Properties

Label 3528.1.bp.c.1501.2
Level 35283528
Weight 11
Character 3528.1501
Analytic conductor 1.7611.761
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -56
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3528,1,Mod(1501,3528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3528, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3528.1501"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3528.bp (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.760701364571.76070136457
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 504)
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.144027072.1

Embedding invariants

Embedding label 1501.2
Root 0.8660250.500000i-0.866025 - 0.500000i of defining polynomial
Character χ\chi == 3528.1501
Dual form 3528.1.bp.c.3253.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+(0.866025+0.500000i)q3+1.00000q4+(0.8660251.50000i)q5+(0.8660250.500000i)q61.00000q8+(0.500000+0.866025i)q9+(0.866025+1.50000i)q10+(0.866025+0.500000i)q12+(1.500000.866025i)q15+1.00000q16+(0.5000000.866025i)q18+(0.866025+1.50000i)q19+(0.8660251.50000i)q20+(0.5000000.866025i)q23+(0.8660250.500000i)q24+(1.000001.73205i)q25+1.00000iq27+(1.50000+0.866025i)q301.00000q32+(0.500000+0.866025i)q36+(0.8660251.50000i)q38+(0.866025+1.50000i)q40+1.73205q45+(0.500000+0.866025i)q46+(0.866025+0.500000i)q48+(1.00000+1.73205i)q501.00000iq54+1.73205iq57+(1.500000.866025i)q601.73205q61+1.00000q64+(0.8660250.500000i)q69+1.00000q71+(0.5000000.866025i)q722.00000iq75+(0.866025+1.50000i)q76+1.00000q79+(0.8660251.50000i)q80+(0.500000+0.866025i)q811.73205q90+(0.5000000.866025i)q92+3.00000q95+(0.8660250.500000i)q96+O(q100)q-1.00000 q^{2} +(0.866025 + 0.500000i) q^{3} +1.00000 q^{4} +(0.866025 - 1.50000i) q^{5} +(-0.866025 - 0.500000i) q^{6} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.866025 + 1.50000i) q^{10} +(0.866025 + 0.500000i) q^{12} +(1.50000 - 0.866025i) q^{15} +1.00000 q^{16} +(-0.500000 - 0.866025i) q^{18} +(0.866025 + 1.50000i) q^{19} +(0.866025 - 1.50000i) q^{20} +(0.500000 - 0.866025i) q^{23} +(-0.866025 - 0.500000i) q^{24} +(-1.00000 - 1.73205i) q^{25} +1.00000i q^{27} +(-1.50000 + 0.866025i) q^{30} -1.00000 q^{32} +(0.500000 + 0.866025i) q^{36} +(-0.866025 - 1.50000i) q^{38} +(-0.866025 + 1.50000i) q^{40} +1.73205 q^{45} +(-0.500000 + 0.866025i) q^{46} +(0.866025 + 0.500000i) q^{48} +(1.00000 + 1.73205i) q^{50} -1.00000i q^{54} +1.73205i q^{57} +(1.50000 - 0.866025i) q^{60} -1.73205 q^{61} +1.00000 q^{64} +(0.866025 - 0.500000i) q^{69} +1.00000 q^{71} +(-0.500000 - 0.866025i) q^{72} -2.00000i q^{75} +(0.866025 + 1.50000i) q^{76} +1.00000 q^{79} +(0.866025 - 1.50000i) q^{80} +(-0.500000 + 0.866025i) q^{81} -1.73205 q^{90} +(0.500000 - 0.866025i) q^{92} +3.00000 q^{95} +(-0.866025 - 0.500000i) q^{96} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+4q44q8+2q9+6q15+4q162q18+2q234q256q304q32+2q362q46+4q50+6q60+4q64+4q712q72+4q79++12q95+O(q100) 4 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 2 q^{9} + 6 q^{15} + 4 q^{16} - 2 q^{18} + 2 q^{23} - 4 q^{25} - 6 q^{30} - 4 q^{32} + 2 q^{36} - 2 q^{46} + 4 q^{50} + 6 q^{60} + 4 q^{64} + 4 q^{71} - 2 q^{72} + 4 q^{79}+ \cdots + 12 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3528Z)×\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times.

nn 785785 10811081 17651765 26472647
χ(n)\chi(n) e(23)e\left(\frac{2}{3}\right) e(16)e\left(\frac{1}{6}\right) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −1.00000
33 0.866025 + 0.500000i 0.866025 + 0.500000i
44 1.00000 1.00000
55 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
66 −0.866025 0.500000i −0.866025 0.500000i
77 0 0
88 −1.00000 −1.00000
99 0.500000 + 0.866025i 0.500000 + 0.866025i
1010 −0.866025 + 1.50000i −0.866025 + 1.50000i
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 0.866025 + 0.500000i 0.866025 + 0.500000i
1313 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1414 0 0
1515 1.50000 0.866025i 1.50000 0.866025i
1616 1.00000 1.00000
1717 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 −0.500000 0.866025i −0.500000 0.866025i
1919 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
2020 0.866025 1.50000i 0.866025 1.50000i
2121 0 0
2222 0 0
2323 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
2424 −0.866025 0.500000i −0.866025 0.500000i
2525 −1.00000 1.73205i −1.00000 1.73205i
2626 0 0
2727 1.00000i 1.00000i
2828 0 0
2929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 −1.50000 + 0.866025i −1.50000 + 0.866025i
3131 0 0 1.00000 00
−1.00000 π\pi
3232 −1.00000 −1.00000
3333 0 0
3434 0 0
3535 0 0
3636 0.500000 + 0.866025i 0.500000 + 0.866025i
3737 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3838 −0.866025 1.50000i −0.866025 1.50000i
3939 0 0
4040 −0.866025 + 1.50000i −0.866025 + 1.50000i
4141 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4242 0 0
4343 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 1.73205 1.73205
4646 −0.500000 + 0.866025i −0.500000 + 0.866025i
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0.866025 + 0.500000i 0.866025 + 0.500000i
4949 0 0
5050 1.00000 + 1.73205i 1.00000 + 1.73205i
5151 0 0
5252 0 0
5353 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
5454 1.00000i 1.00000i
5555 0 0
5656 0 0
5757 1.73205i 1.73205i
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 1.50000 0.866025i 1.50000 0.866025i
6161 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6262 0 0
6363 0 0
6464 1.00000 1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0.866025 0.500000i 0.866025 0.500000i
7070 0 0
7171 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7272 −0.500000 0.866025i −0.500000 0.866025i
7373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 0 0
7575 2.00000i 2.00000i
7676 0.866025 + 1.50000i 0.866025 + 1.50000i
7777 0 0
7878 0 0
7979 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
8080 0.866025 1.50000i 0.866025 1.50000i
8181 −0.500000 + 0.866025i −0.500000 + 0.866025i
8282 0 0
8383 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9090 −1.73205 −1.73205
9191 0 0
9292 0.500000 0.866025i 0.500000 0.866025i
9393 0 0
9494 0 0
9595 3.00000 3.00000
9696 −0.866025 0.500000i −0.866025 0.500000i
9797 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 0 0
9999 0 0
100100 −1.00000 1.73205i −1.00000 1.73205i
101101 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
102102 0 0
103103 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
108108 1.00000i 1.00000i
109109 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
114114 1.73205i 1.73205i
115115 −0.866025 1.50000i −0.866025 1.50000i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 −1.50000 + 0.866025i −1.50000 + 0.866025i
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 1.73205 1.73205
123123 0 0
124124 0 0
125125 −1.73205 −1.73205
126126 0 0
127127 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
128128 −1.00000 −1.00000
129129 0 0
130130 0 0
131131 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
132132 0 0
133133 0 0
134134 0 0
135135 1.50000 + 0.866025i 1.50000 + 0.866025i
136136 0 0
137137 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
138138 −0.866025 + 0.500000i −0.866025 + 0.500000i
139139 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
140140 0 0
141141 0 0
142142 −1.00000 −1.00000
143143 0 0
144144 0.500000 + 0.866025i 0.500000 + 0.866025i
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 2.00000i 2.00000i
151151 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 −0.866025 1.50000i −0.866025 1.50000i
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
158158 −1.00000 −1.00000
159159 0 0
160160 −0.866025 + 1.50000i −0.866025 + 1.50000i
161161 0 0
162162 0.500000 0.866025i 0.500000 0.866025i
163163 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 0 0
169169 0.500000 0.866025i 0.500000 0.866025i
170170 0 0
171171 −0.866025 + 1.50000i −0.866025 + 1.50000i
172172 0 0
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 1.73205 1.73205
181181 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
182182 0 0
183183 −1.50000 0.866025i −1.50000 0.866025i
184184 −0.500000 + 0.866025i −0.500000 + 0.866025i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 −3.00000 −3.00000
191191 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
192192 0.866025 + 0.500000i 0.866025 + 0.500000i
193193 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 1.00000 + 1.73205i 1.00000 + 1.73205i
201201 0 0
202202 0.866025 + 1.50000i 0.866025 + 1.50000i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 1.00000 1.00000
208208 0 0
209209 0 0
210210 0 0
211211 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 0 0
213213 0.866025 + 0.500000i 0.866025 + 0.500000i
214214 0 0
215215 0 0
216216 1.00000i 1.00000i
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
224224 0 0
225225 1.00000 1.73205i 1.00000 1.73205i
226226 0.500000 + 0.866025i 0.500000 + 0.866025i
227227 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
228228 1.73205i 1.73205i
229229 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
230230 0.866025 + 1.50000i 0.866025 + 1.50000i
231231 0 0
232232 0 0
233233 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 0 0
236236 0 0
237237 0.866025 + 0.500000i 0.866025 + 0.500000i
238238 0 0
239239 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 1.50000 0.866025i 1.50000 0.866025i
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 0.500000 0.866025i 0.500000 0.866025i
243243 −0.866025 + 0.500000i −0.866025 + 0.500000i
244244 −1.73205 −1.73205
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 1.73205 1.73205
251251 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
252252 0 0
253253 0 0
254254 1.00000 1.00000
255255 0 0
256256 1.00000 1.00000
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0.866025 1.50000i 0.866025 1.50000i
263263 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
270270 −1.50000 0.866025i −1.50000 0.866025i
271271 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
272272 0 0
273273 0 0
274274 1.00000 + 1.73205i 1.00000 + 1.73205i
275275 0 0
276276 0.866025 0.500000i 0.866025 0.500000i
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 0.866025 + 1.50000i 0.866025 + 1.50000i
279279 0 0
280280 0 0
281281 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
282282 0 0
283283 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
284284 1.00000 1.00000
285285 2.59808 + 1.50000i 2.59808 + 1.50000i
286286 0 0
287287 0 0
288288 −0.500000 0.866025i −0.500000 0.866025i
289289 −0.500000 0.866025i −0.500000 0.866025i
290290 0 0
291291 0 0
292292 0 0
293293 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 2.00000i 2.00000i
301301 0 0
302302 −0.500000 0.866025i −0.500000 0.866025i
303303 1.73205i 1.73205i
304304 0.866025 + 1.50000i 0.866025 + 1.50000i
305305 −1.50000 + 2.59808i −1.50000 + 2.59808i
306306 0 0
307307 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 1.73205 1.73205
315315 0 0
316316 1.00000 1.00000
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0.866025 1.50000i 0.866025 1.50000i
321321 0 0
322322 0 0
323323 0 0
324324 −0.500000 + 0.866025i −0.500000 + 0.866025i
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
338338 −0.500000 + 0.866025i −0.500000 + 0.866025i
339339 1.00000i 1.00000i
340340 0 0
341341 0 0
342342 0.866025 1.50000i 0.866025 1.50000i
343343 0 0
344344 0 0
345345 1.73205i 1.73205i
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0.866025 1.50000i 0.866025 1.50000i
356356 0 0
357357 0 0
358358 0 0
359359 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 −1.73205 −1.73205
361361 −1.00000 + 1.73205i −1.00000 + 1.73205i
362362 −1.73205 −1.73205
363363 −0.866025 + 0.500000i −0.866025 + 0.500000i
364364 0 0
365365 0 0
366366 1.50000 + 0.866025i 1.50000 + 0.866025i
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 0.500000 0.866025i 0.500000 0.866025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 −1.50000 0.866025i −1.50000 0.866025i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 3.00000 3.00000
381381 −0.866025 0.500000i −0.866025 0.500000i
382382 −1.00000 −1.00000
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 −0.866025 0.500000i −0.866025 0.500000i
385385 0 0
386386 −1.00000 −1.00000
387387 0 0
388388 0 0
389389 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0 0
391391 0 0
392392 0 0
393393 −1.50000 + 0.866025i −1.50000 + 0.866025i
394394 0 0
395395 0.866025 1.50000i 0.866025 1.50000i
396396 0 0
397397 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
398398 0 0
399399 0 0
400400 −1.00000 1.73205i −1.00000 1.73205i
401401 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
402402 0 0
403403 0 0
404404 −0.866025 1.50000i −0.866025 1.50000i
405405 0.866025 + 1.50000i 0.866025 + 1.50000i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 2.00000i 2.00000i
412412 0 0
413413 0 0
414414 −1.00000 −1.00000
415415 0 0
416416 0 0
417417 1.73205i 1.73205i
418418 0 0
419419 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 −0.866025 0.500000i −0.866025 0.500000i
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
432432 1.00000i 1.00000i
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 1.73205 1.73205
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
450450 −1.00000 + 1.73205i −1.00000 + 1.73205i
451451 0 0
452452 −0.500000 0.866025i −0.500000 0.866025i
453453 1.00000i 1.00000i
454454 −0.866025 1.50000i −0.866025 1.50000i
455455 0 0
456456 1.73205i 1.73205i
457457 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
458458 0.866025 1.50000i 0.866025 1.50000i
459459 0 0
460460 −0.866025 1.50000i −0.866025 1.50000i
461461 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
462462 0 0
463463 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
464464 0 0
465465 0 0
466466 −0.500000 0.866025i −0.500000 0.866025i
467467 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
468468 0 0
469469 0 0
470470 0 0
471471 −1.50000 0.866025i −1.50000 0.866025i
472472 0 0
473473 0 0
474474 −0.866025 0.500000i −0.866025 0.500000i
475475 1.73205 3.00000i 1.73205 3.00000i
476476 0 0
477477 0 0
478478 −0.500000 0.866025i −0.500000 0.866025i
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 −1.50000 + 0.866025i −1.50000 + 0.866025i
481481 0 0
482482 0 0
483483 0 0
484484 −0.500000 + 0.866025i −0.500000 + 0.866025i
485485 0 0
486486 0.866025 0.500000i 0.866025 0.500000i
487487 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
488488 1.73205 1.73205
489489 0 0
490490 0 0
491491 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 −1.73205 −1.73205
501501 0 0
502502 1.73205 1.73205
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 −3.00000 −3.00000
506506 0 0
507507 0.866025 0.500000i 0.866025 0.500000i
508508 −1.00000 −1.00000
509509 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 −1.50000 + 0.866025i −1.50000 + 0.866025i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
524524 −0.866025 + 1.50000i −0.866025 + 1.50000i
525525 0 0
526526 0.500000 + 0.866025i 0.500000 + 0.866025i
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0.866025 1.50000i 0.866025 1.50000i
539539 0 0
540540 1.50000 + 0.866025i 1.50000 + 0.866025i
541541 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
542542 0 0
543543 1.50000 + 0.866025i 1.50000 + 0.866025i
544544 0 0
545545 0 0
546546 0 0
547547 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
548548 −1.00000 1.73205i −1.00000 1.73205i
549549 −0.866025 1.50000i −0.866025 1.50000i
550550 0 0
551551 0 0
552552 −0.866025 + 0.500000i −0.866025 + 0.500000i
553553 0 0
554554 0 0
555555 0 0
556556 −0.866025 1.50000i −0.866025 1.50000i
557557 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −0.500000 + 0.866025i −0.500000 + 0.866025i
563563 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
564564 0 0
565565 −1.73205 −1.73205
566566 1.73205 1.73205
567567 0 0
568568 −1.00000 −1.00000
569569 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
570570 −2.59808 1.50000i −2.59808 1.50000i
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0.866025 + 0.500000i 0.866025 + 0.500000i
574574 0 0
575575 −2.00000 −2.00000
576576 0.500000 + 0.866025i 0.500000 + 0.866025i
577577 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0.500000 + 0.866025i 0.500000 + 0.866025i
579579 0.866025 + 0.500000i 0.866025 + 0.500000i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0.866025 + 1.50000i 0.866025 + 1.50000i
587587 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
600600 2.00000i 2.00000i
601601 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
602602 0 0
603603 0 0
604604 0.500000 + 0.866025i 0.500000 + 0.866025i
605605 0.866025 + 1.50000i 0.866025 + 1.50000i
606606 1.73205i 1.73205i
607607 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 −0.866025 1.50000i −0.866025 1.50000i
609609 0 0
610610 1.50000 2.59808i 1.50000 2.59808i
611611 0 0
612612 0 0
613613 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 −1.73205 −1.73205
615615 0 0
616616 0 0
617617 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
618618 0 0
619619 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0.866025 + 0.500000i 0.866025 + 0.500000i
622622 0 0
623623 0 0
624624 0 0
625625 −0.500000 + 0.866025i −0.500000 + 0.866025i
626626 0 0
627627 0 0
628628 −1.73205 −1.73205
629629 0 0
630630 0 0
631631 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
632632 −1.00000 −1.00000
633633 0 0
634634 0 0
635635 −0.866025 + 1.50000i −0.866025 + 1.50000i
636636 0 0
637637 0 0
638638 0 0
639639 0.500000 + 0.866025i 0.500000 + 0.866025i
640640 −0.866025 + 1.50000i −0.866025 + 1.50000i
641641 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
642642 0 0
643643 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 0.500000 0.866025i 0.500000 0.866025i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 0 0
655655 1.50000 + 2.59808i 1.50000 + 2.59808i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
674674 −1.00000 1.73205i −1.00000 1.73205i
675675 1.73205 1.00000i 1.73205 1.00000i
676676 0.500000 0.866025i 0.500000 0.866025i
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 1.00000i 1.00000i
679679 0 0
680680 0 0
681681 1.73205i 1.73205i
682682 0 0
683683 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 −0.866025 + 1.50000i −0.866025 + 1.50000i
685685 −3.46410 −3.46410
686686 0 0
687687 −1.50000 + 0.866025i −1.50000 + 0.866025i
688688 0 0
689689 0 0
690690 1.73205i 1.73205i
691691 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
692692 0 0
693693 0 0
694694 0 0
695695 −3.00000 −3.00000
696696 0 0
697697 0 0
698698 0 0
699699 1.00000i 1.00000i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 −0.866025 + 1.50000i −0.866025 + 1.50000i
711711 0.500000 + 0.866025i 0.500000 + 0.866025i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 1.00000i 1.00000i
718718 −0.500000 0.866025i −0.500000 0.866025i
719719 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
720720 1.73205 1.73205
721721 0 0
722722 1.00000 1.73205i 1.00000 1.73205i
723723 0 0
724724 1.73205 1.73205
725725 0 0
726726 0.866025 0.500000i 0.866025 0.500000i
727727 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 −1.50000 0.866025i −1.50000 0.866025i
733733 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
734734 0 0
735735 0 0
736736 −0.500000 + 0.866025i −0.500000 + 0.866025i
737737 0 0
738738 0 0
739739 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 0 0
742742 0 0
743743 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 1.50000 + 0.866025i 1.50000 + 0.866025i
751751 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
752752 0 0
753753 −1.50000 0.866025i −1.50000 0.866025i
754754 0 0
755755 1.73205 1.73205
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 −3.00000 −3.00000
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0.866025 + 0.500000i 0.866025 + 0.500000i
763763 0 0
764764 1.00000 1.00000
765765 0 0
766766 0 0
767767 0 0
768768 0.866025 + 0.500000i 0.866025 + 0.500000i
769769 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 0 0
771771 0 0
772772 1.00000 1.00000
773773 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −1.50000 + 2.59808i −1.50000 + 2.59808i
786786 1.50000 0.866025i 1.50000 0.866025i
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 1.00000i 1.00000i
790790 −0.866025 + 1.50000i −0.866025 + 1.50000i
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
798798 0 0
799799 0 0
800800 1.00000 + 1.73205i 1.00000 + 1.73205i
801801 0 0
802802 0.500000 0.866025i 0.500000 0.866025i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 −1.50000 + 0.866025i −1.50000 + 0.866025i
808808 0.866025 + 1.50000i 0.866025 + 1.50000i
809809 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
810810 −0.866025 1.50000i −0.866025 1.50000i
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 2.00000i 2.00000i
823823 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 1.00000 1.00000
829829 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 1.73205i 1.73205i
835835 0 0
836836 0 0
837837 0 0
838838 −0.866025 1.50000i −0.866025 1.50000i
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 0 0
841841 −0.500000 0.866025i −0.500000 0.866025i
842842 0 0
843843 0.866025 0.500000i 0.866025 0.500000i
844844 0 0
845845 −0.866025 1.50000i −0.866025 1.50000i
846846 0 0
847847 0 0
848848 0 0
849849 −1.50000 0.866025i −1.50000 0.866025i
850850 0 0
851851 0 0
852852 0.866025 + 0.500000i 0.866025 + 0.500000i
853853 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
854854 0 0
855855 1.50000 + 2.59808i 1.50000 + 2.59808i
856856 0 0
857857 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 0 0
859859 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
860860 0 0
861861 0 0
862862 1.00000 1.73205i 1.00000 1.73205i
863863 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
864864 1.00000i 1.00000i
865865 0 0
866866 0 0
867867 1.00000i 1.00000i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 −1.73205 −1.73205
875875 0 0
876876 0 0
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 1.73205i 1.73205i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 1.00000 1.00000
899899 0 0
900900 1.00000 1.73205i 1.00000 1.73205i
901901 0 0
902902 0 0
903903 0 0
904904 0.500000 + 0.866025i 0.500000 + 0.866025i
905905 1.50000 2.59808i 1.50000 2.59808i
906906 1.00000i 1.00000i
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0.866025 + 1.50000i 0.866025 + 1.50000i
909909 0.866025 1.50000i 0.866025 1.50000i
910910 0 0
911911 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
912912 1.73205i 1.73205i
913913 0 0
914914 −1.00000 −1.00000
915915 −2.59808 + 1.50000i −2.59808 + 1.50000i
916916 −0.866025 + 1.50000i −0.866025 + 1.50000i
917917 0 0
918918 0 0
919919 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
920920 0.866025 + 1.50000i 0.866025 + 1.50000i
921921 1.50000 + 0.866025i 1.50000 + 0.866025i
922922 0.866025 1.50000i 0.866025 1.50000i
923923 0 0
924924 0 0
925925 0 0
926926 0.500000 + 0.866025i 0.500000 + 0.866025i
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0.500000 + 0.866025i 0.500000 + 0.866025i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
942942 1.50000 + 0.866025i 1.50000 + 0.866025i
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0.866025 + 0.500000i 0.866025 + 0.500000i
949949 0 0
950950 −1.73205 + 3.00000i −1.73205 + 3.00000i
951951 0 0
952952 0 0
953953 2.00000 2.00000 1.00000 00
1.00000 00
954954 0 0
955955 0.866025 1.50000i 0.866025 1.50000i
956956 0.500000 + 0.866025i 0.500000 + 0.866025i
957957 0 0
958958 0 0
959959 0 0
960960 1.50000 0.866025i 1.50000 0.866025i
961961 1.00000 1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0.866025 1.50000i 0.866025 1.50000i
966966 0 0
967967 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 0.500000 0.866025i 0.500000 0.866025i
969969 0 0
970970 0 0
971971 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
972972 −0.866025 + 0.500000i −0.866025 + 0.500000i
973973 0 0
974974 −0.500000 + 0.866025i −0.500000 + 0.866025i
975975 0 0
976976 −1.73205 −1.73205
977977 2.00000 2.00000 1.00000 00
1.00000 00
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.1.bp.c.1501.2 4
7.2 even 3 3528.1.cw.c.2077.1 4
7.3 odd 6 504.1.bn.c.349.2 yes 4
7.4 even 3 504.1.bn.c.349.1 yes 4
7.5 odd 6 3528.1.cw.c.2077.2 4
7.6 odd 2 inner 3528.1.bp.c.1501.1 4
8.5 even 2 inner 3528.1.bp.c.1501.1 4
9.4 even 3 3528.1.cw.c.2677.1 4
21.11 odd 6 1512.1.bn.c.181.1 4
21.17 even 6 1512.1.bn.c.181.2 4
28.3 even 6 2016.1.bv.c.1105.1 4
28.11 odd 6 2016.1.bv.c.1105.2 4
56.3 even 6 2016.1.bv.c.1105.2 4
56.5 odd 6 3528.1.cw.c.2077.1 4
56.11 odd 6 2016.1.bv.c.1105.1 4
56.13 odd 2 CM 3528.1.bp.c.1501.2 4
56.37 even 6 3528.1.cw.c.2077.2 4
56.45 odd 6 504.1.bn.c.349.1 yes 4
56.53 even 6 504.1.bn.c.349.2 yes 4
63.4 even 3 504.1.bn.c.13.2 yes 4
63.13 odd 6 3528.1.cw.c.2677.2 4
63.31 odd 6 504.1.bn.c.13.1 4
63.32 odd 6 1512.1.bn.c.685.1 4
63.40 odd 6 inner 3528.1.bp.c.3253.1 4
63.58 even 3 inner 3528.1.bp.c.3253.2 4
63.59 even 6 1512.1.bn.c.685.2 4
72.13 even 6 3528.1.cw.c.2677.2 4
168.53 odd 6 1512.1.bn.c.181.2 4
168.101 even 6 1512.1.bn.c.181.1 4
252.31 even 6 2016.1.bv.c.1777.2 4
252.67 odd 6 2016.1.bv.c.1777.1 4
504.13 odd 6 3528.1.cw.c.2677.1 4
504.67 odd 6 2016.1.bv.c.1777.2 4
504.157 odd 6 504.1.bn.c.13.2 yes 4
504.221 odd 6 1512.1.bn.c.685.2 4
504.229 odd 6 inner 3528.1.bp.c.3253.2 4
504.283 even 6 2016.1.bv.c.1777.1 4
504.373 even 6 inner 3528.1.bp.c.3253.1 4
504.437 even 6 1512.1.bn.c.685.1 4
504.445 even 6 504.1.bn.c.13.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.bn.c.13.1 4 63.31 odd 6
504.1.bn.c.13.1 4 504.445 even 6
504.1.bn.c.13.2 yes 4 63.4 even 3
504.1.bn.c.13.2 yes 4 504.157 odd 6
504.1.bn.c.349.1 yes 4 7.4 even 3
504.1.bn.c.349.1 yes 4 56.45 odd 6
504.1.bn.c.349.2 yes 4 7.3 odd 6
504.1.bn.c.349.2 yes 4 56.53 even 6
1512.1.bn.c.181.1 4 21.11 odd 6
1512.1.bn.c.181.1 4 168.101 even 6
1512.1.bn.c.181.2 4 21.17 even 6
1512.1.bn.c.181.2 4 168.53 odd 6
1512.1.bn.c.685.1 4 63.32 odd 6
1512.1.bn.c.685.1 4 504.437 even 6
1512.1.bn.c.685.2 4 63.59 even 6
1512.1.bn.c.685.2 4 504.221 odd 6
2016.1.bv.c.1105.1 4 28.3 even 6
2016.1.bv.c.1105.1 4 56.11 odd 6
2016.1.bv.c.1105.2 4 28.11 odd 6
2016.1.bv.c.1105.2 4 56.3 even 6
2016.1.bv.c.1777.1 4 252.67 odd 6
2016.1.bv.c.1777.1 4 504.283 even 6
2016.1.bv.c.1777.2 4 252.31 even 6
2016.1.bv.c.1777.2 4 504.67 odd 6
3528.1.bp.c.1501.1 4 7.6 odd 2 inner
3528.1.bp.c.1501.1 4 8.5 even 2 inner
3528.1.bp.c.1501.2 4 1.1 even 1 trivial
3528.1.bp.c.1501.2 4 56.13 odd 2 CM
3528.1.bp.c.3253.1 4 63.40 odd 6 inner
3528.1.bp.c.3253.1 4 504.373 even 6 inner
3528.1.bp.c.3253.2 4 63.58 even 3 inner
3528.1.bp.c.3253.2 4 504.229 odd 6 inner
3528.1.cw.c.2077.1 4 7.2 even 3
3528.1.cw.c.2077.1 4 56.5 odd 6
3528.1.cw.c.2077.2 4 7.5 odd 6
3528.1.cw.c.2077.2 4 56.37 even 6
3528.1.cw.c.2677.1 4 9.4 even 3
3528.1.cw.c.2677.1 4 504.13 odd 6
3528.1.cw.c.2677.2 4 63.13 odd 6
3528.1.cw.c.2677.2 4 72.13 even 6