Properties

Label 200.6.f.a
Level 200200
Weight 66
Character orbit 200.f
Analytic conductor 32.07732.077
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(149,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.149");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 200.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.076763962632.0767639626
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.12220785438976.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+5x6+116x4+320x2+4096 x^{8} + 5x^{6} + 116x^{4} + 320x^{2} + 4096 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 215 2^{15}
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(β5β2)q3+(β6β45)q4+(2β6+6β4+29)q6+(2β7+2β5+6β1)q7++(3456β6+3456β3)q99+O(q100) q + \beta_{2} q^{2} + ( - \beta_{5} - \beta_{2}) q^{3} + ( - \beta_{6} - \beta_{4} - 5) q^{4} + ( - 2 \beta_{6} + 6 \beta_{4} + \cdots - 29) q^{6} + ( - 2 \beta_{7} + 2 \beta_{5} + \cdots - 6 \beta_1) q^{7}+ \cdots + ( - 3456 \beta_{6} + \cdots - 3456 \beta_{3}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q40q4232q6+328q9+4768q146624q16+15584q24+11216q2625856q31+9544q3420328q3670208q399136q41+58224q44+58400q4619656q49+231296q96+O(q100) 8 q - 40 q^{4} - 232 q^{6} + 328 q^{9} + 4768 q^{14} - 6624 q^{16} + 15584 q^{24} + 11216 q^{26} - 25856 q^{31} + 9544 q^{34} - 20328 q^{36} - 70208 q^{39} - 9136 q^{41} + 58224 q^{44} + 58400 q^{46} - 19656 q^{49}+ \cdots - 231296 q^{96}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+5x6+116x4+320x2+4096 x^{8} + 5x^{6} + 116x^{4} + 320x^{2} + 4096 : Copy content Toggle raw display

β1\beta_{1}== (5ν77ν5+164ν3832ν)/2304 ( 5\nu^{7} - 7\nu^{5} + 164\nu^{3} - 832\nu ) / 2304 Copy content Toggle raw display
β2\beta_{2}== (ν7+5ν5+116ν3+320ν)/256 ( \nu^{7} + 5\nu^{5} + 116\nu^{3} + 320\nu ) / 256 Copy content Toggle raw display
β3\beta_{3}== (5ν6+7ν4164ν2+976)/144 ( -5\nu^{6} + 7\nu^{4} - 164\nu^{2} + 976 ) / 144 Copy content Toggle raw display
β4\beta_{4}== (ν611ν4+100ν2608)/48 ( \nu^{6} - 11\nu^{4} + 100\nu^{2} - 608 ) / 48 Copy content Toggle raw display
β5\beta_{5}== (ν721ν568ν31280ν)/128 ( -\nu^{7} - 21\nu^{5} - 68\nu^{3} - 1280\nu ) / 128 Copy content Toggle raw display
β6\beta_{6}== (ν6+13ν4+124ν2+664)/24 ( \nu^{6} + 13\nu^{4} + 124\nu^{2} + 664 ) / 24 Copy content Toggle raw display
β7\beta_{7}== (ν713ν576ν3+368ν)/72 ( -\nu^{7} - 13\nu^{5} - 76\nu^{3} + 368\nu ) / 72 Copy content Toggle raw display
ν\nu== (β7β5+β2+β1)/16 ( \beta_{7} - \beta_{5} + \beta_{2} + \beta_1 ) / 16 Copy content Toggle raw display
ν2\nu^{2}== (β6+3β4+3β310)/8 ( \beta_{6} + 3\beta_{4} + 3\beta_{3} - 10 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (β7+9β5+55β273β1)/16 ( -\beta_{7} + 9\beta_{5} + 55\beta_{2} - 73\beta_1 ) / 16 Copy content Toggle raw display
ν4\nu^{4}== (7β619β43β3414)/8 ( 7\beta_{6} - 19\beta_{4} - 3\beta_{3} - 414 ) / 8 Copy content Toggle raw display
ν5\nu^{5}== (63β741β5151β2279β1)/16 ( -63\beta_{7} - 41\beta_{5} - 151\beta_{2} - 279\beta_1 ) / 16 Copy content Toggle raw display
ν6\nu^{6}== (23β6125β4333β3+1310)/8 ( -23\beta_{6} - 125\beta_{4} - 333\beta_{3} + 1310 ) / 8 Copy content Toggle raw display
ν7\nu^{7}== (111β7519β51849β2+9543β1)/16 ( 111\beta_{7} - 519\beta_{5} - 1849\beta_{2} + 9543\beta_1 ) / 16 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/200Z)×\left(\mathbb{Z}/200\mathbb{Z}\right)^\times.

nn 101101 151151 177177
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
149.1
2.10784 1.88600i
2.10784 + 1.88600i
1.51888 2.38600i
1.51888 + 2.38600i
−1.51888 2.38600i
−1.51888 + 2.38600i
−2.10784 1.88600i
−2.10784 + 1.88600i
−4.21569 3.77200i −3.25452 3.54400 + 31.8031i 0 13.7200 + 12.2760i 112.704i 105.021 147.440i −232.408 0
149.2 −4.21569 + 3.77200i −3.25452 3.54400 31.8031i 0 13.7200 12.2760i 112.704i 105.021 + 147.440i −232.408 0
149.3 −3.03776 4.77200i 23.6095 −13.5440 + 28.9924i 0 −71.7200 112.665i 160.704i 179.495 23.4400i 314.408 0
149.4 −3.03776 + 4.77200i 23.6095 −13.5440 28.9924i 0 −71.7200 + 112.665i 160.704i 179.495 + 23.4400i 314.408 0
149.5 3.03776 4.77200i −23.6095 −13.5440 28.9924i 0 −71.7200 + 112.665i 160.704i −179.495 23.4400i 314.408 0
149.6 3.03776 + 4.77200i −23.6095 −13.5440 + 28.9924i 0 −71.7200 112.665i 160.704i −179.495 + 23.4400i 314.408 0
149.7 4.21569 3.77200i 3.25452 3.54400 31.8031i 0 13.7200 12.2760i 112.704i −105.021 147.440i −232.408 0
149.8 4.21569 + 3.77200i 3.25452 3.54400 + 31.8031i 0 13.7200 + 12.2760i 112.704i −105.021 + 147.440i −232.408 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 149.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.6.f.a 8
4.b odd 2 1 800.6.f.a 8
5.b even 2 1 inner 200.6.f.a 8
5.c odd 4 1 8.6.b.a 4
5.c odd 4 1 200.6.d.a 4
8.b even 2 1 inner 200.6.f.a 8
8.d odd 2 1 800.6.f.a 8
15.e even 4 1 72.6.d.b 4
20.d odd 2 1 800.6.f.a 8
20.e even 4 1 32.6.b.a 4
20.e even 4 1 800.6.d.a 4
40.e odd 2 1 800.6.f.a 8
40.f even 2 1 inner 200.6.f.a 8
40.i odd 4 1 8.6.b.a 4
40.i odd 4 1 200.6.d.a 4
40.k even 4 1 32.6.b.a 4
40.k even 4 1 800.6.d.a 4
60.l odd 4 1 288.6.d.b 4
80.i odd 4 1 256.6.a.k 4
80.j even 4 1 256.6.a.n 4
80.s even 4 1 256.6.a.n 4
80.t odd 4 1 256.6.a.k 4
120.q odd 4 1 288.6.d.b 4
120.w even 4 1 72.6.d.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.6.b.a 4 5.c odd 4 1
8.6.b.a 4 40.i odd 4 1
32.6.b.a 4 20.e even 4 1
32.6.b.a 4 40.k even 4 1
72.6.d.b 4 15.e even 4 1
72.6.d.b 4 120.w even 4 1
200.6.d.a 4 5.c odd 4 1
200.6.d.a 4 40.i odd 4 1
200.6.f.a 8 1.a even 1 1 trivial
200.6.f.a 8 5.b even 2 1 inner
200.6.f.a 8 8.b even 2 1 inner
200.6.f.a 8 40.f even 2 1 inner
256.6.a.k 4 80.i odd 4 1
256.6.a.k 4 80.t odd 4 1
256.6.a.n 4 80.j even 4 1
256.6.a.n 4 80.s even 4 1
288.6.d.b 4 60.l odd 4 1
288.6.d.b 4 120.q odd 4 1
800.6.d.a 4 20.e even 4 1
800.6.d.a 4 40.k even 4 1
800.6.f.a 8 4.b odd 2 1
800.6.f.a 8 8.d odd 2 1
800.6.f.a 8 20.d odd 2 1
800.6.f.a 8 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34568T32+5904 T_{3}^{4} - 568T_{3}^{2} + 5904 acting on S6new(200,[χ])S_{6}^{\mathrm{new}}(200, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+20T6++1048576 T^{8} + 20 T^{6} + \cdots + 1048576 Copy content Toggle raw display
33 (T4568T2+5904)2 (T^{4} - 568 T^{2} + 5904)^{2} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 (T4+38528T2+328044544)2 (T^{4} + 38528 T^{2} + 328044544)^{2} Copy content Toggle raw display
1111 (T4+347768T2+5520765456)2 (T^{4} + 347768 T^{2} + 5520765456)^{2} Copy content Toggle raw display
1313 (T4590944T2+7999305984)2 (T^{4} - 590944 T^{2} + 7999305984)^{2} Copy content Toggle raw display
1717 (T4+154504T2+5220351504)2 (T^{4} + 154504 T^{2} + 5220351504)^{2} Copy content Toggle raw display
1919 (T4+3109816T2+120994976016)2 (T^{4} + 3109816 T^{2} + 120994976016)^{2} Copy content Toggle raw display
2323 (T4++7936705990656)2 (T^{4} + \cdots + 7936705990656)^{2} Copy content Toggle raw display
2929 (T4++535633608132864)2 (T^{4} + \cdots + 535633608132864)^{2} Copy content Toggle raw display
3131 (T2+6464T+7754752)4 (T^{2} + 6464 T + 7754752)^{4} Copy content Toggle raw display
3737 (T4++306881230162176)2 (T^{4} + \cdots + 306881230162176)^{2} Copy content Toggle raw display
4141 (T2+2284T85109148)4 (T^{2} + 2284 T - 85109148)^{4} Copy content Toggle raw display
4343 (T4++23 ⁣ ⁣56)2 (T^{4} + \cdots + 23\!\cdots\!56)^{2} Copy content Toggle raw display
4747 (T4++17 ⁣ ⁣64)2 (T^{4} + \cdots + 17\!\cdots\!64)^{2} Copy content Toggle raw display
5353 (T4++76 ⁣ ⁣44)2 (T^{4} + \cdots + 76\!\cdots\!44)^{2} Copy content Toggle raw display
5959 (T4++22 ⁣ ⁣36)2 (T^{4} + \cdots + 22\!\cdots\!36)^{2} Copy content Toggle raw display
6161 (T4++41 ⁣ ⁣16)2 (T^{4} + \cdots + 41\!\cdots\!16)^{2} Copy content Toggle raw display
6767 (T4++32 ⁣ ⁣84)2 (T^{4} + \cdots + 32\!\cdots\!84)^{2} Copy content Toggle raw display
7171 (T2103344T+2609278272)4 (T^{2} - 103344 T + 2609278272)^{4} Copy content Toggle raw display
7373 (T4++25 ⁣ ⁣56)2 (T^{4} + \cdots + 25\!\cdots\!56)^{2} Copy content Toggle raw display
7979 (T2123936T+3701816576)4 (T^{2} - 123936 T + 3701816576)^{4} Copy content Toggle raw display
8383 (T4++72 ⁣ ⁣56)2 (T^{4} + \cdots + 72\!\cdots\!56)^{2} Copy content Toggle raw display
8989 (T242316T6875717724)4 (T^{2} - 42316 T - 6875717724)^{4} Copy content Toggle raw display
9797 (T4++61 ⁣ ⁣04)2 (T^{4} + \cdots + 61\!\cdots\!04)^{2} Copy content Toggle raw display
show more
show less