Properties

Label 3528.1.bp.c.1501.2
Level $3528$
Weight $1$
Character 3528.1501
Analytic conductor $1.761$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,1,Mod(1501,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.1501");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3528.bp (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.76070136457\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.144027072.1

Embedding invariants

Embedding label 1501.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3528.1501
Dual form 3528.1.bp.c.3253.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.866025 + 0.500000i) q^{3} +1.00000 q^{4} +(0.866025 - 1.50000i) q^{5} +(-0.866025 - 0.500000i) q^{6} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(0.866025 + 0.500000i) q^{3} +1.00000 q^{4} +(0.866025 - 1.50000i) q^{5} +(-0.866025 - 0.500000i) q^{6} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.866025 + 1.50000i) q^{10} +(0.866025 + 0.500000i) q^{12} +(1.50000 - 0.866025i) q^{15} +1.00000 q^{16} +(-0.500000 - 0.866025i) q^{18} +(0.866025 + 1.50000i) q^{19} +(0.866025 - 1.50000i) q^{20} +(0.500000 - 0.866025i) q^{23} +(-0.866025 - 0.500000i) q^{24} +(-1.00000 - 1.73205i) q^{25} +1.00000i q^{27} +(-1.50000 + 0.866025i) q^{30} -1.00000 q^{32} +(0.500000 + 0.866025i) q^{36} +(-0.866025 - 1.50000i) q^{38} +(-0.866025 + 1.50000i) q^{40} +1.73205 q^{45} +(-0.500000 + 0.866025i) q^{46} +(0.866025 + 0.500000i) q^{48} +(1.00000 + 1.73205i) q^{50} -1.00000i q^{54} +1.73205i q^{57} +(1.50000 - 0.866025i) q^{60} -1.73205 q^{61} +1.00000 q^{64} +(0.866025 - 0.500000i) q^{69} +1.00000 q^{71} +(-0.500000 - 0.866025i) q^{72} -2.00000i q^{75} +(0.866025 + 1.50000i) q^{76} +1.00000 q^{79} +(0.866025 - 1.50000i) q^{80} +(-0.500000 + 0.866025i) q^{81} -1.73205 q^{90} +(0.500000 - 0.866025i) q^{92} +3.00000 q^{95} +(-0.866025 - 0.500000i) q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 2 q^{9} + 6 q^{15} + 4 q^{16} - 2 q^{18} + 2 q^{23} - 4 q^{25} - 6 q^{30} - 4 q^{32} + 2 q^{36} - 2 q^{46} + 4 q^{50} + 6 q^{60} + 4 q^{64} + 4 q^{71} - 2 q^{72} + 4 q^{79} - 2 q^{81} + 2 q^{92} + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000
\(3\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(4\) 1.00000 1.00000
\(5\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(6\) −0.866025 0.500000i −0.866025 0.500000i
\(7\) 0 0
\(8\) −1.00000 −1.00000
\(9\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(10\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(13\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) 0 0
\(15\) 1.50000 0.866025i 1.50000 0.866025i
\(16\) 1.00000 1.00000
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) −0.500000 0.866025i −0.500000 0.866025i
\(19\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(20\) 0.866025 1.50000i 0.866025 1.50000i
\(21\) 0 0
\(22\) 0 0
\(23\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(24\) −0.866025 0.500000i −0.866025 0.500000i
\(25\) −1.00000 1.73205i −1.00000 1.73205i
\(26\) 0 0
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) −0.866025 1.50000i −0.866025 1.50000i
\(39\) 0 0
\(40\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(41\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) 0 0
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) 0 0
\(45\) 1.73205 1.73205
\(46\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(49\) 0 0
\(50\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 1.00000i 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) 1.73205i 1.73205i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 1.50000 0.866025i 1.50000 0.866025i
\(61\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0.866025 0.500000i 0.866025 0.500000i
\(70\) 0 0
\(71\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) −0.500000 0.866025i −0.500000 0.866025i
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) 2.00000i 2.00000i
\(76\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0.866025 1.50000i 0.866025 1.50000i
\(81\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) −1.73205 −1.73205
\(91\) 0 0
\(92\) 0.500000 0.866025i 0.500000 0.866025i
\(93\) 0 0
\(94\) 0 0
\(95\) 3.00000 3.00000
\(96\) −0.866025 0.500000i −0.866025 0.500000i
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 1.73205i −1.00000 1.73205i
\(101\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(102\) 0 0
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) 1.00000i 1.00000i
\(109\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(114\) 1.73205i 1.73205i
\(115\) −0.866025 1.50000i −0.866025 1.50000i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(121\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(122\) 1.73205 1.73205
\(123\) 0 0
\(124\) 0 0
\(125\) −1.73205 −1.73205
\(126\) 0 0
\(127\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(136\) 0 0
\(137\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(138\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(139\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.00000 −1.00000
\(143\) 0 0
\(144\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 2.00000i 2.00000i
\(151\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) −0.866025 1.50000i −0.866025 1.50000i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(158\) −1.00000 −1.00000
\(159\) 0 0
\(160\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(161\) 0 0
\(162\) 0.500000 0.866025i 0.500000 0.866025i
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(168\) 0 0
\(169\) 0.500000 0.866025i 0.500000 0.866025i
\(170\) 0 0
\(171\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 1.73205 1.73205
\(181\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(182\) 0 0
\(183\) −1.50000 0.866025i −1.50000 0.866025i
\(184\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −3.00000 −3.00000
\(191\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(193\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(201\) 0 0
\(202\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.00000 1.00000
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(214\) 0 0
\(215\) 0 0
\(216\) 1.00000i 1.00000i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 1.00000 1.73205i 1.00000 1.73205i
\(226\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(227\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(228\) 1.73205i 1.73205i
\(229\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(230\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(231\) 0 0
\(232\) 0 0
\(233\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(238\) 0 0
\(239\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 1.50000 0.866025i 1.50000 0.866025i
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 0.500000 0.866025i 0.500000 0.866025i
\(243\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(244\) −1.73205 −1.73205
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 1.73205 1.73205
\(251\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.00000 1.00000
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.866025 1.50000i 0.866025 1.50000i
\(263\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) −1.50000 0.866025i −1.50000 0.866025i
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(275\) 0 0
\(276\) 0.866025 0.500000i 0.866025 0.500000i
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(282\) 0 0
\(283\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 1.00000 1.00000
\(285\) 2.59808 + 1.50000i 2.59808 + 1.50000i
\(286\) 0 0
\(287\) 0 0
\(288\) −0.500000 0.866025i −0.500000 0.866025i
\(289\) −0.500000 0.866025i −0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 2.00000i 2.00000i
\(301\) 0 0
\(302\) −0.500000 0.866025i −0.500000 0.866025i
\(303\) 1.73205i 1.73205i
\(304\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(305\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(306\) 0 0
\(307\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 1.73205 1.73205
\(315\) 0 0
\(316\) 1.00000 1.00000
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.866025 1.50000i 0.866025 1.50000i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(338\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(339\) 1.00000i 1.00000i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.866025 1.50000i 0.866025 1.50000i
\(343\) 0 0
\(344\) 0 0
\(345\) 1.73205i 1.73205i
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0.866025 1.50000i 0.866025 1.50000i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) −1.73205 −1.73205
\(361\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(362\) −1.73205 −1.73205
\(363\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0.500000 0.866025i 0.500000 0.866025i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) −1.50000 0.866025i −1.50000 0.866025i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 3.00000 3.00000
\(381\) −0.866025 0.500000i −0.866025 0.500000i
\(382\) −1.00000 −1.00000
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) −0.866025 0.500000i −0.866025 0.500000i
\(385\) 0 0
\(386\) −1.00000 −1.00000
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(394\) 0 0
\(395\) 0.866025 1.50000i 0.866025 1.50000i
\(396\) 0 0
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 1.73205i −1.00000 1.73205i
\(401\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.866025 1.50000i −0.866025 1.50000i
\(405\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 2.00000i 2.00000i
\(412\) 0 0
\(413\) 0 0
\(414\) −1.00000 −1.00000
\(415\) 0 0
\(416\) 0 0
\(417\) 1.73205i 1.73205i
\(418\) 0 0
\(419\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −0.866025 0.500000i −0.866025 0.500000i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 1.00000i 1.00000i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.73205 1.73205
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(451\) 0 0
\(452\) −0.500000 0.866025i −0.500000 0.866025i
\(453\) 1.00000i 1.00000i
\(454\) −0.866025 1.50000i −0.866025 1.50000i
\(455\) 0 0
\(456\) 1.73205i 1.73205i
\(457\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 0.866025 1.50000i 0.866025 1.50000i
\(459\) 0 0
\(460\) −0.866025 1.50000i −0.866025 1.50000i
\(461\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.500000 0.866025i −0.500000 0.866025i
\(467\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.50000 0.866025i −1.50000 0.866025i
\(472\) 0 0
\(473\) 0 0
\(474\) −0.866025 0.500000i −0.866025 0.500000i
\(475\) 1.73205 3.00000i 1.73205 3.00000i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.500000 0.866025i −0.500000 0.866025i
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0.866025 0.500000i 0.866025 0.500000i
\(487\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(488\) 1.73205 1.73205
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) −1.73205 −1.73205
\(501\) 0 0
\(502\) 1.73205 1.73205
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −3.00000 −3.00000
\(506\) 0 0
\(507\) 0.866025 0.500000i 0.866025 0.500000i
\(508\) −1.00000 −1.00000
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(524\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(525\) 0 0
\(526\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.866025 1.50000i 0.866025 1.50000i
\(539\) 0 0
\(540\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(541\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(542\) 0 0
\(543\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) −1.00000 1.73205i −1.00000 1.73205i
\(549\) −0.866025 1.50000i −0.866025 1.50000i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.866025 1.50000i −0.866025 1.50000i
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(563\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) −1.73205 −1.73205
\(566\) 1.73205 1.73205
\(567\) 0 0
\(568\) −1.00000 −1.00000
\(569\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(570\) −2.59808 1.50000i −2.59808 1.50000i
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(574\) 0 0
\(575\) −2.00000 −2.00000
\(576\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(579\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(587\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(600\) 2.00000i 2.00000i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(605\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(606\) 1.73205i 1.73205i
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) −0.866025 1.50000i −0.866025 1.50000i
\(609\) 0 0
\(610\) 1.50000 2.59808i 1.50000 2.59808i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) −1.73205 −1.73205
\(615\) 0 0
\(616\) 0 0
\(617\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 0 0
\(619\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) −1.73205 −1.73205
\(629\) 0 0
\(630\) 0 0
\(631\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(632\) −1.00000 −1.00000
\(633\) 0 0
\(634\) 0 0
\(635\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(640\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(641\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 0.500000 0.866025i 0.500000 0.866025i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(674\) −1.00000 1.73205i −1.00000 1.73205i
\(675\) 1.73205 1.00000i 1.73205 1.00000i
\(676\) 0.500000 0.866025i 0.500000 0.866025i
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 1.00000i 1.00000i
\(679\) 0 0
\(680\) 0 0
\(681\) 1.73205i 1.73205i
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(685\) −3.46410 −3.46410
\(686\) 0 0
\(687\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(688\) 0 0
\(689\) 0 0
\(690\) 1.73205i 1.73205i
\(691\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.00000 −3.00000
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 1.00000i 1.00000i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(711\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.00000i 1.00000i
\(718\) −0.500000 0.866025i −0.500000 0.866025i
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 1.73205 1.73205
\(721\) 0 0
\(722\) 1.00000 1.73205i 1.00000 1.73205i
\(723\) 0 0
\(724\) 1.73205 1.73205
\(725\) 0 0
\(726\) 0.866025 0.500000i 0.866025 0.500000i
\(727\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −1.50000 0.866025i −1.50000 0.866025i
\(733\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(751\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) −1.50000 0.866025i −1.50000 0.866025i
\(754\) 0 0
\(755\) 1.73205 1.73205
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −3.00000 −3.00000
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(763\) 0 0
\(764\) 1.00000 1.00000
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.00000 1.00000
\(773\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(786\) 1.50000 0.866025i 1.50000 0.866025i
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 1.00000i 1.00000i
\(790\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(801\) 0 0
\(802\) 0.500000 0.866025i 0.500000 0.866025i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(808\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(809\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(810\) −0.866025 1.50000i −0.866025 1.50000i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 2.00000i 2.00000i
\(823\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 1.00000 1.00000
\(829\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 1.73205i 1.73205i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −0.866025 1.50000i −0.866025 1.50000i
\(839\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) −0.500000 0.866025i −0.500000 0.866025i
\(842\) 0 0
\(843\) 0.866025 0.500000i 0.866025 0.500000i
\(844\) 0 0
\(845\) −0.866025 1.50000i −0.866025 1.50000i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.50000 0.866025i −1.50000 0.866025i
\(850\) 0 0
\(851\) 0 0
\(852\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(853\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(854\) 0 0
\(855\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(856\) 0 0
\(857\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(858\) 0 0
\(859\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.00000 1.73205i 1.00000 1.73205i
\(863\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(864\) 1.00000i 1.00000i
\(865\) 0 0
\(866\) 0 0
\(867\) 1.00000i 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −1.73205 −1.73205
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 1.73205i 1.73205i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 1.00000 1.00000
\(899\) 0 0
\(900\) 1.00000 1.73205i 1.00000 1.73205i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(905\) 1.50000 2.59808i 1.50000 2.59808i
\(906\) 1.00000i 1.00000i
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(909\) 0.866025 1.50000i 0.866025 1.50000i
\(910\) 0 0
\(911\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(912\) 1.73205i 1.73205i
\(913\) 0 0
\(914\) −1.00000 −1.00000
\(915\) −2.59808 + 1.50000i −2.59808 + 1.50000i
\(916\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(917\) 0 0
\(918\) 0 0
\(919\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(920\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(921\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(922\) 0.866025 1.50000i 0.866025 1.50000i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(949\) 0 0
\(950\) −1.73205 + 3.00000i −1.73205 + 3.00000i
\(951\) 0 0
\(952\) 0 0
\(953\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(954\) 0 0
\(955\) 0.866025 1.50000i 0.866025 1.50000i
\(956\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 1.50000 0.866025i 1.50000 0.866025i
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.866025 1.50000i 0.866025 1.50000i
\(966\) 0 0
\(967\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(968\) 0.500000 0.866025i 0.500000 0.866025i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(972\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(973\) 0 0
\(974\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(975\) 0 0
\(976\) −1.73205 −1.73205
\(977\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.1.bp.c.1501.2 4
7.2 even 3 3528.1.cw.c.2077.1 4
7.3 odd 6 504.1.bn.c.349.2 yes 4
7.4 even 3 504.1.bn.c.349.1 yes 4
7.5 odd 6 3528.1.cw.c.2077.2 4
7.6 odd 2 inner 3528.1.bp.c.1501.1 4
8.5 even 2 inner 3528.1.bp.c.1501.1 4
9.4 even 3 3528.1.cw.c.2677.1 4
21.11 odd 6 1512.1.bn.c.181.1 4
21.17 even 6 1512.1.bn.c.181.2 4
28.3 even 6 2016.1.bv.c.1105.1 4
28.11 odd 6 2016.1.bv.c.1105.2 4
56.3 even 6 2016.1.bv.c.1105.2 4
56.5 odd 6 3528.1.cw.c.2077.1 4
56.11 odd 6 2016.1.bv.c.1105.1 4
56.13 odd 2 CM 3528.1.bp.c.1501.2 4
56.37 even 6 3528.1.cw.c.2077.2 4
56.45 odd 6 504.1.bn.c.349.1 yes 4
56.53 even 6 504.1.bn.c.349.2 yes 4
63.4 even 3 504.1.bn.c.13.2 yes 4
63.13 odd 6 3528.1.cw.c.2677.2 4
63.31 odd 6 504.1.bn.c.13.1 4
63.32 odd 6 1512.1.bn.c.685.1 4
63.40 odd 6 inner 3528.1.bp.c.3253.1 4
63.58 even 3 inner 3528.1.bp.c.3253.2 4
63.59 even 6 1512.1.bn.c.685.2 4
72.13 even 6 3528.1.cw.c.2677.2 4
168.53 odd 6 1512.1.bn.c.181.2 4
168.101 even 6 1512.1.bn.c.181.1 4
252.31 even 6 2016.1.bv.c.1777.2 4
252.67 odd 6 2016.1.bv.c.1777.1 4
504.13 odd 6 3528.1.cw.c.2677.1 4
504.67 odd 6 2016.1.bv.c.1777.2 4
504.157 odd 6 504.1.bn.c.13.2 yes 4
504.221 odd 6 1512.1.bn.c.685.2 4
504.229 odd 6 inner 3528.1.bp.c.3253.2 4
504.283 even 6 2016.1.bv.c.1777.1 4
504.373 even 6 inner 3528.1.bp.c.3253.1 4
504.437 even 6 1512.1.bn.c.685.1 4
504.445 even 6 504.1.bn.c.13.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.bn.c.13.1 4 63.31 odd 6
504.1.bn.c.13.1 4 504.445 even 6
504.1.bn.c.13.2 yes 4 63.4 even 3
504.1.bn.c.13.2 yes 4 504.157 odd 6
504.1.bn.c.349.1 yes 4 7.4 even 3
504.1.bn.c.349.1 yes 4 56.45 odd 6
504.1.bn.c.349.2 yes 4 7.3 odd 6
504.1.bn.c.349.2 yes 4 56.53 even 6
1512.1.bn.c.181.1 4 21.11 odd 6
1512.1.bn.c.181.1 4 168.101 even 6
1512.1.bn.c.181.2 4 21.17 even 6
1512.1.bn.c.181.2 4 168.53 odd 6
1512.1.bn.c.685.1 4 63.32 odd 6
1512.1.bn.c.685.1 4 504.437 even 6
1512.1.bn.c.685.2 4 63.59 even 6
1512.1.bn.c.685.2 4 504.221 odd 6
2016.1.bv.c.1105.1 4 28.3 even 6
2016.1.bv.c.1105.1 4 56.11 odd 6
2016.1.bv.c.1105.2 4 28.11 odd 6
2016.1.bv.c.1105.2 4 56.3 even 6
2016.1.bv.c.1777.1 4 252.67 odd 6
2016.1.bv.c.1777.1 4 504.283 even 6
2016.1.bv.c.1777.2 4 252.31 even 6
2016.1.bv.c.1777.2 4 504.67 odd 6
3528.1.bp.c.1501.1 4 7.6 odd 2 inner
3528.1.bp.c.1501.1 4 8.5 even 2 inner
3528.1.bp.c.1501.2 4 1.1 even 1 trivial
3528.1.bp.c.1501.2 4 56.13 odd 2 CM
3528.1.bp.c.3253.1 4 63.40 odd 6 inner
3528.1.bp.c.3253.1 4 504.373 even 6 inner
3528.1.bp.c.3253.2 4 63.58 even 3 inner
3528.1.bp.c.3253.2 4 504.229 odd 6 inner
3528.1.cw.c.2077.1 4 7.2 even 3
3528.1.cw.c.2077.1 4 56.5 odd 6
3528.1.cw.c.2077.2 4 7.5 odd 6
3528.1.cw.c.2077.2 4 56.37 even 6
3528.1.cw.c.2677.1 4 9.4 even 3
3528.1.cw.c.2677.1 4 504.13 odd 6
3528.1.cw.c.2677.2 4 63.13 odd 6
3528.1.cw.c.2677.2 4 72.13 even 6