Properties

Label 2016.2.bs.c.1711.16
Level $2016$
Weight $2$
Character 2016.1711
Analytic conductor $16.098$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,2,Mod(271,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.271");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1711.16
Character \(\chi\) \(=\) 2016.1711
Dual form 2016.2.bs.c.271.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.08776 + 3.61611i) q^{5} +(-2.39694 - 1.12013i) q^{7} +(-0.855485 + 1.48174i) q^{11} +1.54062 q^{13} +(-2.02094 - 1.16679i) q^{17} +(-6.09693 + 3.52006i) q^{19} +(0.406066 - 0.234442i) q^{23} +(-6.21752 + 10.7691i) q^{25} -3.33885i q^{29} +(1.58126 - 2.73883i) q^{31} +(-0.953738 - 11.0062i) q^{35} +(-7.74648 + 4.47243i) q^{37} +5.31411i q^{41} +3.42772 q^{43} +(2.95047 + 5.11037i) q^{47} +(4.49063 + 5.36975i) q^{49} +(-1.35437 - 0.781947i) q^{53} -7.14421 q^{55} +(-5.26742 - 3.04114i) q^{59} +(-4.55959 - 7.89744i) q^{61} +(3.21646 + 5.57107i) q^{65} +(-3.73658 + 6.47195i) q^{67} -3.49263i q^{71} +(-12.5811 - 7.26372i) q^{73} +(3.71029 - 2.59340i) q^{77} +(-1.46108 + 0.843557i) q^{79} +2.72601i q^{83} -9.74391i q^{85} +(-1.83829 + 1.06134i) q^{89} +(-3.69278 - 1.72569i) q^{91} +(-25.4579 - 14.6981i) q^{95} -1.95202i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{11} - 16 q^{25} - 24 q^{35} + 16 q^{43} + 8 q^{49} - 96 q^{59} + 32 q^{67} - 24 q^{73} - 56 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.08776 + 3.61611i 0.933677 + 1.61718i 0.776977 + 0.629529i \(0.216752\pi\)
0.156700 + 0.987646i \(0.449915\pi\)
\(6\) 0 0
\(7\) −2.39694 1.12013i −0.905958 0.423368i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.855485 + 1.48174i −0.257939 + 0.446763i −0.965690 0.259699i \(-0.916377\pi\)
0.707751 + 0.706462i \(0.249710\pi\)
\(12\) 0 0
\(13\) 1.54062 0.427292 0.213646 0.976911i \(-0.431466\pi\)
0.213646 + 0.976911i \(0.431466\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.02094 1.16679i −0.490149 0.282988i 0.234487 0.972119i \(-0.424659\pi\)
−0.724636 + 0.689132i \(0.757992\pi\)
\(18\) 0 0
\(19\) −6.09693 + 3.52006i −1.39873 + 0.807558i −0.994260 0.106992i \(-0.965878\pi\)
−0.404472 + 0.914551i \(0.632545\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.406066 0.234442i 0.0846705 0.0488846i −0.457067 0.889432i \(-0.651100\pi\)
0.541737 + 0.840548i \(0.317767\pi\)
\(24\) 0 0
\(25\) −6.21752 + 10.7691i −1.24350 + 2.15381i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.33885i 0.620009i −0.950735 0.310005i \(-0.899669\pi\)
0.950735 0.310005i \(-0.100331\pi\)
\(30\) 0 0
\(31\) 1.58126 2.73883i 0.284003 0.491908i −0.688364 0.725366i \(-0.741671\pi\)
0.972367 + 0.233458i \(0.0750040\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.953738 11.0062i −0.161211 1.86038i
\(36\) 0 0
\(37\) −7.74648 + 4.47243i −1.27351 + 0.735263i −0.975647 0.219345i \(-0.929608\pi\)
−0.297865 + 0.954608i \(0.596275\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.31411i 0.829925i 0.909838 + 0.414963i \(0.136205\pi\)
−0.909838 + 0.414963i \(0.863795\pi\)
\(42\) 0 0
\(43\) 3.42772 0.522722 0.261361 0.965241i \(-0.415829\pi\)
0.261361 + 0.965241i \(0.415829\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.95047 + 5.11037i 0.430371 + 0.745424i 0.996905 0.0786139i \(-0.0250494\pi\)
−0.566534 + 0.824038i \(0.691716\pi\)
\(48\) 0 0
\(49\) 4.49063 + 5.36975i 0.641519 + 0.767107i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.35437 0.781947i −0.186037 0.107409i 0.404089 0.914720i \(-0.367589\pi\)
−0.590126 + 0.807311i \(0.700922\pi\)
\(54\) 0 0
\(55\) −7.14421 −0.963325
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.26742 3.04114i −0.685759 0.395923i 0.116262 0.993219i \(-0.462909\pi\)
−0.802021 + 0.597295i \(0.796242\pi\)
\(60\) 0 0
\(61\) −4.55959 7.89744i −0.583795 1.01116i −0.995024 0.0996311i \(-0.968234\pi\)
0.411229 0.911532i \(-0.365100\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.21646 + 5.57107i 0.398952 + 0.691006i
\(66\) 0 0
\(67\) −3.73658 + 6.47195i −0.456496 + 0.790675i −0.998773 0.0495251i \(-0.984229\pi\)
0.542276 + 0.840200i \(0.317563\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.49263i 0.414499i −0.978288 0.207249i \(-0.933549\pi\)
0.978288 0.207249i \(-0.0664512\pi\)
\(72\) 0 0
\(73\) −12.5811 7.26372i −1.47251 0.850154i −0.472988 0.881069i \(-0.656824\pi\)
−0.999522 + 0.0309152i \(0.990158\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.71029 2.59340i 0.422826 0.295545i
\(78\) 0 0
\(79\) −1.46108 + 0.843557i −0.164385 + 0.0949075i −0.579935 0.814662i \(-0.696922\pi\)
0.415551 + 0.909570i \(0.363589\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.72601i 0.299219i 0.988745 + 0.149609i \(0.0478016\pi\)
−0.988745 + 0.149609i \(0.952198\pi\)
\(84\) 0 0
\(85\) 9.74391i 1.05688i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.83829 + 1.06134i −0.194858 + 0.112501i −0.594255 0.804277i \(-0.702553\pi\)
0.399397 + 0.916778i \(0.369220\pi\)
\(90\) 0 0
\(91\) −3.69278 1.72569i −0.387108 0.180902i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −25.4579 14.6981i −2.61193 1.50800i
\(96\) 0 0
\(97\) 1.95202i 0.198198i −0.995078 0.0990990i \(-0.968404\pi\)
0.995078 0.0990990i \(-0.0315960\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.89045 11.9346i 0.685625 1.18754i −0.287615 0.957746i \(-0.592862\pi\)
0.973240 0.229792i \(-0.0738044\pi\)
\(102\) 0 0
\(103\) −3.84129 6.65331i −0.378494 0.655570i 0.612350 0.790587i \(-0.290224\pi\)
−0.990843 + 0.135017i \(0.956891\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.20414 + 12.4779i 0.696450 + 1.20629i 0.969689 + 0.244341i \(0.0785715\pi\)
−0.273239 + 0.961946i \(0.588095\pi\)
\(108\) 0 0
\(109\) 2.92380 + 1.68806i 0.280050 + 0.161687i 0.633446 0.773787i \(-0.281640\pi\)
−0.353396 + 0.935474i \(0.614973\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.7090 1.00742 0.503710 0.863873i \(-0.331968\pi\)
0.503710 + 0.863873i \(0.331968\pi\)
\(114\) 0 0
\(115\) 1.69554 + 0.978920i 0.158110 + 0.0912847i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.53711 + 5.06042i 0.324246 + 0.463888i
\(120\) 0 0
\(121\) 4.03629 + 6.99106i 0.366935 + 0.635551i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −31.0452 −2.77677
\(126\) 0 0
\(127\) 9.49738i 0.842757i 0.906885 + 0.421378i \(0.138454\pi\)
−0.906885 + 0.421378i \(0.861546\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.8364 + 6.83375i −1.03415 + 0.597068i −0.918171 0.396184i \(-0.870334\pi\)
−0.115981 + 0.993251i \(0.537001\pi\)
\(132\) 0 0
\(133\) 18.5569 1.60805i 1.60909 0.139435i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.99460 + 10.3829i −0.512153 + 0.887075i 0.487748 + 0.872985i \(0.337819\pi\)
−0.999901 + 0.0140902i \(0.995515\pi\)
\(138\) 0 0
\(139\) 6.64909i 0.563968i 0.959419 + 0.281984i \(0.0909925\pi\)
−0.959419 + 0.281984i \(0.909007\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.31798 + 2.28281i −0.110215 + 0.190898i
\(144\) 0 0
\(145\) 12.0737 6.97073i 1.00266 0.578888i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.03123 4.05948i 0.576021 0.332566i −0.183530 0.983014i \(-0.558752\pi\)
0.759550 + 0.650448i \(0.225419\pi\)
\(150\) 0 0
\(151\) −1.07044 0.618020i −0.0871113 0.0502937i 0.455812 0.890076i \(-0.349349\pi\)
−0.542923 + 0.839783i \(0.682682\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 13.2052 1.06067
\(156\) 0 0
\(157\) 4.80286 8.31880i 0.383310 0.663913i −0.608223 0.793766i \(-0.708117\pi\)
0.991533 + 0.129854i \(0.0414507\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.23592 + 0.107099i −0.0974041 + 0.00844055i
\(162\) 0 0
\(163\) −9.70461 16.8089i −0.760123 1.31657i −0.942787 0.333397i \(-0.891805\pi\)
0.182663 0.983176i \(-0.441528\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.7482 1.37340 0.686699 0.726942i \(-0.259059\pi\)
0.686699 + 0.726942i \(0.259059\pi\)
\(168\) 0 0
\(169\) −10.6265 −0.817422
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.57075 + 6.18472i 0.271479 + 0.470216i 0.969241 0.246114i \(-0.0791539\pi\)
−0.697762 + 0.716330i \(0.745821\pi\)
\(174\) 0 0
\(175\) 26.9657 18.8484i 2.03842 1.42480i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.9581 + 20.7121i −0.893791 + 1.54809i −0.0584980 + 0.998288i \(0.518631\pi\)
−0.835293 + 0.549805i \(0.814702\pi\)
\(180\) 0 0
\(181\) −20.5572 −1.52800 −0.764002 0.645214i \(-0.776768\pi\)
−0.764002 + 0.645214i \(0.776768\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −32.3456 18.6748i −2.37810 1.37300i
\(186\) 0 0
\(187\) 3.45776 1.99634i 0.252857 0.145987i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.74523 1.00761i 0.126280 0.0729079i −0.435529 0.900175i \(-0.643439\pi\)
0.561809 + 0.827267i \(0.310105\pi\)
\(192\) 0 0
\(193\) 1.78535 3.09232i 0.128512 0.222590i −0.794588 0.607149i \(-0.792313\pi\)
0.923100 + 0.384559i \(0.125646\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.5393i 1.24962i 0.780775 + 0.624812i \(0.214824\pi\)
−0.780775 + 0.624812i \(0.785176\pi\)
\(198\) 0 0
\(199\) −8.85336 + 15.3345i −0.627598 + 1.08703i 0.360434 + 0.932785i \(0.382629\pi\)
−0.988032 + 0.154247i \(0.950705\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.73994 + 8.00302i −0.262492 + 0.561702i
\(204\) 0 0
\(205\) −19.2164 + 11.0946i −1.34213 + 0.774882i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0455i 0.833201i
\(210\) 0 0
\(211\) 4.23050 0.291240 0.145620 0.989341i \(-0.453482\pi\)
0.145620 + 0.989341i \(0.453482\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.15626 + 12.3950i 0.488053 + 0.845333i
\(216\) 0 0
\(217\) −6.85803 + 4.79359i −0.465553 + 0.325410i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.11350 1.79758i −0.209437 0.120918i
\(222\) 0 0
\(223\) −1.43532 −0.0961162 −0.0480581 0.998845i \(-0.515303\pi\)
−0.0480581 + 0.998845i \(0.515303\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.8688 + 8.00718i 0.920508 + 0.531455i 0.883797 0.467871i \(-0.154979\pi\)
0.0367106 + 0.999326i \(0.488312\pi\)
\(228\) 0 0
\(229\) 8.12499 + 14.0729i 0.536914 + 0.929963i 0.999068 + 0.0431631i \(0.0137435\pi\)
−0.462154 + 0.886800i \(0.652923\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.93054 + 10.2720i 0.388522 + 0.672941i 0.992251 0.124249i \(-0.0396522\pi\)
−0.603729 + 0.797190i \(0.706319\pi\)
\(234\) 0 0
\(235\) −12.3198 + 21.3385i −0.803654 + 1.39197i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.846585i 0.0547610i −0.999625 0.0273805i \(-0.991283\pi\)
0.999625 0.0273805i \(-0.00871657\pi\)
\(240\) 0 0
\(241\) −0.761425 0.439609i −0.0490477 0.0283177i 0.475276 0.879837i \(-0.342348\pi\)
−0.524323 + 0.851519i \(0.675682\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.0422 + 27.4494i −0.641575 + 1.75368i
\(246\) 0 0
\(247\) −9.39307 + 5.42309i −0.597667 + 0.345063i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.1441i 1.14524i −0.819820 0.572622i \(-0.805926\pi\)
0.819820 0.572622i \(-0.194074\pi\)
\(252\) 0 0
\(253\) 0.802247i 0.0504368i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.8902 + 9.17421i −0.991203 + 0.572271i −0.905634 0.424061i \(-0.860604\pi\)
−0.0855695 + 0.996332i \(0.527271\pi\)
\(258\) 0 0
\(259\) 23.5775 2.04311i 1.46504 0.126953i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.02044 + 1.74385i 0.186248 + 0.107531i 0.590225 0.807239i \(-0.299039\pi\)
−0.403977 + 0.914769i \(0.632372\pi\)
\(264\) 0 0
\(265\) 6.53008i 0.401140i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.35605 12.7410i 0.448506 0.776835i −0.549783 0.835308i \(-0.685290\pi\)
0.998289 + 0.0584722i \(0.0186229\pi\)
\(270\) 0 0
\(271\) 9.95139 + 17.2363i 0.604504 + 1.04703i 0.992130 + 0.125215i \(0.0399619\pi\)
−0.387626 + 0.921817i \(0.626705\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.6380 18.4255i −0.641495 1.11110i
\(276\) 0 0
\(277\) 22.9034 + 13.2233i 1.37613 + 0.794510i 0.991691 0.128640i \(-0.0410613\pi\)
0.384440 + 0.923150i \(0.374395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.2837 1.21003 0.605013 0.796216i \(-0.293168\pi\)
0.605013 + 0.796216i \(0.293168\pi\)
\(282\) 0 0
\(283\) −5.70426 3.29336i −0.339083 0.195770i 0.320783 0.947153i \(-0.396054\pi\)
−0.659866 + 0.751383i \(0.729387\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.95248 12.7376i 0.351364 0.751877i
\(288\) 0 0
\(289\) −5.77721 10.0064i −0.339836 0.588613i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.9438 0.756187 0.378094 0.925767i \(-0.376580\pi\)
0.378094 + 0.925767i \(0.376580\pi\)
\(294\) 0 0
\(295\) 25.3968i 1.47866i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.625594 0.361187i 0.0361790 0.0208880i
\(300\) 0 0
\(301\) −8.21603 3.83948i −0.473564 0.221304i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 19.0387 32.9760i 1.09015 1.88820i
\(306\) 0 0
\(307\) 11.8773i 0.677871i 0.940810 + 0.338936i \(0.110067\pi\)
−0.940810 + 0.338936i \(0.889933\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.91849 + 10.2511i −0.335607 + 0.581288i −0.983601 0.180357i \(-0.942275\pi\)
0.647994 + 0.761645i \(0.275608\pi\)
\(312\) 0 0
\(313\) −12.8383 + 7.41217i −0.725661 + 0.418961i −0.816833 0.576875i \(-0.804272\pi\)
0.0911716 + 0.995835i \(0.470939\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.87478 + 3.39181i −0.329961 + 0.190503i −0.655824 0.754914i \(-0.727678\pi\)
0.325863 + 0.945417i \(0.394345\pi\)
\(318\) 0 0
\(319\) 4.94732 + 2.85634i 0.276997 + 0.159924i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.4287 0.914116
\(324\) 0 0
\(325\) −9.57885 + 16.5911i −0.531339 + 0.920306i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.34784 15.5542i −0.0743090 0.857528i
\(330\) 0 0
\(331\) −2.37285 4.10989i −0.130424 0.225900i 0.793416 0.608679i \(-0.208300\pi\)
−0.923840 + 0.382779i \(0.874967\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −31.2044 −1.70488
\(336\) 0 0
\(337\) 16.5173 0.899754 0.449877 0.893090i \(-0.351468\pi\)
0.449877 + 0.893090i \(0.351468\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.70549 + 4.68605i 0.146511 + 0.253764i
\(342\) 0 0
\(343\) −4.74897 17.9010i −0.256420 0.966565i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.54986 16.5408i 0.512663 0.887959i −0.487229 0.873274i \(-0.661992\pi\)
0.999892 0.0146846i \(-0.00467441\pi\)
\(348\) 0 0
\(349\) 2.49767 0.133697 0.0668485 0.997763i \(-0.478706\pi\)
0.0668485 + 0.997763i \(0.478706\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.3071 + 12.8790i 1.18729 + 0.685481i 0.957689 0.287805i \(-0.0929254\pi\)
0.229599 + 0.973285i \(0.426259\pi\)
\(354\) 0 0
\(355\) 12.6297 7.29179i 0.670317 0.387008i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.7697 16.6102i 1.51840 0.876651i 0.518639 0.854993i \(-0.326439\pi\)
0.999765 0.0216582i \(-0.00689457\pi\)
\(360\) 0 0
\(361\) 15.2817 26.4687i 0.804300 1.39309i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 60.6597i 3.17507i
\(366\) 0 0
\(367\) −2.17584 + 3.76866i −0.113578 + 0.196722i −0.917210 0.398403i \(-0.869564\pi\)
0.803633 + 0.595126i \(0.202898\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.37047 + 3.39135i 0.123068 + 0.176070i
\(372\) 0 0
\(373\) 11.0943 6.40533i 0.574444 0.331655i −0.184479 0.982837i \(-0.559060\pi\)
0.758922 + 0.651181i \(0.225726\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.14391i 0.264925i
\(378\) 0 0
\(379\) 24.0807 1.23694 0.618472 0.785807i \(-0.287752\pi\)
0.618472 + 0.785807i \(0.287752\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.78233 + 15.2114i 0.448756 + 0.777268i 0.998305 0.0581930i \(-0.0185339\pi\)
−0.549549 + 0.835461i \(0.685201\pi\)
\(384\) 0 0
\(385\) 17.1242 + 8.00242i 0.872731 + 0.407841i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 23.9022 + 13.7999i 1.21189 + 0.699685i 0.963171 0.268890i \(-0.0866570\pi\)
0.248719 + 0.968576i \(0.419990\pi\)
\(390\) 0 0
\(391\) −1.09418 −0.0553349
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.10079 3.52229i −0.306964 0.177226i
\(396\) 0 0
\(397\) −8.65850 14.9970i −0.434558 0.752676i 0.562702 0.826660i \(-0.309762\pi\)
−0.997259 + 0.0739841i \(0.976429\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.87616 + 6.71371i 0.193566 + 0.335266i 0.946430 0.322910i \(-0.104661\pi\)
−0.752863 + 0.658177i \(0.771328\pi\)
\(402\) 0 0
\(403\) 2.43613 4.21950i 0.121352 0.210188i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.3044i 0.758611i
\(408\) 0 0
\(409\) −4.01694 2.31918i −0.198625 0.114676i 0.397389 0.917650i \(-0.369916\pi\)
−0.596014 + 0.802974i \(0.703250\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.21921 + 13.1896i 0.453648 + 0.649018i
\(414\) 0 0
\(415\) −9.85758 + 5.69128i −0.483889 + 0.279374i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.2419i 0.695760i −0.937539 0.347880i \(-0.886902\pi\)
0.937539 0.347880i \(-0.113098\pi\)
\(420\) 0 0
\(421\) 20.0126i 0.975356i −0.873024 0.487678i \(-0.837844\pi\)
0.873024 0.487678i \(-0.162156\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 25.1304 14.5091i 1.21900 0.703793i
\(426\) 0 0
\(427\) 2.08292 + 24.0370i 0.100800 + 1.16323i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.1099 + 6.99165i 0.583313 + 0.336776i 0.762449 0.647049i \(-0.223997\pi\)
−0.179136 + 0.983824i \(0.557330\pi\)
\(432\) 0 0
\(433\) 0.984888i 0.0473307i −0.999720 0.0236653i \(-0.992466\pi\)
0.999720 0.0236653i \(-0.00753362\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.65050 + 2.85875i −0.0789542 + 0.136753i
\(438\) 0 0
\(439\) −3.43693 5.95294i −0.164036 0.284118i 0.772277 0.635286i \(-0.219118\pi\)
−0.936312 + 0.351168i \(0.885785\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.70483 2.95285i −0.0809989 0.140294i 0.822680 0.568504i \(-0.192478\pi\)
−0.903679 + 0.428210i \(0.859144\pi\)
\(444\) 0 0
\(445\) −7.67582 4.43164i −0.363869 0.210080i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −32.9924 −1.55701 −0.778503 0.627641i \(-0.784021\pi\)
−0.778503 + 0.627641i \(0.784021\pi\)
\(450\) 0 0
\(451\) −7.87416 4.54615i −0.370780 0.214070i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.46935 16.9563i −0.0688842 0.794926i
\(456\) 0 0
\(457\) 11.4224 + 19.7842i 0.534319 + 0.925467i 0.999196 + 0.0400919i \(0.0127651\pi\)
−0.464877 + 0.885375i \(0.653902\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.8743 −0.739338 −0.369669 0.929164i \(-0.620529\pi\)
−0.369669 + 0.929164i \(0.620529\pi\)
\(462\) 0 0
\(463\) 2.72059i 0.126436i −0.998000 0.0632182i \(-0.979864\pi\)
0.998000 0.0632182i \(-0.0201364\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.7726 11.9931i 0.961240 0.554972i 0.0646858 0.997906i \(-0.479395\pi\)
0.896555 + 0.442933i \(0.146062\pi\)
\(468\) 0 0
\(469\) 16.2058 11.3274i 0.748313 0.523052i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.93236 + 5.07900i −0.134830 + 0.233533i
\(474\) 0 0
\(475\) 87.5443i 4.01681i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.87511 + 17.1042i −0.451205 + 0.781511i −0.998461 0.0554547i \(-0.982339\pi\)
0.547256 + 0.836965i \(0.315672\pi\)
\(480\) 0 0
\(481\) −11.9344 + 6.89033i −0.544162 + 0.314172i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.05874 4.07536i 0.320521 0.185053i
\(486\) 0 0
\(487\) 32.1435 + 18.5581i 1.45656 + 0.840946i 0.998840 0.0481495i \(-0.0153324\pi\)
0.457721 + 0.889096i \(0.348666\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20.5746 −0.928517 −0.464259 0.885700i \(-0.653679\pi\)
−0.464259 + 0.885700i \(0.653679\pi\)
\(492\) 0 0
\(493\) −3.89573 + 6.74761i −0.175455 + 0.303897i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.91219 + 8.37162i −0.175486 + 0.375518i
\(498\) 0 0
\(499\) 0.517579 + 0.896473i 0.0231700 + 0.0401316i 0.877378 0.479800i \(-0.159291\pi\)
−0.854208 + 0.519932i \(0.825957\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.7898 −0.882382 −0.441191 0.897413i \(-0.645444\pi\)
−0.441191 + 0.897413i \(0.645444\pi\)
\(504\) 0 0
\(505\) 57.5425 2.56061
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.11849 3.66933i −0.0939004 0.162640i 0.815249 0.579111i \(-0.196600\pi\)
−0.909149 + 0.416471i \(0.863267\pi\)
\(510\) 0 0
\(511\) 22.0199 + 31.5031i 0.974104 + 1.39362i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.0394 27.7811i 0.706781 1.22418i
\(516\) 0 0
\(517\) −10.0963 −0.444037
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.6570 + 19.4319i 1.47454 + 0.851326i 0.999588 0.0286855i \(-0.00913212\pi\)
0.474952 + 0.880012i \(0.342465\pi\)
\(522\) 0 0
\(523\) −14.8181 + 8.55526i −0.647952 + 0.374095i −0.787671 0.616096i \(-0.788713\pi\)
0.139719 + 0.990191i \(0.455380\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.39126 + 3.69000i −0.278408 + 0.160739i
\(528\) 0 0
\(529\) −11.3901 + 19.7282i −0.495221 + 0.857747i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.18704i 0.354620i
\(534\) 0 0
\(535\) −30.0811 + 52.1019i −1.30052 + 2.25256i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.7983 + 2.06023i −0.508187 + 0.0887402i
\(540\) 0 0
\(541\) 37.6652 21.7460i 1.61935 0.934935i 0.632268 0.774750i \(-0.282124\pi\)
0.987087 0.160185i \(-0.0512092\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.0971i 0.603852i
\(546\) 0 0
\(547\) −10.8290 −0.463016 −0.231508 0.972833i \(-0.574366\pi\)
−0.231508 + 0.972833i \(0.574366\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.7530 + 20.3567i 0.500693 + 0.867226i
\(552\) 0 0
\(553\) 4.44702 0.385356i 0.189106 0.0163870i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.04197 + 4.06568i 0.298378 + 0.172269i 0.641714 0.766944i \(-0.278224\pi\)
−0.343336 + 0.939213i \(0.611557\pi\)
\(558\) 0 0
\(559\) 5.28082 0.223355
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.6081 + 11.3207i 0.826381 + 0.477111i 0.852612 0.522545i \(-0.175017\pi\)
−0.0262311 + 0.999656i \(0.508351\pi\)
\(564\) 0 0
\(565\) 22.3579 + 38.7251i 0.940605 + 1.62918i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.1485 17.5778i −0.425449 0.736900i 0.571013 0.820941i \(-0.306551\pi\)
−0.996462 + 0.0840413i \(0.973217\pi\)
\(570\) 0 0
\(571\) 18.3819 31.8383i 0.769257 1.33239i −0.168710 0.985666i \(-0.553960\pi\)
0.937967 0.346726i \(-0.112707\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.83059i 0.243153i
\(576\) 0 0
\(577\) 1.39915 + 0.807801i 0.0582475 + 0.0336292i 0.528841 0.848721i \(-0.322627\pi\)
−0.470593 + 0.882350i \(0.655960\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.05348 6.53409i 0.126680 0.271080i
\(582\) 0 0
\(583\) 2.31729 1.33789i 0.0959723 0.0554097i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.68747i 0.152198i 0.997100 + 0.0760991i \(0.0242465\pi\)
−0.997100 + 0.0760991i \(0.975753\pi\)
\(588\) 0 0
\(589\) 22.2646i 0.917396i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −32.3781 + 18.6935i −1.32961 + 0.767650i −0.985239 0.171184i \(-0.945241\pi\)
−0.344370 + 0.938834i \(0.611908\pi\)
\(594\) 0 0
\(595\) −10.9144 + 23.3556i −0.447447 + 0.957485i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.61435 + 4.97350i 0.351973 + 0.203212i 0.665554 0.746350i \(-0.268195\pi\)
−0.313581 + 0.949561i \(0.601529\pi\)
\(600\) 0 0
\(601\) 35.9296i 1.46560i −0.680445 0.732799i \(-0.738214\pi\)
0.680445 0.732799i \(-0.261786\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −16.8536 + 29.1914i −0.685198 + 1.18680i
\(606\) 0 0
\(607\) 14.9355 + 25.8690i 0.606212 + 1.04999i 0.991859 + 0.127344i \(0.0406451\pi\)
−0.385646 + 0.922647i \(0.626022\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.54557 + 7.87315i 0.183894 + 0.318514i
\(612\) 0 0
\(613\) 32.8160 + 18.9463i 1.32542 + 0.765234i 0.984588 0.174889i \(-0.0559566\pi\)
0.340836 + 0.940123i \(0.389290\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −39.0332 −1.57142 −0.785709 0.618597i \(-0.787702\pi\)
−0.785709 + 0.618597i \(0.787702\pi\)
\(618\) 0 0
\(619\) 21.5338 + 12.4325i 0.865517 + 0.499706i 0.865856 0.500294i \(-0.166775\pi\)
−0.000339137 1.00000i \(0.500108\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.59509 0.484842i 0.224163 0.0194248i
\(624\) 0 0
\(625\) −33.7275 58.4177i −1.34910 2.33671i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.8735 0.832281
\(630\) 0 0
\(631\) 43.3823i 1.72702i −0.504330 0.863511i \(-0.668260\pi\)
0.504330 0.863511i \(-0.331740\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −34.3436 + 19.8283i −1.36289 + 0.786862i
\(636\) 0 0
\(637\) 6.91837 + 8.27276i 0.274116 + 0.327779i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.32559 5.76010i 0.131353 0.227510i −0.792845 0.609423i \(-0.791401\pi\)
0.924198 + 0.381913i \(0.124735\pi\)
\(642\) 0 0
\(643\) 18.1066i 0.714055i −0.934094 0.357027i \(-0.883790\pi\)
0.934094 0.357027i \(-0.116210\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.6421 + 42.6815i −0.968783 + 1.67798i −0.269694 + 0.962946i \(0.586923\pi\)
−0.699089 + 0.715035i \(0.746411\pi\)
\(648\) 0 0
\(649\) 9.01239 5.20331i 0.353767 0.204248i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.1087 + 12.7645i −0.865181 + 0.499512i −0.865744 0.500488i \(-0.833154\pi\)
0.000563051 1.00000i \(0.499821\pi\)
\(654\) 0 0
\(655\) −49.4233 28.5345i −1.93113 1.11494i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0942 −0.471125 −0.235562 0.971859i \(-0.575693\pi\)
−0.235562 + 0.971859i \(0.575693\pi\)
\(660\) 0 0
\(661\) 5.42541 9.39708i 0.211024 0.365504i −0.741011 0.671493i \(-0.765654\pi\)
0.952035 + 0.305988i \(0.0989869\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 44.5573 + 63.7466i 1.72786 + 2.47199i
\(666\) 0 0
\(667\) −0.782767 1.35579i −0.0303089 0.0524965i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 15.6026 0.602333
\(672\) 0 0
\(673\) −48.1931 −1.85771 −0.928854 0.370446i \(-0.879205\pi\)
−0.928854 + 0.370446i \(0.879205\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.56093 + 4.43567i 0.0984246 + 0.170476i 0.911033 0.412334i \(-0.135286\pi\)
−0.812608 + 0.582810i \(0.801953\pi\)
\(678\) 0 0
\(679\) −2.18651 + 4.67888i −0.0839107 + 0.179559i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.7191 + 20.2980i −0.448418 + 0.776682i −0.998283 0.0585709i \(-0.981346\pi\)
0.549866 + 0.835253i \(0.314679\pi\)
\(684\) 0 0
\(685\) −50.0612 −1.91274
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.08658 1.20468i −0.0794922 0.0458948i
\(690\) 0 0
\(691\) −11.9534 + 6.90129i −0.454728 + 0.262537i −0.709825 0.704378i \(-0.751226\pi\)
0.255097 + 0.966915i \(0.417893\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24.0439 + 13.8817i −0.912035 + 0.526564i
\(696\) 0 0
\(697\) 6.20044 10.7395i 0.234859 0.406787i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.8718i 0.448393i −0.974544 0.224196i \(-0.928024\pi\)
0.974544 0.224196i \(-0.0719757\pi\)
\(702\) 0 0
\(703\) 31.4865 54.5362i 1.18754 2.05687i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29.8843 + 20.8883i −1.12391 + 0.785587i
\(708\) 0 0
\(709\) −27.1241 + 15.6601i −1.01867 + 0.588127i −0.913717 0.406350i \(-0.866801\pi\)
−0.104949 + 0.994478i \(0.533468\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.48286i 0.0555335i
\(714\) 0 0
\(715\) −11.0065 −0.411621
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.6273 21.8712i −0.470920 0.815657i 0.528527 0.848917i \(-0.322745\pi\)
−0.999447 + 0.0332594i \(0.989411\pi\)
\(720\) 0 0
\(721\) 1.75479 + 20.2503i 0.0653518 + 0.754161i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 35.9563 + 20.7594i 1.33538 + 0.770984i
\(726\) 0 0
\(727\) 17.9342 0.665144 0.332572 0.943078i \(-0.392084\pi\)
0.332572 + 0.943078i \(0.392084\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.92720 3.99942i −0.256212 0.147924i
\(732\) 0 0
\(733\) 6.16779 + 10.6829i 0.227813 + 0.394583i 0.957160 0.289561i \(-0.0935093\pi\)
−0.729347 + 0.684144i \(0.760176\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.39319 11.0733i −0.235496 0.407891i
\(738\) 0 0
\(739\) 21.7463 37.6656i 0.799949 1.38555i −0.119699 0.992810i \(-0.538193\pi\)
0.919648 0.392743i \(-0.128474\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 32.8397i 1.20477i −0.798205 0.602386i \(-0.794217\pi\)
0.798205 0.602386i \(-0.205783\pi\)
\(744\) 0 0
\(745\) 29.3591 + 16.9505i 1.07563 + 0.621018i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.29101 37.9784i −0.120251 1.38770i
\(750\) 0 0
\(751\) 7.62670 4.40328i 0.278302 0.160678i −0.354352 0.935112i \(-0.615299\pi\)
0.632655 + 0.774434i \(0.281965\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.16112i 0.187832i
\(756\) 0 0
\(757\) 16.9328i 0.615433i −0.951478 0.307717i \(-0.900435\pi\)
0.951478 0.307717i \(-0.0995649\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.9108 + 6.29937i −0.395517 + 0.228352i −0.684548 0.728968i \(-0.740000\pi\)
0.289031 + 0.957320i \(0.406667\pi\)
\(762\) 0 0
\(763\) −5.11734 7.32121i −0.185260 0.265045i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.11510 4.68526i −0.293019 0.169175i
\(768\) 0 0
\(769\) 16.0445i 0.578581i 0.957241 + 0.289291i \(0.0934194\pi\)
−0.957241 + 0.289291i \(0.906581\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.15671 + 15.8599i −0.329344 + 0.570440i −0.982382 0.186885i \(-0.940161\pi\)
0.653038 + 0.757325i \(0.273494\pi\)
\(774\) 0 0
\(775\) 19.6631 + 34.0574i 0.706318 + 1.22338i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −18.7060 32.3998i −0.670213 1.16084i
\(780\) 0 0
\(781\) 5.17518 + 2.98789i 0.185183 + 0.106915i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 40.1090 1.43155
\(786\) 0 0
\(787\) −3.88976 2.24576i −0.138655 0.0800526i 0.429068 0.903272i \(-0.358842\pi\)
−0.567723 + 0.823220i \(0.692175\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −25.6689 11.9955i −0.912680 0.426510i
\(792\) 0 0
\(793\) −7.02460 12.1670i −0.249451 0.432062i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31.7698 −1.12534 −0.562672 0.826680i \(-0.690227\pi\)
−0.562672 + 0.826680i \(0.690227\pi\)
\(798\) 0 0
\(799\) 13.7703i 0.487159i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 21.5259 12.4280i 0.759634 0.438575i
\(804\) 0 0
\(805\) −2.96759 4.24563i −0.104594 0.149639i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.5784 21.7864i 0.442232 0.765969i −0.555623 0.831435i \(-0.687520\pi\)
0.997855 + 0.0654659i \(0.0208534\pi\)
\(810\) 0 0
\(811\) 48.0042i 1.68565i 0.538184 + 0.842827i \(0.319110\pi\)
−0.538184 + 0.842827i \(0.680890\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 40.5219 70.1859i 1.41942 2.45851i
\(816\) 0 0
\(817\) −20.8985 + 12.0658i −0.731148 + 0.422128i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.5854 + 8.42089i −0.509034 + 0.293891i −0.732437 0.680835i \(-0.761617\pi\)
0.223402 + 0.974726i \(0.428284\pi\)
\(822\) 0 0
\(823\) 17.1163 + 9.88209i 0.596636 + 0.344468i 0.767717 0.640789i \(-0.221393\pi\)
−0.171081 + 0.985257i \(0.554726\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 49.1702 1.70981 0.854907 0.518781i \(-0.173614\pi\)
0.854907 + 0.518781i \(0.173614\pi\)
\(828\) 0 0
\(829\) 7.96007 13.7872i 0.276465 0.478851i −0.694039 0.719937i \(-0.744171\pi\)
0.970504 + 0.241087i \(0.0775038\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.80992 16.0915i −0.0973580 0.557539i
\(834\) 0 0
\(835\) 37.0541 + 64.1795i 1.28231 + 2.22102i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 38.3305 1.32332 0.661658 0.749806i \(-0.269853\pi\)
0.661658 + 0.749806i \(0.269853\pi\)
\(840\) 0 0
\(841\) 17.8521 0.615589
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −22.1856 38.4266i −0.763207 1.32191i
\(846\) 0 0
\(847\) −1.84387 21.2783i −0.0633561 0.731131i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.09705 + 3.63220i −0.0718860 + 0.124510i
\(852\) 0 0
\(853\) −22.5158 −0.770927 −0.385463 0.922723i \(-0.625958\pi\)
−0.385463 + 0.922723i \(0.625958\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.1913 + 6.46129i 0.382287 + 0.220713i 0.678813 0.734311i \(-0.262495\pi\)
−0.296526 + 0.955025i \(0.595828\pi\)
\(858\) 0 0
\(859\) −20.1418 + 11.6289i −0.687229 + 0.396772i −0.802573 0.596554i \(-0.796536\pi\)
0.115344 + 0.993326i \(0.463203\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.69412 + 4.44220i −0.261911 + 0.151214i −0.625206 0.780460i \(-0.714985\pi\)
0.363295 + 0.931674i \(0.381652\pi\)
\(864\) 0 0
\(865\) −14.9098 + 25.8245i −0.506947 + 0.878059i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.88660i 0.0979212i
\(870\) 0 0
\(871\) −5.75667 + 9.97084i −0.195057 + 0.337849i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 74.4135 + 34.7746i 2.51564 + 1.17560i
\(876\) 0 0
\(877\) −40.2134 + 23.2172i −1.35791 + 0.783990i −0.989342 0.145610i \(-0.953485\pi\)
−0.368569 + 0.929600i \(0.620152\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 27.1901i 0.916058i −0.888937 0.458029i \(-0.848556\pi\)
0.888937 0.458029i \(-0.151444\pi\)
\(882\) 0 0
\(883\) 21.7975 0.733543 0.366772 0.930311i \(-0.380463\pi\)
0.366772 + 0.930311i \(0.380463\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −21.1661 36.6607i −0.710688 1.23095i −0.964599 0.263720i \(-0.915051\pi\)
0.253911 0.967227i \(-0.418283\pi\)
\(888\) 0 0
\(889\) 10.6383 22.7646i 0.356796 0.763502i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −35.9777 20.7717i −1.20395 0.695099i
\(894\) 0 0
\(895\) −99.8629 −3.33805
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.14454 5.27960i −0.304987 0.176085i
\(900\) 0 0
\(901\) 1.82473 + 3.16053i 0.0607906 + 0.105292i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −42.9186 74.3371i −1.42666 2.47105i
\(906\) 0 0
\(907\) −22.5605 + 39.0760i −0.749109 + 1.29750i 0.199141 + 0.979971i \(0.436185\pi\)
−0.948250 + 0.317525i \(0.897148\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.2714i 1.20173i 0.799352 + 0.600863i \(0.205176\pi\)
−0.799352 + 0.600863i \(0.794824\pi\)
\(912\) 0 0
\(913\) −4.03926 2.33207i −0.133680 0.0771801i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.0258 3.12181i 1.18968 0.103091i
\(918\) 0 0
\(919\) 37.7905 21.8183i 1.24659 0.719721i 0.276164 0.961110i \(-0.410937\pi\)
0.970428 + 0.241390i \(0.0776032\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.38082i 0.177112i
\(924\) 0 0
\(925\) 111.230i 3.65721i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −10.2075 + 5.89332i −0.334898 + 0.193354i −0.658014 0.753006i \(-0.728603\pi\)
0.323115 + 0.946360i \(0.395270\pi\)
\(930\) 0 0
\(931\) −46.2809 16.9317i −1.51680 0.554913i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.4380 + 8.33578i 0.472173 + 0.272609i
\(936\) 0 0
\(937\) 35.0529i 1.14513i 0.819860 + 0.572565i \(0.194051\pi\)
−0.819860 + 0.572565i \(0.805949\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.2985 24.7658i 0.466119 0.807342i −0.533132 0.846032i \(-0.678985\pi\)
0.999251 + 0.0386903i \(0.0123186\pi\)
\(942\) 0 0
\(943\) 1.24585 + 2.15788i 0.0405705 + 0.0702702i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25.7444 + 44.5906i 0.836580 + 1.44900i 0.892738 + 0.450577i \(0.148782\pi\)
−0.0561576 + 0.998422i \(0.517885\pi\)
\(948\) 0 0
\(949\) −19.3828 11.1906i −0.629191 0.363264i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.8761 0.384706 0.192353 0.981326i \(-0.438388\pi\)
0.192353 + 0.981326i \(0.438388\pi\)
\(954\) 0 0
\(955\) 7.28724 + 4.20729i 0.235810 + 0.136145i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 25.9989 18.1726i 0.839548 0.586823i
\(960\) 0 0
\(961\) 10.4992 + 18.1852i 0.338684 + 0.586618i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.9096 0.479956
\(966\) 0 0
\(967\) 59.2193i 1.90437i −0.305530 0.952183i \(-0.598833\pi\)
0.305530 0.952183i \(-0.401167\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.53638 + 2.61908i −0.145579 + 0.0840503i −0.571020 0.820936i \(-0.693452\pi\)
0.425441 + 0.904986i \(0.360119\pi\)
\(972\) 0 0
\(973\) 7.44782 15.9375i 0.238766 0.510931i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26.6049 + 46.0810i −0.851165 + 1.47426i 0.0289924 + 0.999580i \(0.490770\pi\)
−0.880158 + 0.474682i \(0.842563\pi\)
\(978\) 0 0
\(979\) 3.63183i 0.116074i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −13.9737 + 24.2032i −0.445693 + 0.771963i −0.998100 0.0616113i \(-0.980376\pi\)
0.552407 + 0.833574i \(0.313709\pi\)
\(984\) 0 0
\(985\) −63.4241 + 36.6179i −2.02086 + 1.16674i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.39188 0.803601i 0.0442592 0.0255530i
\(990\) 0 0
\(991\) −18.7980 10.8530i −0.597139 0.344758i 0.170776 0.985310i \(-0.445372\pi\)
−0.767915 + 0.640552i \(0.778706\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −73.9349 −2.34389
\(996\) 0 0
\(997\) −16.8274 + 29.1458i −0.532928 + 0.923058i 0.466333 + 0.884609i \(0.345575\pi\)
−0.999261 + 0.0384485i \(0.987758\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.2.bs.c.1711.16 32
3.2 odd 2 672.2.bb.a.367.1 32
4.3 odd 2 504.2.bk.c.451.5 32
7.5 odd 6 inner 2016.2.bs.c.271.1 32
8.3 odd 2 inner 2016.2.bs.c.1711.1 32
8.5 even 2 504.2.bk.c.451.16 32
12.11 even 2 168.2.t.a.115.12 yes 32
21.5 even 6 672.2.bb.a.271.8 32
21.11 odd 6 4704.2.p.a.3919.24 32
21.17 even 6 4704.2.p.a.3919.5 32
24.5 odd 2 168.2.t.a.115.1 yes 32
24.11 even 2 672.2.bb.a.367.8 32
28.19 even 6 504.2.bk.c.19.16 32
56.5 odd 6 504.2.bk.c.19.5 32
56.19 even 6 inner 2016.2.bs.c.271.16 32
84.11 even 6 1176.2.p.a.979.19 32
84.47 odd 6 168.2.t.a.19.1 32
84.59 odd 6 1176.2.p.a.979.20 32
168.5 even 6 168.2.t.a.19.12 yes 32
168.11 even 6 4704.2.p.a.3919.6 32
168.53 odd 6 1176.2.p.a.979.18 32
168.59 odd 6 4704.2.p.a.3919.23 32
168.101 even 6 1176.2.p.a.979.17 32
168.131 odd 6 672.2.bb.a.271.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.1 32 84.47 odd 6
168.2.t.a.19.12 yes 32 168.5 even 6
168.2.t.a.115.1 yes 32 24.5 odd 2
168.2.t.a.115.12 yes 32 12.11 even 2
504.2.bk.c.19.5 32 56.5 odd 6
504.2.bk.c.19.16 32 28.19 even 6
504.2.bk.c.451.5 32 4.3 odd 2
504.2.bk.c.451.16 32 8.5 even 2
672.2.bb.a.271.1 32 168.131 odd 6
672.2.bb.a.271.8 32 21.5 even 6
672.2.bb.a.367.1 32 3.2 odd 2
672.2.bb.a.367.8 32 24.11 even 2
1176.2.p.a.979.17 32 168.101 even 6
1176.2.p.a.979.18 32 168.53 odd 6
1176.2.p.a.979.19 32 84.11 even 6
1176.2.p.a.979.20 32 84.59 odd 6
2016.2.bs.c.271.1 32 7.5 odd 6 inner
2016.2.bs.c.271.16 32 56.19 even 6 inner
2016.2.bs.c.1711.1 32 8.3 odd 2 inner
2016.2.bs.c.1711.16 32 1.1 even 1 trivial
4704.2.p.a.3919.5 32 21.17 even 6
4704.2.p.a.3919.6 32 168.11 even 6
4704.2.p.a.3919.23 32 168.59 odd 6
4704.2.p.a.3919.24 32 21.11 odd 6