Properties

Label 2016.2.s.a
Level $2016$
Weight $2$
Character orbit 2016.s
Analytic conductor $16.098$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,2,Mod(289,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \zeta_{6} q^{5} + ( - \zeta_{6} - 2) q^{7} +O(q^{10}) \) Copy content Toggle raw display \( q - 4 \zeta_{6} q^{5} + ( - \zeta_{6} - 2) q^{7} + ( - 6 \zeta_{6} + 6) q^{11} + 5 q^{13} + ( - 2 \zeta_{6} + 2) q^{17} - \zeta_{6} q^{19} - 6 \zeta_{6} q^{23} + (11 \zeta_{6} - 11) q^{25} + ( - 3 \zeta_{6} + 3) q^{31} + (12 \zeta_{6} - 4) q^{35} - 3 \zeta_{6} q^{37} + 6 q^{41} + 5 q^{43} - 4 \zeta_{6} q^{47} + (5 \zeta_{6} + 3) q^{49} + (6 \zeta_{6} - 6) q^{53} - 24 q^{55} + (6 \zeta_{6} - 6) q^{59} + 2 \zeta_{6} q^{61} - 20 \zeta_{6} q^{65} + (7 \zeta_{6} - 7) q^{67} - 16 q^{71} + ( - 3 \zeta_{6} + 3) q^{73} + (12 \zeta_{6} - 18) q^{77} - 11 \zeta_{6} q^{79} - 12 q^{83} - 8 q^{85} + 4 \zeta_{6} q^{89} + ( - 5 \zeta_{6} - 10) q^{91} + (4 \zeta_{6} - 4) q^{95} - 6 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} - 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{5} - 5 q^{7} + 6 q^{11} + 10 q^{13} + 2 q^{17} - q^{19} - 6 q^{23} - 11 q^{25} + 3 q^{31} + 4 q^{35} - 3 q^{37} + 12 q^{41} + 10 q^{43} - 4 q^{47} + 11 q^{49} - 6 q^{53} - 48 q^{55} - 6 q^{59} + 2 q^{61} - 20 q^{65} - 7 q^{67} - 32 q^{71} + 3 q^{73} - 24 q^{77} - 11 q^{79} - 24 q^{83} - 16 q^{85} + 4 q^{89} - 25 q^{91} - 4 q^{95} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −2.00000 + 3.46410i 0 −2.50000 + 0.866025i 0 0 0
865.1 0 0 0 −2.00000 3.46410i 0 −2.50000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2016.2.s.a 2
3.b odd 2 1 672.2.q.j yes 2
4.b odd 2 1 2016.2.s.b 2
7.c even 3 1 inner 2016.2.s.a 2
12.b even 2 1 672.2.q.e 2
21.g even 6 1 4704.2.a.bh 1
21.h odd 6 1 672.2.q.j yes 2
21.h odd 6 1 4704.2.a.a 1
24.f even 2 1 1344.2.q.l 2
24.h odd 2 1 1344.2.q.a 2
28.g odd 6 1 2016.2.s.b 2
84.j odd 6 1 4704.2.a.p 1
84.n even 6 1 672.2.q.e 2
84.n even 6 1 4704.2.a.r 1
168.s odd 6 1 1344.2.q.a 2
168.s odd 6 1 9408.2.a.dd 1
168.v even 6 1 1344.2.q.l 2
168.v even 6 1 9408.2.a.bp 1
168.ba even 6 1 9408.2.a.a 1
168.be odd 6 1 9408.2.a.bs 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.q.e 2 12.b even 2 1
672.2.q.e 2 84.n even 6 1
672.2.q.j yes 2 3.b odd 2 1
672.2.q.j yes 2 21.h odd 6 1
1344.2.q.a 2 24.h odd 2 1
1344.2.q.a 2 168.s odd 6 1
1344.2.q.l 2 24.f even 2 1
1344.2.q.l 2 168.v even 6 1
2016.2.s.a 2 1.a even 1 1 trivial
2016.2.s.a 2 7.c even 3 1 inner
2016.2.s.b 2 4.b odd 2 1
2016.2.s.b 2 28.g odd 6 1
4704.2.a.a 1 21.h odd 6 1
4704.2.a.p 1 84.j odd 6 1
4704.2.a.r 1 84.n even 6 1
4704.2.a.bh 1 21.g even 6 1
9408.2.a.a 1 168.ba even 6 1
9408.2.a.bp 1 168.v even 6 1
9408.2.a.bs 1 168.be odd 6 1
9408.2.a.dd 1 168.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2016, [\chi])\):

\( T_{5}^{2} + 4T_{5} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} - 6T_{11} + 36 \) Copy content Toggle raw display
\( T_{13} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$13$ \( (T - 5)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$37$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( (T - 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$53$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$71$ \( (T + 16)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$79$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$97$ \( (T + 6)^{2} \) Copy content Toggle raw display
show more
show less