Properties

Label 200.6.c.d
Level 200200
Weight 66
Character orbit 200.c
Analytic conductor 32.07732.077
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(49,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 200.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.076763962632.0767639626
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq331βq7+239q9144q11+327βq13595βq17556q19+124q211091βq23+482βq27+1578q29+9660q31144βq33+34416q99+O(q100) q + \beta q^{3} - 31 \beta q^{7} + 239 q^{9} - 144 q^{11} + 327 \beta q^{13} - 595 \beta q^{17} - 556 q^{19} + 124 q^{21} - 1091 \beta q^{23} + 482 \beta q^{27} + 1578 q^{29} + 9660 q^{31} - 144 \beta q^{33} + \cdots - 34416 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+478q9288q111112q19+248q21+3156q29+19320q312616q39+14924q41+25926q49+4760q51+74184q59+79140q61+8728q69+91176q71+68832q99+O(q100) 2 q + 478 q^{9} - 288 q^{11} - 1112 q^{19} + 248 q^{21} + 3156 q^{29} + 19320 q^{31} - 2616 q^{39} + 14924 q^{41} + 25926 q^{49} + 4760 q^{51} + 74184 q^{59} + 79140 q^{61} + 8728 q^{69} + 91176 q^{71}+ \cdots - 68832 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/200Z)×\left(\mathbb{Z}/200\mathbb{Z}\right)^\times.

nn 101101 151151 177177
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
0 2.00000i 0 0 0 62.0000i 0 239.000 0
49.2 0 2.00000i 0 0 0 62.0000i 0 239.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.6.c.d 2
4.b odd 2 1 400.6.c.k 2
5.b even 2 1 inner 200.6.c.d 2
5.c odd 4 1 40.6.a.c 1
5.c odd 4 1 200.6.a.b 1
15.e even 4 1 360.6.a.f 1
20.d odd 2 1 400.6.c.k 2
20.e even 4 1 80.6.a.d 1
20.e even 4 1 400.6.a.h 1
40.i odd 4 1 320.6.a.i 1
40.k even 4 1 320.6.a.h 1
60.l odd 4 1 720.6.a.t 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.6.a.c 1 5.c odd 4 1
80.6.a.d 1 20.e even 4 1
200.6.a.b 1 5.c odd 4 1
200.6.c.d 2 1.a even 1 1 trivial
200.6.c.d 2 5.b even 2 1 inner
320.6.a.h 1 40.k even 4 1
320.6.a.i 1 40.i odd 4 1
360.6.a.f 1 15.e even 4 1
400.6.a.h 1 20.e even 4 1
400.6.c.k 2 4.b odd 2 1
400.6.c.k 2 20.d odd 2 1
720.6.a.t 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+4 T_{3}^{2} + 4 acting on S6new(200,[χ])S_{6}^{\mathrm{new}}(200, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+4 T^{2} + 4 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+3844 T^{2} + 3844 Copy content Toggle raw display
1111 (T+144)2 (T + 144)^{2} Copy content Toggle raw display
1313 T2+427716 T^{2} + 427716 Copy content Toggle raw display
1717 T2+1416100 T^{2} + 1416100 Copy content Toggle raw display
1919 (T+556)2 (T + 556)^{2} Copy content Toggle raw display
2323 T2+4761124 T^{2} + 4761124 Copy content Toggle raw display
2929 (T1578)2 (T - 1578)^{2} Copy content Toggle raw display
3131 (T9660)2 (T - 9660)^{2} Copy content Toggle raw display
3737 T2+12489156 T^{2} + 12489156 Copy content Toggle raw display
4141 (T7462)2 (T - 7462)^{2} Copy content Toggle raw display
4343 T2+50608996 T^{2} + 50608996 Copy content Toggle raw display
4747 T2+800550436 T^{2} + 800550436 Copy content Toggle raw display
5353 T2+170198116 T^{2} + 170198116 Copy content Toggle raw display
5959 (T37092)2 (T - 37092)^{2} Copy content Toggle raw display
6161 (T39570)2 (T - 39570)^{2} Copy content Toggle raw display
6767 T2+3218746756 T^{2} + 3218746756 Copy content Toggle raw display
7171 (T45588)2 (T - 45588)^{2} Copy content Toggle raw display
7373 T2+140232964 T^{2} + 140232964 Copy content Toggle raw display
7979 (T+94216)2 (T + 94216)^{2} Copy content Toggle raw display
8383 T2+991116324 T^{2} + 991116324 Copy content Toggle raw display
8989 (T94054)2 (T - 94054)^{2} Copy content Toggle raw display
9797 T2+562353796 T^{2} + 562353796 Copy content Toggle raw display
show more
show less