462082i
\(916\) −452.321 1474.87i −0.493800 1.61013i
\(917\) −789.209 789.209i −0.860643 0.860643i
\(918\) 933.523 + 690.141i 1.01691 + 0.751788i
\(919\) 1598.45i 1.73934i 0.493637 + 0.869668i \(0.335667\pi\)
−0.493637 + 0.869668i \(0.664333\pi\)
\(920\) 1023.92 + 504.594i 1.11296 + 0.548472i
\(921\) 1807.62 1.96268
\(922\) −884.568 + 1196.52i −0.959402 + 1.29774i
\(923\) 145.418 145.418i 0.157550 0.157550i
\(924\) −76.8769 250.671i −0.0832001 0.271289i
\(925\) −581.896 + 354.933i −0.629077 + 0.383712i
\(926\) −187.220 1248.99i −0.202181 1.34880i
\(927\) −454.197 + 454.197i −0.489965 + 0.489965i
\(928\) 33.4925 + 1.38918i 0.0360910 + 0.00149696i
\(929\) 887.585i 0.955420i 0.878518 + 0.477710i \(0.158533\pi\)
−0.878518 + 0.477710i \(0.841467\pi\)
\(930\) −64.3084 60.5678i −0.0691488 0.0651267i
\(931\) 91.0891i 0.0978400i
\(932\) −26.2705 + 49.5118i −0.0281873 + 0.0531242i
\(933\) 960.509 960.509i 1.02948 1.02948i
\(934\) −2.35604 15.7178i −0.00252253 0.0168285i
\(935\) 45.8503 383.986i 0.0490377 0.410680i
\(936\) 255.847 122.444i 0.273341 0.130816i
\(937\) 1241.34 1241.34i 1.32480 1.32480i 0.414958 0.909841i \(-0.363796\pi\)
0.909841 0.414958i \(-0.136204\pi\)
\(938\) 334.734 + 247.464i 0.356859 + 0.263821i
\(939\) −1368.23 −1.45712
\(940\) 169.500 + 938.215i 0.180319 + 0.998101i
\(941\) 328.028i 0.348595i 0.984693 + 0.174298i \(0.0557654\pi\)
−0.984693 + 0.174298i \(0.944235\pi\)
\(942\) −764.719 565.347i −0.811804 0.600156i
\(943\) −886.700 886.700i −0.940297 0.940297i
\(944\) −405.370 + 274.455i −0.429417 + 0.290736i
\(945\) 425.675 + 541.115i 0.450449 + 0.572609i
\(946\) 34.4222 + 229.640i 0.0363871 + 0.242748i
\(947\) −228.351 228.351i −0.241131 0.241131i 0.576187 0.817318i \(-0.304540\pi\)
−0.817318 + 0.576187i \(0.804540\pi\)
\(948\) 109.933 207.190i 0.115963 0.218555i
\(949\) −434.823 −0.458191
\(950\) 673.382 563.165i 0.708823 0.592805i
\(951\) 1207.26 1.26947
\(952\) 1723.45 + 607.769i 1.81034 + 0.638412i
\(953\) −1291.50 1291.50i −1.35519 1.35519i −0.879742 0.475451i \(-0.842285\pi\)
−0.475451 0.879742i \(-0.657715\pi\)
\(954\) −57.4574 383.313i −0.0602279 0.401796i
\(955\) 500.572 + 636.324i 0.524159 + 0.666308i
\(956\) 171.091 52.4710i 0.178966 0.0548860i
\(957\) 6.59578 + 6.59578i 0.00689215 + 0.00689215i
\(958\) −909.947 + 1230.84i −0.949840 + 1.28481i
\(959\) 710.482i 0.740857i
\(960\) 799.059 + 817.665i 0.832353 + 0.851735i
\(961\) −954.886 −0.993638
\(962\) 412.972 + 305.305i 0.429285 + 0.317365i
\(963\) −283.377 + 283.377i −0.294265 + 0.294265i
\(964\) −25.1904 82.1379i −0.0261311 0.0852053i
\(965\) −52.8207 + 442.361i −0.0547365 + 0.458405i
\(966\) −1484.48 + 222.519i −1.53673 + 0.230351i
\(967\) 486.969 486.969i 0.503588 0.503588i −0.408963 0.912551i \(-0.634110\pi\)
0.912551 + 0.408963i \(0.134110\pi\)
\(968\) 305.404 866.033i 0.315500 0.894662i
\(969\) 1946.49i 2.00876i
\(970\) 248.428 + 233.978i 0.256111 + 0.241214i
\(971\) 361.550i 0.372348i −0.982517 0.186174i \(-0.940391\pi\)
0.982517 0.186174i \(-0.0596088\pi\)
\(972\) −676.495 358.943i −0.695983 0.369282i
\(973\) −362.930 + 362.930i −0.373001 + 0.373001i
\(974\) 1709.98 256.320i 1.75562 0.263162i
\(975\) 817.591 + 198.075i 0.838555 + 0.203154i
\(976\) 213.819 + 315.811i 0.219077 + 0.323577i
\(977\) −1073.65 + 1073.65i −1.09892 + 1.09892i −0.104387 + 0.994537i \(0.533288\pi\)
−0.994537 + 0.104387i \(0.966712\pi\)
\(978\) −798.844 + 1080.56i −0.816814 + 1.10487i
\(979\) −210.513 −0.215028
\(980\) 85.2489 + 59.1597i 0.0869887 + 0.0603671i
\(981\) 44.6506i 0.0455154i
\(982\) 1069.11 1446.14i 1.08871 1.47265i
\(983\) 122.156 + 122.156i 0.124269 + 0.124269i 0.766506 0.642237i \(-0.221994\pi\)
−0.642237 + 0.766506i \(0.721994\pi\)
\(984\) −542.172 1132.87i −0.550988 1.15129i
\(985\) 3.32146 27.8164i 0.00337204 0.0282400i
\(986\) −64.2958 + 9.63773i −0.0652088 + 0.00977458i
\(987\) −886.510 886.510i −0.898187 0.898187i
\(988\) −584.280 310.014i −0.591377 0.313780i
\(989\) 1329.38 1.34416
\(990\) 2.80910 + 93.7797i 0.00283748 + 0.0947270i
\(991\) 324.300 0.327245 0.163623 0.986523i \(-0.447682\pi\)
0.163623 + 0.986523i \(0.447682\pi\)
\(992\) −79.0563 3.27905i −0.0796938 0.00330549i
\(993\) −184.603 184.603i −0.185904 0.185904i
\(994\) −317.914 + 47.6543i −0.319833 + 0.0479420i
\(995\) 483.465 380.323i 0.485895 0.382235i
\(996\) 6.64294 2.03728i 0.00666962 0.00204547i
\(997\) 743.909 + 743.909i 0.746148 + 0.746148i 0.973753 0.227606i \(-0.0730897\pi\)
−0.227606 + 0.973753i \(0.573090\pi\)
\(998\) −1214.78 898.070i −1.21721 0.899869i
\(999\) 509.987i 0.510498i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 40.3.i.a.13.2 20
3.2 odd 2 360.3.u.b.253.9 20
4.3 odd 2 160.3.m.a.113.8 20
5.2 odd 4 inner 40.3.i.a.37.8 yes 20
5.3 odd 4 200.3.i.b.157.3 20
5.4 even 2 200.3.i.b.93.9 20
8.3 odd 2 160.3.m.a.113.3 20
8.5 even 2 inner 40.3.i.a.13.8 yes 20
15.2 even 4 360.3.u.b.37.3 20
20.3 even 4 800.3.m.b.657.8 20
20.7 even 4 160.3.m.a.17.3 20
20.19 odd 2 800.3.m.b.593.3 20
24.5 odd 2 360.3.u.b.253.3 20
40.3 even 4 800.3.m.b.657.3 20
40.13 odd 4 200.3.i.b.157.9 20
40.19 odd 2 800.3.m.b.593.8 20
40.27 even 4 160.3.m.a.17.8 20
40.29 even 2 200.3.i.b.93.3 20
40.37 odd 4 inner 40.3.i.a.37.2 yes 20
120.77 even 4 360.3.u.b.37.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.i.a.13.2 20 1.1 even 1 trivial
40.3.i.a.13.8 yes 20 8.5 even 2 inner
40.3.i.a.37.2 yes 20 40.37 odd 4 inner
40.3.i.a.37.8 yes 20 5.2 odd 4 inner
160.3.m.a.17.3 20 20.7 even 4
160.3.m.a.17.8 20 40.27 even 4
160.3.m.a.113.3 20 8.3 odd 2
160.3.m.a.113.8 20 4.3 odd 2
200.3.i.b.93.3 20 40.29 even 2
200.3.i.b.93.9 20 5.4 even 2
200.3.i.b.157.3 20 5.3 odd 4
200.3.i.b.157.9 20 40.13 odd 4
360.3.u.b.37.3 20 15.2 even 4
360.3.u.b.37.9 20 120.77 even 4
360.3.u.b.253.3 20 24.5 odd 2
360.3.u.b.253.9 20 3.2 odd 2
800.3.m.b.593.3 20 20.19 odd 2
800.3.m.b.593.8 20 40.19 odd 2
800.3.m.b.657.3 20 40.3 even 4
800.3.m.b.657.8 20 20.3 even 4