Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [200,6,Mod(149,200)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(200, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("200.149");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 200.f (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.0.12220785438976.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 8) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
149.1 |
|
−4.21569 | − | 3.77200i | −3.25452 | 3.54400 | + | 31.8031i | 0 | 13.7200 | + | 12.2760i | 112.704i | 105.021 | − | 147.440i | −232.408 | 0 | ||||||||||||||||||||||||||||||||||
149.2 | −4.21569 | + | 3.77200i | −3.25452 | 3.54400 | − | 31.8031i | 0 | 13.7200 | − | 12.2760i | − | 112.704i | 105.021 | + | 147.440i | −232.408 | 0 | ||||||||||||||||||||||||||||||||||
149.3 | −3.03776 | − | 4.77200i | 23.6095 | −13.5440 | + | 28.9924i | 0 | −71.7200 | − | 112.665i | 160.704i | 179.495 | − | 23.4400i | 314.408 | 0 | |||||||||||||||||||||||||||||||||||
149.4 | −3.03776 | + | 4.77200i | 23.6095 | −13.5440 | − | 28.9924i | 0 | −71.7200 | + | 112.665i | − | 160.704i | 179.495 | + | 23.4400i | 314.408 | 0 | ||||||||||||||||||||||||||||||||||
149.5 | 3.03776 | − | 4.77200i | −23.6095 | −13.5440 | − | 28.9924i | 0 | −71.7200 | + | 112.665i | 160.704i | −179.495 | − | 23.4400i | 314.408 | 0 | |||||||||||||||||||||||||||||||||||
149.6 | 3.03776 | + | 4.77200i | −23.6095 | −13.5440 | + | 28.9924i | 0 | −71.7200 | − | 112.665i | − | 160.704i | −179.495 | + | 23.4400i | 314.408 | 0 | ||||||||||||||||||||||||||||||||||
149.7 | 4.21569 | − | 3.77200i | 3.25452 | 3.54400 | − | 31.8031i | 0 | 13.7200 | − | 12.2760i | 112.704i | −105.021 | − | 147.440i | −232.408 | 0 | |||||||||||||||||||||||||||||||||||
149.8 | 4.21569 | + | 3.77200i | 3.25452 | 3.54400 | + | 31.8031i | 0 | 13.7200 | + | 12.2760i | − | 112.704i | −105.021 | + | 147.440i | −232.408 | 0 | ||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
40.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 200.6.f.a | 8 | |
4.b | odd | 2 | 1 | 800.6.f.a | 8 | ||
5.b | even | 2 | 1 | inner | 200.6.f.a | 8 | |
5.c | odd | 4 | 1 | 8.6.b.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 200.6.d.a | 4 | ||
8.b | even | 2 | 1 | inner | 200.6.f.a | 8 | |
8.d | odd | 2 | 1 | 800.6.f.a | 8 | ||
15.e | even | 4 | 1 | 72.6.d.b | 4 | ||
20.d | odd | 2 | 1 | 800.6.f.a | 8 | ||
20.e | even | 4 | 1 | 32.6.b.a | 4 | ||
20.e | even | 4 | 1 | 800.6.d.a | 4 | ||
40.e | odd | 2 | 1 | 800.6.f.a | 8 | ||
40.f | even | 2 | 1 | inner | 200.6.f.a | 8 | |
40.i | odd | 4 | 1 | 8.6.b.a | ✓ | 4 | |
40.i | odd | 4 | 1 | 200.6.d.a | 4 | ||
40.k | even | 4 | 1 | 32.6.b.a | 4 | ||
40.k | even | 4 | 1 | 800.6.d.a | 4 | ||
60.l | odd | 4 | 1 | 288.6.d.b | 4 | ||
80.i | odd | 4 | 1 | 256.6.a.k | 4 | ||
80.j | even | 4 | 1 | 256.6.a.n | 4 | ||
80.s | even | 4 | 1 | 256.6.a.n | 4 | ||
80.t | odd | 4 | 1 | 256.6.a.k | 4 | ||
120.q | odd | 4 | 1 | 288.6.d.b | 4 | ||
120.w | even | 4 | 1 | 72.6.d.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
8.6.b.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
8.6.b.a | ✓ | 4 | 40.i | odd | 4 | 1 | |
32.6.b.a | 4 | 20.e | even | 4 | 1 | ||
32.6.b.a | 4 | 40.k | even | 4 | 1 | ||
72.6.d.b | 4 | 15.e | even | 4 | 1 | ||
72.6.d.b | 4 | 120.w | even | 4 | 1 | ||
200.6.d.a | 4 | 5.c | odd | 4 | 1 | ||
200.6.d.a | 4 | 40.i | odd | 4 | 1 | ||
200.6.f.a | 8 | 1.a | even | 1 | 1 | trivial | |
200.6.f.a | 8 | 5.b | even | 2 | 1 | inner | |
200.6.f.a | 8 | 8.b | even | 2 | 1 | inner | |
200.6.f.a | 8 | 40.f | even | 2 | 1 | inner | |
256.6.a.k | 4 | 80.i | odd | 4 | 1 | ||
256.6.a.k | 4 | 80.t | odd | 4 | 1 | ||
256.6.a.n | 4 | 80.j | even | 4 | 1 | ||
256.6.a.n | 4 | 80.s | even | 4 | 1 | ||
288.6.d.b | 4 | 60.l | odd | 4 | 1 | ||
288.6.d.b | 4 | 120.q | odd | 4 | 1 | ||
800.6.d.a | 4 | 20.e | even | 4 | 1 | ||
800.6.d.a | 4 | 40.k | even | 4 | 1 | ||
800.6.f.a | 8 | 4.b | odd | 2 | 1 | ||
800.6.f.a | 8 | 8.d | odd | 2 | 1 | ||
800.6.f.a | 8 | 20.d | odd | 2 | 1 | ||
800.6.f.a | 8 | 40.e | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .