Properties

Label 200.6.c.d
Level $200$
Weight $6$
Character orbit 200.c
Analytic conductor $32.077$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(49,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.0767639626\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - 31 \beta q^{7} + 239 q^{9} - 144 q^{11} + 327 \beta q^{13} - 595 \beta q^{17} - 556 q^{19} + 124 q^{21} - 1091 \beta q^{23} + 482 \beta q^{27} + 1578 q^{29} + 9660 q^{31} - 144 \beta q^{33} + \cdots - 34416 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 478 q^{9} - 288 q^{11} - 1112 q^{19} + 248 q^{21} + 3156 q^{29} + 19320 q^{31} - 2616 q^{39} + 14924 q^{41} + 25926 q^{49} + 4760 q^{51} + 74184 q^{59} + 79140 q^{61} + 8728 q^{69} + 91176 q^{71}+ \cdots - 68832 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 2.00000i 0 0 0 62.0000i 0 239.000 0
49.2 0 2.00000i 0 0 0 62.0000i 0 239.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.6.c.d 2
4.b odd 2 1 400.6.c.k 2
5.b even 2 1 inner 200.6.c.d 2
5.c odd 4 1 40.6.a.c 1
5.c odd 4 1 200.6.a.b 1
15.e even 4 1 360.6.a.f 1
20.d odd 2 1 400.6.c.k 2
20.e even 4 1 80.6.a.d 1
20.e even 4 1 400.6.a.h 1
40.i odd 4 1 320.6.a.i 1
40.k even 4 1 320.6.a.h 1
60.l odd 4 1 720.6.a.t 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.6.a.c 1 5.c odd 4 1
80.6.a.d 1 20.e even 4 1
200.6.a.b 1 5.c odd 4 1
200.6.c.d 2 1.a even 1 1 trivial
200.6.c.d 2 5.b even 2 1 inner
320.6.a.h 1 40.k even 4 1
320.6.a.i 1 40.i odd 4 1
360.6.a.f 1 15.e even 4 1
400.6.a.h 1 20.e even 4 1
400.6.c.k 2 4.b odd 2 1
400.6.c.k 2 20.d odd 2 1
720.6.a.t 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 4 \) acting on \(S_{6}^{\mathrm{new}}(200, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 3844 \) Copy content Toggle raw display
$11$ \( (T + 144)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 427716 \) Copy content Toggle raw display
$17$ \( T^{2} + 1416100 \) Copy content Toggle raw display
$19$ \( (T + 556)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 4761124 \) Copy content Toggle raw display
$29$ \( (T - 1578)^{2} \) Copy content Toggle raw display
$31$ \( (T - 9660)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 12489156 \) Copy content Toggle raw display
$41$ \( (T - 7462)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 50608996 \) Copy content Toggle raw display
$47$ \( T^{2} + 800550436 \) Copy content Toggle raw display
$53$ \( T^{2} + 170198116 \) Copy content Toggle raw display
$59$ \( (T - 37092)^{2} \) Copy content Toggle raw display
$61$ \( (T - 39570)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3218746756 \) Copy content Toggle raw display
$71$ \( (T - 45588)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 140232964 \) Copy content Toggle raw display
$79$ \( (T + 94216)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 991116324 \) Copy content Toggle raw display
$89$ \( (T - 94054)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 562353796 \) Copy content Toggle raw display
show more
show less