Properties

Label 2016.1.bv.c.1777.1
Level 20162016
Weight 11
Character 2016.1777
Analytic conductor 1.0061.006
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -56
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,1,Mod(1105,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.1105");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2016=25327 2016 = 2^{5} \cdot 3^{2} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2016.bv (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.006115065471.00611506547
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 504)
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.144027072.1

Embedding invariants

Embedding label 1777.1
Root 0.866025+0.500000i-0.866025 + 0.500000i of defining polynomial
Character χ\chi == 2016.1777
Dual form 2016.1.bv.c.1105.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq3+(0.8660251.50000i)q5+(0.5000000.866025i)q71.00000q9+(1.500000.866025i)q15+1.73205q19+(0.866025+0.500000i)q21+(0.500000+0.866025i)q23+(1.000001.73205i)q25+1.00000iq271.73205q35+(0.866025+1.50000i)q45+(0.500000+0.866025i)q491.73205iq57+(0.866025+1.50000i)q61+(0.500000+0.866025i)q63+(0.866025+0.500000i)q691.00000q71+(1.73205+1.00000i)q75+(0.500000+0.866025i)q79+1.00000q81+(1.500002.59808i)q95+O(q100)q-1.00000i q^{3} +(0.866025 - 1.50000i) q^{5} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{9} +(-1.50000 - 0.866025i) q^{15} +1.73205 q^{19} +(-0.866025 + 0.500000i) q^{21} +(-0.500000 + 0.866025i) q^{23} +(-1.00000 - 1.73205i) q^{25} +1.00000i q^{27} -1.73205 q^{35} +(-0.866025 + 1.50000i) q^{45} +(-0.500000 + 0.866025i) q^{49} -1.73205i q^{57} +(0.866025 + 1.50000i) q^{61} +(0.500000 + 0.866025i) q^{63} +(0.866025 + 0.500000i) q^{69} -1.00000 q^{71} +(-1.73205 + 1.00000i) q^{75} +(0.500000 + 0.866025i) q^{79} +1.00000 q^{81} +(1.50000 - 2.59808i) q^{95} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q74q96q152q234q252q49+2q634q71+2q79+4q81+6q95+O(q100) 4 q - 2 q^{7} - 4 q^{9} - 6 q^{15} - 2 q^{23} - 4 q^{25} - 2 q^{49} + 2 q^{63} - 4 q^{71} + 2 q^{79} + 4 q^{81} + 6 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2016Z)×\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times.

nn 127127 577577 17651765 17931793
χ(n)\chi(n) 11 1-1 1-1 e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.00000i 1.00000i
44 0 0
55 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
66 0 0
77 −0.500000 0.866025i −0.500000 0.866025i
88 0 0
99 −1.00000 −1.00000
1010 0 0
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 0 0
1313 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
1414 0 0
1515 −1.50000 0.866025i −1.50000 0.866025i
1616 0 0
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0 0
1919 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
2020 0 0
2121 −0.866025 + 0.500000i −0.866025 + 0.500000i
2222 0 0
2323 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
2424 0 0
2525 −1.00000 1.73205i −1.00000 1.73205i
2626 0 0
2727 1.00000i 1.00000i
2828 0 0
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 0 0
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0 0
3333 0 0
3434 0 0
3535 −1.73205 −1.73205
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 0 0
4343 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 0 0
4545 −0.866025 + 1.50000i −0.866025 + 1.50000i
4646 0 0
4747 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4848 0 0
4949 −0.500000 + 0.866025i −0.500000 + 0.866025i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 1.73205i 1.73205i
5858 0 0
5959 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6060 0 0
6161 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
6262 0 0
6363 0.500000 + 0.866025i 0.500000 + 0.866025i
6464 0 0
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 0 0
6969 0.866025 + 0.500000i 0.866025 + 0.500000i
7070 0 0
7171 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 −1.73205 + 1.00000i −1.73205 + 1.00000i
7676 0 0
7777 0 0
7878 0 0
7979 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 0 0
8181 1.00000 1.00000
8282 0 0
8383 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 1.50000 2.59808i 1.50000 2.59808i
9696 0 0
9797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9898 0 0
9999 0 0
100100 0 0
101101 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
102102 0 0
103103 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
104104 0 0
105105 1.73205i 1.73205i
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
114114 0 0
115115 0.866025 + 1.50000i 0.866025 + 1.50000i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 0 0
123123 0 0
124124 0 0
125125 −1.73205 −1.73205
126126 0 0
127127 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
128128 0 0
129129 0 0
130130 0 0
131131 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
132132 0 0
133133 −0.866025 1.50000i −0.866025 1.50000i
134134 0 0
135135 1.50000 + 0.866025i 1.50000 + 0.866025i
136136 0 0
137137 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
138138 0 0
139139 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0.866025 + 0.500000i 0.866025 + 0.500000i
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
158158 0 0
159159 0 0
160160 0 0
161161 1.00000 1.00000
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
168168 0 0
169169 0.500000 + 0.866025i 0.500000 + 0.866025i
170170 0 0
171171 −1.73205 −1.73205
172172 0 0
173173 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
174174 0 0
175175 −1.00000 + 1.73205i −1.00000 + 1.73205i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
182182 0 0
183183 1.50000 0.866025i 1.50000 0.866025i
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0.866025 0.500000i 0.866025 0.500000i
190190 0 0
191191 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0 0
193193 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0.500000 0.866025i 0.500000 0.866025i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0 0
213213 1.00000i 1.00000i
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
224224 0 0
225225 1.00000 + 1.73205i 1.00000 + 1.73205i
226226 0 0
227227 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
228228 0 0
229229 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
230230 0 0
231231 0 0
232232 0 0
233233 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 0 0
236236 0 0
237237 0.866025 0.500000i 0.866025 0.500000i
238238 0 0
239239 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
240240 0 0
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 0 0
243243 1.00000i 1.00000i
244244 0 0
245245 0.866025 + 1.50000i 0.866025 + 1.50000i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 0 0
279279 0 0
280280 0 0
281281 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 0 0
283283 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
284284 0 0
285285 −2.59808 1.50000i −2.59808 1.50000i
286286 0 0
287287 0 0
288288 0 0
289289 1.00000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 −1.50000 + 0.866025i −1.50000 + 0.866025i
304304 0 0
305305 3.00000 3.00000
306306 0 0
307307 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 0 0
315315 1.73205 1.73205
316316 0 0
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
338338 0 0
339339 0.866025 + 0.500000i 0.866025 + 0.500000i
340340 0 0
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0 0
345345 1.50000 0.866025i 1.50000 0.866025i
346346 0 0
347347 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 −0.866025 + 1.50000i −0.866025 + 1.50000i
356356 0 0
357357 0 0
358358 0 0
359359 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 2.00000 2.00000
362362 0 0
363363 0.866025 + 0.500000i 0.866025 + 0.500000i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 1.73205i 1.73205i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 1.00000i 1.00000i
382382 0 0
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0 0
391391 0 0
392392 0 0
393393 −1.50000 0.866025i −1.50000 0.866025i
394394 0 0
395395 1.73205 1.73205
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 −1.50000 + 0.866025i −1.50000 + 0.866025i
400400 0 0
401401 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 0.866025 1.50000i 0.866025 1.50000i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 −1.73205 + 1.00000i −1.73205 + 1.00000i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −1.50000 0.866025i −1.50000 0.866025i
418418 0 0
419419 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
420420 0 0
421421 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0.866025 1.50000i 0.866025 1.50000i
428428 0 0
429429 0 0
430430 0 0
431431 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 −0.866025 + 1.50000i −0.866025 + 1.50000i
438438 0 0
439439 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
440440 0 0
441441 0.500000 0.866025i 0.500000 0.866025i
442442 0 0
443443 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
450450 0 0
451451 0 0
452452 0 0
453453 −0.866025 + 0.500000i −0.866025 + 0.500000i
454454 0 0
455455 0 0
456456 0 0
457457 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
462462 0 0
463463 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 −1.50000 0.866025i −1.50000 0.866025i
472472 0 0
473473 0 0
474474 0 0
475475 −1.73205 3.00000i −1.73205 3.00000i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0 0
481481 0 0
482482 0 0
483483 1.00000i 1.00000i
484484 0 0
485485 0 0
486486 0 0
487487 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0.500000 + 0.866025i 0.500000 + 0.866025i
498498 0 0
499499 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 −3.00000 −3.00000
506506 0 0
507507 0.866025 0.500000i 0.866025 0.500000i
508508 0 0
509509 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
510510 0 0
511511 0 0
512512 0 0
513513 1.73205i 1.73205i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
524524 0 0
525525 1.73205 + 1.00000i 1.73205 + 1.00000i
526526 0 0
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 1.73205i 1.73205i
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
548548 0 0
549549 −0.866025 1.50000i −0.866025 1.50000i
550550 0 0
551551 0 0
552552 0 0
553553 0.500000 0.866025i 0.500000 0.866025i
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
564564 0 0
565565 0.866025 + 1.50000i 0.866025 + 1.50000i
566566 0 0
567567 −0.500000 0.866025i −0.500000 0.866025i
568568 0 0
569569 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0.866025 0.500000i 0.866025 0.500000i
574574 0 0
575575 2.00000 2.00000
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0.866025 + 0.500000i 0.866025 + 0.500000i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 0 0
601601 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.866025 + 1.50000i 0.866025 + 1.50000i
606606 0 0
607607 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
618618 0 0
619619 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
620620 0 0
621621 −0.866025 0.500000i −0.866025 0.500000i
622622 0 0
623623 0 0
624624 0 0
625625 −0.500000 + 0.866025i −0.500000 + 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 0 0
633633 0 0
634634 0 0
635635 0.866025 1.50000i 0.866025 1.50000i
636636 0 0
637637 0 0
638638 0 0
639639 1.00000 1.00000
640640 0 0
641641 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
642642 0 0
643643 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 0 0
655655 −1.50000 2.59808i −1.50000 2.59808i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
660660 0 0
661661 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
662662 0 0
663663 0 0
664664 0 0
665665 −3.00000 −3.00000
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 0 0
675675 1.73205 1.00000i 1.73205 1.00000i
676676 0 0
677677 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
678678 0 0
679679 0 0
680680 0 0
681681 −1.50000 + 0.866025i −1.50000 + 0.866025i
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 −3.46410 −3.46410
686686 0 0
687687 1.50000 + 0.866025i 1.50000 + 0.866025i
688688 0 0
689689 0 0
690690 0 0
691691 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 −1.50000 2.59808i −1.50000 2.59808i
696696 0 0
697697 0 0
698698 0 0
699699 1.00000i 1.00000i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 −0.866025 + 1.50000i −0.866025 + 1.50000i
708708 0 0
709709 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
710710 0 0
711711 −0.500000 0.866025i −0.500000 0.866025i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0.866025 + 0.500000i 0.866025 + 0.500000i
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
734734 0 0
735735 1.50000 0.866025i 1.50000 0.866025i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
752752 0 0
753753 1.73205i 1.73205i
754754 0 0
755755 −1.73205 −1.73205
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0 0
772772 0 0
773773 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −1.50000 2.59808i −1.50000 2.59808i
786786 0 0
787787 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
788788 0 0
789789 0.866025 0.500000i 0.866025 0.500000i
790790 0 0
791791 1.00000 1.00000
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0.866025 1.50000i 0.866025 1.50000i
806806 0 0
807807 1.73205i 1.73205i
808808 0 0
809809 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 0 0
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 0 0
843843 0.866025 0.500000i 0.866025 0.500000i
844844 0 0
845845 1.73205 1.73205
846846 0 0
847847 1.00000 1.00000
848848 0 0
849849 1.50000 + 0.866025i 1.50000 + 0.866025i
850850 0 0
851851 0 0
852852 0 0
853853 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
854854 0 0
855855 −1.50000 + 2.59808i −1.50000 + 2.59808i
856856 0 0
857857 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 0 0
859859 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
860860 0 0
861861 0 0
862862 0 0
863863 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
864864 0 0
865865 0 0
866866 0 0
867867 1.00000i 1.00000i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0.866025 + 1.50000i 0.866025 + 1.50000i
876876 0 0
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 1.50000 + 0.866025i 1.50000 + 0.866025i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
888888 0 0
889889 −0.500000 0.866025i −0.500000 0.866025i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 1.50000 2.59808i 1.50000 2.59808i
906906 0 0
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0 0
909909 0.866025 + 1.50000i 0.866025 + 1.50000i
910910 0 0
911911 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 3.00000i 3.00000i
916916 0 0
917917 −1.73205 −1.73205
918918 0 0
919919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0 0
921921 1.73205i 1.73205i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
930930 0 0
931931 −0.866025 + 1.50000i −0.866025 + 1.50000i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
942942 0 0
943943 0 0
944944 0 0
945945 1.73205i 1.73205i
946946 0 0
947947 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 2.00000 2.00000 1.00000 00
1.00000 00
954954 0 0
955955 1.73205 1.73205
956956 0 0
957957 0 0
958958 0 0
959959 −1.00000 + 1.73205i −1.00000 + 1.73205i
960960 0 0
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 0.866025 + 1.50000i 0.866025 + 1.50000i
966966 0 0
967967 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
968968 0 0
969969 0 0
970970 0 0
971971 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
972972 0 0
973973 −1.73205 −1.73205
974974 0 0
975975 0 0
976976 0 0
977977 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 2.00000 2.00000 1.00000 00
1.00000 00
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.1.bv.c.1777.1 4
4.3 odd 2 504.1.bn.c.13.2 yes 4
7.6 odd 2 inner 2016.1.bv.c.1777.2 4
8.3 odd 2 504.1.bn.c.13.1 4
8.5 even 2 inner 2016.1.bv.c.1777.2 4
9.7 even 3 inner 2016.1.bv.c.1105.2 4
12.11 even 2 1512.1.bn.c.685.1 4
24.11 even 2 1512.1.bn.c.685.2 4
28.3 even 6 3528.1.bp.c.3253.1 4
28.11 odd 6 3528.1.bp.c.3253.2 4
28.19 even 6 3528.1.cw.c.2677.2 4
28.23 odd 6 3528.1.cw.c.2677.1 4
28.27 even 2 504.1.bn.c.13.1 4
36.7 odd 6 504.1.bn.c.349.1 yes 4
36.11 even 6 1512.1.bn.c.181.1 4
56.3 even 6 3528.1.bp.c.3253.2 4
56.11 odd 6 3528.1.bp.c.3253.1 4
56.13 odd 2 CM 2016.1.bv.c.1777.1 4
56.19 even 6 3528.1.cw.c.2677.1 4
56.27 even 2 504.1.bn.c.13.2 yes 4
56.51 odd 6 3528.1.cw.c.2677.2 4
63.34 odd 6 inner 2016.1.bv.c.1105.1 4
72.11 even 6 1512.1.bn.c.181.2 4
72.43 odd 6 504.1.bn.c.349.2 yes 4
72.61 even 6 inner 2016.1.bv.c.1105.1 4
84.83 odd 2 1512.1.bn.c.685.2 4
168.83 odd 2 1512.1.bn.c.685.1 4
252.79 odd 6 3528.1.bp.c.1501.2 4
252.83 odd 6 1512.1.bn.c.181.2 4
252.115 even 6 3528.1.cw.c.2077.2 4
252.151 odd 6 3528.1.cw.c.2077.1 4
252.187 even 6 3528.1.bp.c.1501.1 4
252.223 even 6 504.1.bn.c.349.2 yes 4
504.83 odd 6 1512.1.bn.c.181.1 4
504.115 even 6 3528.1.cw.c.2077.1 4
504.187 even 6 3528.1.bp.c.1501.2 4
504.331 odd 6 3528.1.bp.c.1501.1 4
504.349 odd 6 inner 2016.1.bv.c.1105.2 4
504.403 odd 6 3528.1.cw.c.2077.2 4
504.475 even 6 504.1.bn.c.349.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.bn.c.13.1 4 8.3 odd 2
504.1.bn.c.13.1 4 28.27 even 2
504.1.bn.c.13.2 yes 4 4.3 odd 2
504.1.bn.c.13.2 yes 4 56.27 even 2
504.1.bn.c.349.1 yes 4 36.7 odd 6
504.1.bn.c.349.1 yes 4 504.475 even 6
504.1.bn.c.349.2 yes 4 72.43 odd 6
504.1.bn.c.349.2 yes 4 252.223 even 6
1512.1.bn.c.181.1 4 36.11 even 6
1512.1.bn.c.181.1 4 504.83 odd 6
1512.1.bn.c.181.2 4 72.11 even 6
1512.1.bn.c.181.2 4 252.83 odd 6
1512.1.bn.c.685.1 4 12.11 even 2
1512.1.bn.c.685.1 4 168.83 odd 2
1512.1.bn.c.685.2 4 24.11 even 2
1512.1.bn.c.685.2 4 84.83 odd 2
2016.1.bv.c.1105.1 4 63.34 odd 6 inner
2016.1.bv.c.1105.1 4 72.61 even 6 inner
2016.1.bv.c.1105.2 4 9.7 even 3 inner
2016.1.bv.c.1105.2 4 504.349 odd 6 inner
2016.1.bv.c.1777.1 4 1.1 even 1 trivial
2016.1.bv.c.1777.1 4 56.13 odd 2 CM
2016.1.bv.c.1777.2 4 7.6 odd 2 inner
2016.1.bv.c.1777.2 4 8.5 even 2 inner
3528.1.bp.c.1501.1 4 252.187 even 6
3528.1.bp.c.1501.1 4 504.331 odd 6
3528.1.bp.c.1501.2 4 252.79 odd 6
3528.1.bp.c.1501.2 4 504.187 even 6
3528.1.bp.c.3253.1 4 28.3 even 6
3528.1.bp.c.3253.1 4 56.11 odd 6
3528.1.bp.c.3253.2 4 28.11 odd 6
3528.1.bp.c.3253.2 4 56.3 even 6
3528.1.cw.c.2077.1 4 252.151 odd 6
3528.1.cw.c.2077.1 4 504.115 even 6
3528.1.cw.c.2077.2 4 252.115 even 6
3528.1.cw.c.2077.2 4 504.403 odd 6
3528.1.cw.c.2677.1 4 28.23 odd 6
3528.1.cw.c.2677.1 4 56.19 even 6
3528.1.cw.c.2677.2 4 28.19 even 6
3528.1.cw.c.2677.2 4 56.51 odd 6