Properties

Label 2016.3.m.b.127.3
Level $2016$
Weight $3$
Character 2016.127
Analytic conductor $54.932$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,3,Mod(127,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.3
Root \(-1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 2016.127
Dual form 2016.3.m.b.127.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.91370 q^{5} -2.64575i q^{7} -7.40998i q^{11} -24.0934 q^{13} -17.2598 q^{17} +12.9926i q^{19} -32.4315i q^{23} -16.5103 q^{25} +38.8341 q^{29} +37.4320i q^{31} +7.70893i q^{35} +70.3892 q^{37} -24.9436 q^{41} +28.3154i q^{43} +40.8631i q^{47} -7.00000 q^{49} +89.0084 q^{53} +21.5905i q^{55} -80.7391i q^{59} -61.6021 q^{61} +70.2008 q^{65} +92.1412i q^{67} +61.5975i q^{71} -52.4880 q^{73} -19.6050 q^{77} -91.8555i q^{79} -98.3206i q^{83} +50.2898 q^{85} +67.5476 q^{89} +63.7450i q^{91} -37.8564i q^{95} +41.1094 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{5} - 64 q^{13} - 64 q^{17} - 88 q^{25} - 64 q^{29} + 128 q^{37} - 56 q^{49} + 160 q^{53} + 32 q^{61} + 32 q^{65} - 112 q^{73} - 112 q^{77} + 336 q^{85} - 352 q^{89} - 240 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.91370 −0.582740 −0.291370 0.956610i \(-0.594111\pi\)
−0.291370 + 0.956610i \(0.594111\pi\)
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 7.40998i − 0.673634i −0.941570 0.336817i \(-0.890650\pi\)
0.941570 0.336817i \(-0.109350\pi\)
\(12\) 0 0
\(13\) −24.0934 −1.85333 −0.926667 0.375882i \(-0.877340\pi\)
−0.926667 + 0.375882i \(0.877340\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −17.2598 −1.01528 −0.507640 0.861569i \(-0.669482\pi\)
−0.507640 + 0.861569i \(0.669482\pi\)
\(18\) 0 0
\(19\) 12.9926i 0.683819i 0.939733 + 0.341909i \(0.111074\pi\)
−0.939733 + 0.341909i \(0.888926\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 32.4315i − 1.41007i −0.709174 0.705033i \(-0.750932\pi\)
0.709174 0.705033i \(-0.249068\pi\)
\(24\) 0 0
\(25\) −16.5103 −0.660414
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 38.8341 1.33911 0.669553 0.742764i \(-0.266486\pi\)
0.669553 + 0.742764i \(0.266486\pi\)
\(30\) 0 0
\(31\) 37.4320i 1.20748i 0.797180 + 0.603741i \(0.206324\pi\)
−0.797180 + 0.603741i \(0.793676\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.70893i 0.220255i
\(36\) 0 0
\(37\) 70.3892 1.90241 0.951205 0.308560i \(-0.0998469\pi\)
0.951205 + 0.308560i \(0.0998469\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −24.9436 −0.608380 −0.304190 0.952611i \(-0.598386\pi\)
−0.304190 + 0.952611i \(0.598386\pi\)
\(42\) 0 0
\(43\) 28.3154i 0.658498i 0.944243 + 0.329249i \(0.106796\pi\)
−0.944243 + 0.329249i \(0.893204\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 40.8631i 0.869427i 0.900569 + 0.434714i \(0.143150\pi\)
−0.900569 + 0.434714i \(0.856850\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 89.0084 1.67940 0.839702 0.543048i \(-0.182730\pi\)
0.839702 + 0.543048i \(0.182730\pi\)
\(54\) 0 0
\(55\) 21.5905i 0.392554i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 80.7391i − 1.36846i −0.729267 0.684229i \(-0.760139\pi\)
0.729267 0.684229i \(-0.239861\pi\)
\(60\) 0 0
\(61\) −61.6021 −1.00987 −0.504935 0.863157i \(-0.668484\pi\)
−0.504935 + 0.863157i \(0.668484\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 70.2008 1.08001
\(66\) 0 0
\(67\) 92.1412i 1.37524i 0.726070 + 0.687621i \(0.241345\pi\)
−0.726070 + 0.687621i \(0.758655\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 61.5975i 0.867571i 0.901016 + 0.433786i \(0.142822\pi\)
−0.901016 + 0.433786i \(0.857178\pi\)
\(72\) 0 0
\(73\) −52.4880 −0.719014 −0.359507 0.933142i \(-0.617055\pi\)
−0.359507 + 0.933142i \(0.617055\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −19.6050 −0.254610
\(78\) 0 0
\(79\) − 91.8555i − 1.16273i −0.813643 0.581364i \(-0.802519\pi\)
0.813643 0.581364i \(-0.197481\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 98.3206i − 1.18459i −0.805723 0.592293i \(-0.798223\pi\)
0.805723 0.592293i \(-0.201777\pi\)
\(84\) 0 0
\(85\) 50.2898 0.591644
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 67.5476 0.758962 0.379481 0.925200i \(-0.376103\pi\)
0.379481 + 0.925200i \(0.376103\pi\)
\(90\) 0 0
\(91\) 63.7450i 0.700495i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 37.8564i − 0.398488i
\(96\) 0 0
\(97\) 41.1094 0.423809 0.211904 0.977290i \(-0.432033\pi\)
0.211904 + 0.977290i \(0.432033\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 24.8723 0.246260 0.123130 0.992391i \(-0.460707\pi\)
0.123130 + 0.992391i \(0.460707\pi\)
\(102\) 0 0
\(103\) 10.8569i 0.105407i 0.998610 + 0.0527036i \(0.0167839\pi\)
−0.998610 + 0.0527036i \(0.983216\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 29.7875i 0.278388i 0.990265 + 0.139194i \(0.0444512\pi\)
−0.990265 + 0.139194i \(0.955549\pi\)
\(108\) 0 0
\(109\) 60.4044 0.554169 0.277085 0.960846i \(-0.410632\pi\)
0.277085 + 0.960846i \(0.410632\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −21.5134 −0.190384 −0.0951922 0.995459i \(-0.530347\pi\)
−0.0951922 + 0.995459i \(0.530347\pi\)
\(114\) 0 0
\(115\) 94.4958i 0.821702i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 45.6650i 0.383740i
\(120\) 0 0
\(121\) 66.0922 0.546217
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 120.949 0.967590
\(126\) 0 0
\(127\) 84.9278i 0.668723i 0.942445 + 0.334361i \(0.108521\pi\)
−0.942445 + 0.334361i \(0.891479\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 157.348i 1.20113i 0.799576 + 0.600565i \(0.205058\pi\)
−0.799576 + 0.600565i \(0.794942\pi\)
\(132\) 0 0
\(133\) 34.3751 0.258459
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.23390 0.0601014 0.0300507 0.999548i \(-0.490433\pi\)
0.0300507 + 0.999548i \(0.490433\pi\)
\(138\) 0 0
\(139\) 192.415i 1.38428i 0.721764 + 0.692139i \(0.243332\pi\)
−0.721764 + 0.692139i \(0.756668\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 178.531i 1.24847i
\(144\) 0 0
\(145\) −113.151 −0.780351
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −59.5926 −0.399951 −0.199975 0.979801i \(-0.564086\pi\)
−0.199975 + 0.979801i \(0.564086\pi\)
\(150\) 0 0
\(151\) − 163.350i − 1.08179i −0.841091 0.540894i \(-0.818086\pi\)
0.841091 0.540894i \(-0.181914\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 109.066i − 0.703649i
\(156\) 0 0
\(157\) 194.988 1.24196 0.620981 0.783825i \(-0.286734\pi\)
0.620981 + 0.783825i \(0.286734\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −85.8058 −0.532955
\(162\) 0 0
\(163\) 70.8941i 0.434933i 0.976068 + 0.217466i \(0.0697793\pi\)
−0.976068 + 0.217466i \(0.930221\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 153.404i 0.918589i 0.888284 + 0.459295i \(0.151898\pi\)
−0.888284 + 0.459295i \(0.848102\pi\)
\(168\) 0 0
\(169\) 411.490 2.43485
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −70.9393 −0.410054 −0.205027 0.978756i \(-0.565728\pi\)
−0.205027 + 0.978756i \(0.565728\pi\)
\(174\) 0 0
\(175\) 43.6823i 0.249613i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 288.549i 1.61201i 0.591911 + 0.806003i \(0.298374\pi\)
−0.591911 + 0.806003i \(0.701626\pi\)
\(180\) 0 0
\(181\) 351.047 1.93949 0.969743 0.244127i \(-0.0785013\pi\)
0.969743 + 0.244127i \(0.0785013\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −205.093 −1.10861
\(186\) 0 0
\(187\) 127.894i 0.683927i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 163.611i 0.856601i 0.903636 + 0.428301i \(0.140888\pi\)
−0.903636 + 0.428301i \(0.859112\pi\)
\(192\) 0 0
\(193\) −137.688 −0.713408 −0.356704 0.934217i \(-0.616100\pi\)
−0.356704 + 0.934217i \(0.616100\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 170.743 0.866716 0.433358 0.901222i \(-0.357329\pi\)
0.433358 + 0.901222i \(0.357329\pi\)
\(198\) 0 0
\(199\) 202.599i 1.01809i 0.860741 + 0.509043i \(0.170000\pi\)
−0.860741 + 0.509043i \(0.830000\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 102.745i − 0.506134i
\(204\) 0 0
\(205\) 72.6781 0.354527
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 96.2745 0.460644
\(210\) 0 0
\(211\) − 236.951i − 1.12299i −0.827480 0.561496i \(-0.810226\pi\)
0.827480 0.561496i \(-0.189774\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 82.5026i − 0.383733i
\(216\) 0 0
\(217\) 99.0357 0.456386
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 415.845 1.88165
\(222\) 0 0
\(223\) 214.219i 0.960623i 0.877098 + 0.480311i \(0.159476\pi\)
−0.877098 + 0.480311i \(0.840524\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 316.287i − 1.39334i −0.717393 0.696668i \(-0.754665\pi\)
0.717393 0.696668i \(-0.245335\pi\)
\(228\) 0 0
\(229\) 193.656 0.845660 0.422830 0.906209i \(-0.361037\pi\)
0.422830 + 0.906209i \(0.361037\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −222.042 −0.952969 −0.476485 0.879183i \(-0.658089\pi\)
−0.476485 + 0.879183i \(0.658089\pi\)
\(234\) 0 0
\(235\) − 119.063i − 0.506650i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 26.4216i − 0.110551i −0.998471 0.0552754i \(-0.982396\pi\)
0.998471 0.0552754i \(-0.0176037\pi\)
\(240\) 0 0
\(241\) 178.900 0.742324 0.371162 0.928568i \(-0.378959\pi\)
0.371162 + 0.928568i \(0.378959\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 20.3959 0.0832486
\(246\) 0 0
\(247\) − 313.034i − 1.26734i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.2905i 0.0967750i 0.998829 + 0.0483875i \(0.0154082\pi\)
−0.998829 + 0.0483875i \(0.984592\pi\)
\(252\) 0 0
\(253\) −240.317 −0.949869
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −308.081 −1.19876 −0.599380 0.800465i \(-0.704586\pi\)
−0.599380 + 0.800465i \(0.704586\pi\)
\(258\) 0 0
\(259\) − 186.232i − 0.719043i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 438.932i 1.66894i 0.551052 + 0.834471i \(0.314226\pi\)
−0.551052 + 0.834471i \(0.685774\pi\)
\(264\) 0 0
\(265\) −259.344 −0.978656
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 119.003 0.442391 0.221195 0.975229i \(-0.429004\pi\)
0.221195 + 0.975229i \(0.429004\pi\)
\(270\) 0 0
\(271\) 67.2292i 0.248078i 0.992277 + 0.124039i \(0.0395848\pi\)
−0.992277 + 0.124039i \(0.960415\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 122.341i 0.444877i
\(276\) 0 0
\(277\) −182.471 −0.658739 −0.329369 0.944201i \(-0.606836\pi\)
−0.329369 + 0.944201i \(0.606836\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −401.986 −1.43056 −0.715278 0.698840i \(-0.753700\pi\)
−0.715278 + 0.698840i \(0.753700\pi\)
\(282\) 0 0
\(283\) − 222.644i − 0.786726i −0.919383 0.393363i \(-0.871312\pi\)
0.919383 0.393363i \(-0.128688\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 65.9945i 0.229946i
\(288\) 0 0
\(289\) 8.89923 0.0307932
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −505.760 −1.72614 −0.863072 0.505081i \(-0.831463\pi\)
−0.863072 + 0.505081i \(0.831463\pi\)
\(294\) 0 0
\(295\) 235.249i 0.797456i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 781.384i 2.61333i
\(300\) 0 0
\(301\) 74.9155 0.248889
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 179.490 0.588492
\(306\) 0 0
\(307\) 156.777i 0.510675i 0.966852 + 0.255337i \(0.0821866\pi\)
−0.966852 + 0.255337i \(0.917813\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 525.603i − 1.69004i −0.534734 0.845020i \(-0.679588\pi\)
0.534734 0.845020i \(-0.320412\pi\)
\(312\) 0 0
\(313\) −22.7440 −0.0726646 −0.0363323 0.999340i \(-0.511567\pi\)
−0.0363323 + 0.999340i \(0.511567\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 323.942 1.02190 0.510949 0.859611i \(-0.329294\pi\)
0.510949 + 0.859611i \(0.329294\pi\)
\(318\) 0 0
\(319\) − 287.760i − 0.902067i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 224.248i − 0.694267i
\(324\) 0 0
\(325\) 397.790 1.22397
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 108.114 0.328613
\(330\) 0 0
\(331\) 454.289i 1.37247i 0.727378 + 0.686237i \(0.240739\pi\)
−0.727378 + 0.686237i \(0.759261\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 268.472i − 0.801408i
\(336\) 0 0
\(337\) −112.431 −0.333622 −0.166811 0.985989i \(-0.553347\pi\)
−0.166811 + 0.985989i \(0.553347\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 277.370 0.813402
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 29.7063i − 0.0856088i −0.999083 0.0428044i \(-0.986371\pi\)
0.999083 0.0428044i \(-0.0136292\pi\)
\(348\) 0 0
\(349\) 180.808 0.518075 0.259037 0.965867i \(-0.416595\pi\)
0.259037 + 0.965867i \(0.416595\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 309.246 0.876052 0.438026 0.898962i \(-0.355678\pi\)
0.438026 + 0.898962i \(0.355678\pi\)
\(354\) 0 0
\(355\) − 179.477i − 0.505568i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.7887i 0.0606927i 0.999539 + 0.0303464i \(0.00966103\pi\)
−0.999539 + 0.0303464i \(0.990339\pi\)
\(360\) 0 0
\(361\) 192.194 0.532392
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 152.934 0.418998
\(366\) 0 0
\(367\) − 331.819i − 0.904140i −0.891982 0.452070i \(-0.850686\pi\)
0.891982 0.452070i \(-0.149314\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 235.494i − 0.634755i
\(372\) 0 0
\(373\) −297.079 −0.796458 −0.398229 0.917286i \(-0.630375\pi\)
−0.398229 + 0.917286i \(0.630375\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −935.643 −2.48181
\(378\) 0 0
\(379\) 568.577i 1.50020i 0.661323 + 0.750101i \(0.269995\pi\)
−0.661323 + 0.750101i \(0.730005\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.1267i 0.0891036i 0.999007 + 0.0445518i \(0.0141860\pi\)
−0.999007 + 0.0445518i \(0.985814\pi\)
\(384\) 0 0
\(385\) 57.1230 0.148371
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 185.697 0.477369 0.238685 0.971097i \(-0.423284\pi\)
0.238685 + 0.971097i \(0.423284\pi\)
\(390\) 0 0
\(391\) 559.760i 1.43161i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 267.640i 0.677568i
\(396\) 0 0
\(397\) −277.517 −0.699035 −0.349518 0.936930i \(-0.613654\pi\)
−0.349518 + 0.936930i \(0.613654\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 530.463 1.32285 0.661425 0.750012i \(-0.269952\pi\)
0.661425 + 0.750012i \(0.269952\pi\)
\(402\) 0 0
\(403\) − 901.862i − 2.23787i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 521.582i − 1.28153i
\(408\) 0 0
\(409\) 681.101 1.66528 0.832642 0.553812i \(-0.186827\pi\)
0.832642 + 0.553812i \(0.186827\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −213.615 −0.517229
\(414\) 0 0
\(415\) 286.477i 0.690306i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 208.004i − 0.496430i −0.968705 0.248215i \(-0.920156\pi\)
0.968705 0.248215i \(-0.0798439\pi\)
\(420\) 0 0
\(421\) 58.5750 0.139133 0.0695665 0.997577i \(-0.477838\pi\)
0.0695665 + 0.997577i \(0.477838\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 284.965 0.670505
\(426\) 0 0
\(427\) 162.984i 0.381695i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 376.105i − 0.872634i −0.899793 0.436317i \(-0.856283\pi\)
0.899793 0.436317i \(-0.143717\pi\)
\(432\) 0 0
\(433\) −120.961 −0.279355 −0.139677 0.990197i \(-0.544607\pi\)
−0.139677 + 0.990197i \(0.544607\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 421.368 0.964230
\(438\) 0 0
\(439\) 747.561i 1.70287i 0.524459 + 0.851436i \(0.324268\pi\)
−0.524459 + 0.851436i \(0.675732\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 654.425i 1.47726i 0.674112 + 0.738629i \(0.264526\pi\)
−0.674112 + 0.738629i \(0.735474\pi\)
\(444\) 0 0
\(445\) −196.813 −0.442277
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −412.318 −0.918303 −0.459152 0.888358i \(-0.651847\pi\)
−0.459152 + 0.888358i \(0.651847\pi\)
\(450\) 0 0
\(451\) 184.831i 0.409825i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 185.734i − 0.408206i
\(456\) 0 0
\(457\) −860.397 −1.88271 −0.941353 0.337422i \(-0.890445\pi\)
−0.941353 + 0.337422i \(0.890445\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 406.149 0.881018 0.440509 0.897748i \(-0.354798\pi\)
0.440509 + 0.897748i \(0.354798\pi\)
\(462\) 0 0
\(463\) 492.223i 1.06312i 0.847022 + 0.531558i \(0.178393\pi\)
−0.847022 + 0.531558i \(0.821607\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 594.456i − 1.27293i −0.771307 0.636463i \(-0.780397\pi\)
0.771307 0.636463i \(-0.219603\pi\)
\(468\) 0 0
\(469\) 243.783 0.519792
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 209.817 0.443587
\(474\) 0 0
\(475\) − 214.512i − 0.451603i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 201.151i − 0.419940i −0.977708 0.209970i \(-0.932663\pi\)
0.977708 0.209970i \(-0.0673367\pi\)
\(480\) 0 0
\(481\) −1695.91 −3.52580
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −119.781 −0.246970
\(486\) 0 0
\(487\) − 376.266i − 0.772619i −0.922369 0.386310i \(-0.873750\pi\)
0.922369 0.386310i \(-0.126250\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 186.938i 0.380729i 0.981713 + 0.190365i \(0.0609670\pi\)
−0.981713 + 0.190365i \(0.939033\pi\)
\(492\) 0 0
\(493\) −670.267 −1.35957
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 162.972 0.327911
\(498\) 0 0
\(499\) − 298.003i − 0.597200i −0.954378 0.298600i \(-0.903480\pi\)
0.954378 0.298600i \(-0.0965196\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 474.049i − 0.942444i −0.882015 0.471222i \(-0.843813\pi\)
0.882015 0.471222i \(-0.156187\pi\)
\(504\) 0 0
\(505\) −72.4704 −0.143506
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −147.496 −0.289776 −0.144888 0.989448i \(-0.546282\pi\)
−0.144888 + 0.989448i \(0.546282\pi\)
\(510\) 0 0
\(511\) 138.870i 0.271762i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 31.6339i − 0.0614250i
\(516\) 0 0
\(517\) 302.794 0.585676
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −700.270 −1.34409 −0.672044 0.740511i \(-0.734583\pi\)
−0.672044 + 0.740511i \(0.734583\pi\)
\(522\) 0 0
\(523\) − 695.893i − 1.33058i −0.746586 0.665289i \(-0.768308\pi\)
0.746586 0.665289i \(-0.231692\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 646.067i − 1.22593i
\(528\) 0 0
\(529\) −522.804 −0.988288
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 600.974 1.12753
\(534\) 0 0
\(535\) − 86.7920i − 0.162228i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 51.8698i 0.0962335i
\(540\) 0 0
\(541\) 596.690 1.10294 0.551470 0.834195i \(-0.314067\pi\)
0.551470 + 0.834195i \(0.314067\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −176.000 −0.322937
\(546\) 0 0
\(547\) 265.842i 0.486000i 0.970026 + 0.243000i \(0.0781316\pi\)
−0.970026 + 0.243000i \(0.921868\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 504.554i 0.915705i
\(552\) 0 0
\(553\) −243.027 −0.439470
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1021.63 1.83416 0.917080 0.398703i \(-0.130540\pi\)
0.917080 + 0.398703i \(0.130540\pi\)
\(558\) 0 0
\(559\) − 682.213i − 1.22042i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 402.546i 0.715002i 0.933913 + 0.357501i \(0.116371\pi\)
−0.933913 + 0.357501i \(0.883629\pi\)
\(564\) 0 0
\(565\) 62.6837 0.110945
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −275.167 −0.483598 −0.241799 0.970326i \(-0.577737\pi\)
−0.241799 + 0.970326i \(0.577737\pi\)
\(570\) 0 0
\(571\) − 684.768i − 1.19924i −0.800284 0.599622i \(-0.795318\pi\)
0.800284 0.599622i \(-0.204682\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 535.456i 0.931228i
\(576\) 0 0
\(577\) 226.867 0.393183 0.196592 0.980485i \(-0.437013\pi\)
0.196592 + 0.980485i \(0.437013\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −260.132 −0.447731
\(582\) 0 0
\(583\) − 659.550i − 1.13130i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 320.491i 0.545981i 0.962017 + 0.272991i \(0.0880128\pi\)
−0.962017 + 0.272991i \(0.911987\pi\)
\(588\) 0 0
\(589\) −486.337 −0.825699
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 814.649 1.37378 0.686888 0.726764i \(-0.258976\pi\)
0.686888 + 0.726764i \(0.258976\pi\)
\(594\) 0 0
\(595\) − 133.054i − 0.223621i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 505.842i 0.844478i 0.906485 + 0.422239i \(0.138756\pi\)
−0.906485 + 0.422239i \(0.861244\pi\)
\(600\) 0 0
\(601\) −506.284 −0.842403 −0.421201 0.906967i \(-0.638391\pi\)
−0.421201 + 0.906967i \(0.638391\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −192.573 −0.318302
\(606\) 0 0
\(607\) 286.599i 0.472156i 0.971734 + 0.236078i \(0.0758622\pi\)
−0.971734 + 0.236078i \(0.924138\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 984.528i − 1.61134i
\(612\) 0 0
\(613\) −300.456 −0.490140 −0.245070 0.969505i \(-0.578811\pi\)
−0.245070 + 0.969505i \(0.578811\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −930.734 −1.50848 −0.754241 0.656597i \(-0.771995\pi\)
−0.754241 + 0.656597i \(0.771995\pi\)
\(618\) 0 0
\(619\) 680.636i 1.09957i 0.835305 + 0.549787i \(0.185291\pi\)
−0.835305 + 0.549787i \(0.814709\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 178.714i − 0.286861i
\(624\) 0 0
\(625\) 60.3504 0.0965606
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1214.90 −1.93148
\(630\) 0 0
\(631\) − 519.319i − 0.823009i −0.911408 0.411504i \(-0.865003\pi\)
0.911408 0.411504i \(-0.134997\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 247.454i − 0.389692i
\(636\) 0 0
\(637\) 168.653 0.264762
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −540.111 −0.842607 −0.421303 0.906920i \(-0.638427\pi\)
−0.421303 + 0.906920i \(0.638427\pi\)
\(642\) 0 0
\(643\) 316.600i 0.492380i 0.969222 + 0.246190i \(0.0791786\pi\)
−0.969222 + 0.246190i \(0.920821\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 745.515i − 1.15226i −0.817356 0.576132i \(-0.804561\pi\)
0.817356 0.576132i \(-0.195439\pi\)
\(648\) 0 0
\(649\) −598.275 −0.921841
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 794.499 1.21669 0.608345 0.793673i \(-0.291834\pi\)
0.608345 + 0.793673i \(0.291834\pi\)
\(654\) 0 0
\(655\) − 458.465i − 0.699947i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 26.4351i − 0.0401140i −0.999799 0.0200570i \(-0.993615\pi\)
0.999799 0.0200570i \(-0.00638477\pi\)
\(660\) 0 0
\(661\) 497.881 0.753223 0.376612 0.926371i \(-0.377089\pi\)
0.376612 + 0.926371i \(0.377089\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −100.159 −0.150614
\(666\) 0 0
\(667\) − 1259.45i − 1.88823i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 456.470i 0.680283i
\(672\) 0 0
\(673\) −94.9961 −0.141153 −0.0705766 0.997506i \(-0.522484\pi\)
−0.0705766 + 0.997506i \(0.522484\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −757.820 −1.11938 −0.559690 0.828702i \(-0.689080\pi\)
−0.559690 + 0.828702i \(0.689080\pi\)
\(678\) 0 0
\(679\) − 108.765i − 0.160185i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 432.613i − 0.633402i −0.948525 0.316701i \(-0.897425\pi\)
0.948525 0.316701i \(-0.102575\pi\)
\(684\) 0 0
\(685\) −23.9911 −0.0350235
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2144.51 −3.11250
\(690\) 0 0
\(691\) 407.736i 0.590067i 0.955487 + 0.295034i \(0.0953308\pi\)
−0.955487 + 0.295034i \(0.904669\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 560.639i − 0.806675i
\(696\) 0 0
\(697\) 430.520 0.617676
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 206.009 0.293879 0.146939 0.989145i \(-0.453058\pi\)
0.146939 + 0.989145i \(0.453058\pi\)
\(702\) 0 0
\(703\) 914.535i 1.30090i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 65.8059i − 0.0930777i
\(708\) 0 0
\(709\) 511.639 0.721635 0.360817 0.932637i \(-0.382498\pi\)
0.360817 + 0.932637i \(0.382498\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1213.98 1.70263
\(714\) 0 0
\(715\) − 520.186i − 0.727533i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1045.23i 1.45373i 0.686780 + 0.726866i \(0.259024\pi\)
−0.686780 + 0.726866i \(0.740976\pi\)
\(720\) 0 0
\(721\) 28.7248 0.0398402
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −641.164 −0.884364
\(726\) 0 0
\(727\) 193.079i 0.265584i 0.991144 + 0.132792i \(0.0423942\pi\)
−0.991144 + 0.132792i \(0.957606\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 488.717i − 0.668560i
\(732\) 0 0
\(733\) −851.928 −1.16225 −0.581124 0.813815i \(-0.697387\pi\)
−0.581124 + 0.813815i \(0.697387\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 682.764 0.926410
\(738\) 0 0
\(739\) − 189.437i − 0.256342i −0.991752 0.128171i \(-0.959089\pi\)
0.991752 0.128171i \(-0.0409107\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 945.745i − 1.27287i −0.771329 0.636436i \(-0.780408\pi\)
0.771329 0.636436i \(-0.219592\pi\)
\(744\) 0 0
\(745\) 173.635 0.233067
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 78.8104 0.105221
\(750\) 0 0
\(751\) − 902.515i − 1.20175i −0.799342 0.600876i \(-0.794819\pi\)
0.799342 0.600876i \(-0.205181\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 475.953i 0.630401i
\(756\) 0 0
\(757\) −1242.26 −1.64103 −0.820513 0.571627i \(-0.806312\pi\)
−0.820513 + 0.571627i \(0.806312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −764.711 −1.00488 −0.502438 0.864613i \(-0.667564\pi\)
−0.502438 + 0.864613i \(0.667564\pi\)
\(762\) 0 0
\(763\) − 159.815i − 0.209456i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1945.27i 2.53621i
\(768\) 0 0
\(769\) 896.436 1.16572 0.582858 0.812574i \(-0.301934\pi\)
0.582858 + 0.812574i \(0.301934\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 483.067 0.624925 0.312463 0.949930i \(-0.398846\pi\)
0.312463 + 0.949930i \(0.398846\pi\)
\(774\) 0 0
\(775\) − 618.015i − 0.797438i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 324.081i − 0.416021i
\(780\) 0 0
\(781\) 456.436 0.584426
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −568.137 −0.723742
\(786\) 0 0
\(787\) − 1046.56i − 1.32981i −0.746926 0.664907i \(-0.768471\pi\)
0.746926 0.664907i \(-0.231529\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 56.9192i 0.0719585i
\(792\) 0 0
\(793\) 1484.20 1.87163
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −820.370 −1.02932 −0.514661 0.857394i \(-0.672082\pi\)
−0.514661 + 0.857394i \(0.672082\pi\)
\(798\) 0 0
\(799\) − 705.287i − 0.882712i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 388.935i 0.484352i
\(804\) 0 0
\(805\) 250.012 0.310574
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1254.40 1.55056 0.775279 0.631619i \(-0.217609\pi\)
0.775279 + 0.631619i \(0.217609\pi\)
\(810\) 0 0
\(811\) 118.642i 0.146291i 0.997321 + 0.0731454i \(0.0233037\pi\)
−0.997321 + 0.0731454i \(0.976696\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 206.564i − 0.253453i
\(816\) 0 0
\(817\) −367.889 −0.450293
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1103.74 −1.34438 −0.672190 0.740378i \(-0.734646\pi\)
−0.672190 + 0.740378i \(0.734646\pi\)
\(822\) 0 0
\(823\) 178.011i 0.216295i 0.994135 + 0.108147i \(0.0344919\pi\)
−0.994135 + 0.108147i \(0.965508\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 423.395i 0.511964i 0.966682 + 0.255982i \(0.0823988\pi\)
−0.966682 + 0.255982i \(0.917601\pi\)
\(828\) 0 0
\(829\) −1504.17 −1.81444 −0.907222 0.420651i \(-0.861802\pi\)
−0.907222 + 0.420651i \(0.861802\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 120.818 0.145040
\(834\) 0 0
\(835\) − 446.974i − 0.535299i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 448.309i − 0.534337i −0.963650 0.267168i \(-0.913912\pi\)
0.963650 0.267168i \(-0.0860880\pi\)
\(840\) 0 0
\(841\) 667.084 0.793204
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1198.96 −1.41889
\(846\) 0 0
\(847\) − 174.864i − 0.206451i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 2282.83i − 2.68253i
\(852\) 0 0
\(853\) 120.642 0.141433 0.0707163 0.997496i \(-0.477471\pi\)
0.0707163 + 0.997496i \(0.477471\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1440.05 1.68034 0.840169 0.542325i \(-0.182456\pi\)
0.840169 + 0.542325i \(0.182456\pi\)
\(858\) 0 0
\(859\) 1531.82i 1.78326i 0.452765 + 0.891630i \(0.350438\pi\)
−0.452765 + 0.891630i \(0.649562\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 78.9293i − 0.0914593i −0.998954 0.0457296i \(-0.985439\pi\)
0.998954 0.0457296i \(-0.0145613\pi\)
\(864\) 0 0
\(865\) 206.696 0.238955
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −680.647 −0.783254
\(870\) 0 0
\(871\) − 2219.99i − 2.54878i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 320.000i − 0.365715i
\(876\) 0 0
\(877\) 1050.60 1.19795 0.598975 0.800768i \(-0.295575\pi\)
0.598975 + 0.800768i \(0.295575\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1135.28 1.28862 0.644312 0.764763i \(-0.277144\pi\)
0.644312 + 0.764763i \(0.277144\pi\)
\(882\) 0 0
\(883\) 1107.98i 1.25479i 0.778703 + 0.627393i \(0.215878\pi\)
−0.778703 + 0.627393i \(0.784122\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 396.514i − 0.447028i −0.974701 0.223514i \(-0.928247\pi\)
0.974701 0.223514i \(-0.0717528\pi\)
\(888\) 0 0
\(889\) 224.698 0.252753
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −530.916 −0.594530
\(894\) 0 0
\(895\) − 840.746i − 0.939381i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1453.64i 1.61695i
\(900\) 0 0
\(901\) −1536.26 −1.70506
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1022.85 −1.13022
\(906\) 0 0
\(907\) − 815.997i − 0.899666i −0.893113 0.449833i \(-0.851484\pi\)
0.893113 0.449833i \(-0.148516\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1799.18i 1.97495i 0.157789 + 0.987473i \(0.449563\pi\)
−0.157789 + 0.987473i \(0.550437\pi\)
\(912\) 0 0
\(913\) −728.553 −0.797977
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 416.304 0.453984
\(918\) 0 0
\(919\) − 1694.65i − 1.84401i −0.387175 0.922006i \(-0.626549\pi\)
0.387175 0.922006i \(-0.373451\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1484.09i − 1.60790i
\(924\) 0 0
\(925\) −1162.15 −1.25638
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −365.052 −0.392952 −0.196476 0.980509i \(-0.562950\pi\)
−0.196476 + 0.980509i \(0.562950\pi\)
\(930\) 0 0
\(931\) − 90.9479i − 0.0976884i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 372.646i − 0.398552i
\(936\) 0 0
\(937\) −622.594 −0.664455 −0.332228 0.943199i \(-0.607800\pi\)
−0.332228 + 0.943199i \(0.607800\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −404.487 −0.429848 −0.214924 0.976631i \(-0.568950\pi\)
−0.214924 + 0.976631i \(0.568950\pi\)
\(942\) 0 0
\(943\) 808.958i 0.857856i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1066.44i 1.12613i 0.826414 + 0.563063i \(0.190377\pi\)
−0.826414 + 0.563063i \(0.809623\pi\)
\(948\) 0 0
\(949\) 1264.61 1.33257
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1781.50 −1.86936 −0.934680 0.355491i \(-0.884314\pi\)
−0.934680 + 0.355491i \(0.884314\pi\)
\(954\) 0 0
\(955\) − 476.713i − 0.499176i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 21.7848i − 0.0227162i
\(960\) 0 0
\(961\) −440.152 −0.458015
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 401.181 0.415732
\(966\) 0 0
\(967\) 1048.75i 1.08454i 0.840205 + 0.542269i \(0.182435\pi\)
−0.840205 + 0.542269i \(0.817565\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1439.69i 1.48268i 0.671127 + 0.741342i \(0.265810\pi\)
−0.671127 + 0.741342i \(0.734190\pi\)
\(972\) 0 0
\(973\) 509.082 0.523208
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −562.504 −0.575746 −0.287873 0.957669i \(-0.592948\pi\)
−0.287873 + 0.957669i \(0.592948\pi\)
\(978\) 0 0
\(979\) − 500.526i − 0.511263i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 580.429i − 0.590467i −0.955425 0.295233i \(-0.904603\pi\)
0.955425 0.295233i \(-0.0953974\pi\)
\(984\) 0 0
\(985\) −497.494 −0.505070
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 918.312 0.928526
\(990\) 0 0
\(991\) 1425.05i 1.43799i 0.695013 + 0.718997i \(0.255398\pi\)
−0.695013 + 0.718997i \(0.744602\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 590.313i − 0.593279i
\(996\) 0 0
\(997\) 523.575 0.525151 0.262575 0.964912i \(-0.415428\pi\)
0.262575 + 0.964912i \(0.415428\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.m.b.127.3 8
3.2 odd 2 672.3.m.a.127.7 yes 8
4.3 odd 2 inner 2016.3.m.b.127.4 8
12.11 even 2 672.3.m.a.127.3 8
24.5 odd 2 1344.3.m.d.127.2 8
24.11 even 2 1344.3.m.d.127.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.m.a.127.3 8 12.11 even 2
672.3.m.a.127.7 yes 8 3.2 odd 2
1344.3.m.d.127.2 8 24.5 odd 2
1344.3.m.d.127.6 8 24.11 even 2
2016.3.m.b.127.3 8 1.1 even 1 trivial
2016.3.m.b.127.4 8 4.3 odd 2 inner