Properties

Label 9408.2.a.a
Level $9408$
Weight $2$
Character orbit 9408.a
Self dual yes
Analytic conductor $75.123$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9408,2,Mod(1,9408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1232582216\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} - 4 q^{5} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} - 4 q^{5} + q^{9} - 6 q^{11} + 5 q^{13} + 4 q^{15} - 2 q^{17} + q^{19} - 6 q^{23} + 11 q^{25} - q^{27} + 3 q^{31} + 6 q^{33} - 3 q^{37} - 5 q^{39} + 6 q^{41} - 5 q^{43} - 4 q^{45} + 4 q^{47} + 2 q^{51} + 6 q^{53} + 24 q^{55} - q^{57} - 6 q^{59} - 2 q^{61} - 20 q^{65} - 7 q^{67} + 6 q^{69} + 16 q^{71} + 3 q^{73} - 11 q^{75} + 11 q^{79} + q^{81} + 12 q^{83} + 8 q^{85} - 4 q^{89} - 3 q^{93} - 4 q^{95} + 6 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 −4.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9408.2.a.a 1
4.b odd 2 1 9408.2.a.bs 1
7.b odd 2 1 9408.2.a.dd 1
7.d odd 6 2 1344.2.q.a 2
8.b even 2 1 4704.2.a.bh 1
8.d odd 2 1 4704.2.a.p 1
28.d even 2 1 9408.2.a.bp 1
28.f even 6 2 1344.2.q.l 2
56.e even 2 1 4704.2.a.r 1
56.h odd 2 1 4704.2.a.a 1
56.j odd 6 2 672.2.q.j yes 2
56.m even 6 2 672.2.q.e 2
168.ba even 6 2 2016.2.s.a 2
168.be odd 6 2 2016.2.s.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.q.e 2 56.m even 6 2
672.2.q.j yes 2 56.j odd 6 2
1344.2.q.a 2 7.d odd 6 2
1344.2.q.l 2 28.f even 6 2
2016.2.s.a 2 168.ba even 6 2
2016.2.s.b 2 168.be odd 6 2
4704.2.a.a 1 56.h odd 2 1
4704.2.a.p 1 8.d odd 2 1
4704.2.a.r 1 56.e even 2 1
4704.2.a.bh 1 8.b even 2 1
9408.2.a.a 1 1.a even 1 1 trivial
9408.2.a.bp 1 28.d even 2 1
9408.2.a.bs 1 4.b odd 2 1
9408.2.a.dd 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9408))\):

\( T_{5} + 4 \) Copy content Toggle raw display
\( T_{11} + 6 \) Copy content Toggle raw display
\( T_{13} - 5 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display
\( T_{19} - 1 \) Copy content Toggle raw display
\( T_{31} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T + 4 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T - 5 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T + 3 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 5 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T + 6 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 7 \) Copy content Toggle raw display
$71$ \( T - 16 \) Copy content Toggle raw display
$73$ \( T - 3 \) Copy content Toggle raw display
$79$ \( T - 11 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T + 4 \) Copy content Toggle raw display
$97$ \( T - 6 \) Copy content Toggle raw display
show more
show less