Properties

Label 672.3.m.a.127.3
Level $672$
Weight $3$
Character 672.127
Analytic conductor $18.311$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,3,Mod(127,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.3
Root \(1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 672.127
Dual form 672.3.m.a.127.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +2.91370 q^{5} +2.64575i q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-1.73205i q^{3} +2.91370 q^{5} +2.64575i q^{7} -3.00000 q^{9} -7.40998i q^{11} -24.0934 q^{13} -5.04668i q^{15} +17.2598 q^{17} -12.9926i q^{19} +4.58258 q^{21} -32.4315i q^{23} -16.5103 q^{25} +5.19615i q^{27} -38.8341 q^{29} -37.4320i q^{31} -12.8345 q^{33} +7.70893i q^{35} +70.3892 q^{37} +41.7309i q^{39} +24.9436 q^{41} -28.3154i q^{43} -8.74110 q^{45} +40.8631i q^{47} -7.00000 q^{49} -29.8948i q^{51} -89.0084 q^{53} -21.5905i q^{55} -22.5038 q^{57} -80.7391i q^{59} -61.6021 q^{61} -7.93725i q^{63} -70.2008 q^{65} -92.1412i q^{67} -56.1731 q^{69} +61.5975i q^{71} -52.4880 q^{73} +28.5968i q^{75} +19.6050 q^{77} +91.8555i q^{79} +9.00000 q^{81} -98.3206i q^{83} +50.2898 q^{85} +67.2626i q^{87} -67.5476 q^{89} -63.7450i q^{91} -64.8341 q^{93} -37.8564i q^{95} +41.1094 q^{97} +22.2299i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 16 q^{5} - 24 q^{9} - 64 q^{13} + 64 q^{17} - 88 q^{25} + 64 q^{29} + 48 q^{33} + 128 q^{37} - 48 q^{45} - 56 q^{49} - 160 q^{53} + 48 q^{57} + 32 q^{61} - 32 q^{65} - 144 q^{69} - 112 q^{73} + 112 q^{77} + 72 q^{81} + 336 q^{85} + 352 q^{89} - 144 q^{93} - 240 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) 2.91370 0.582740 0.291370 0.956610i \(-0.405889\pi\)
0.291370 + 0.956610i \(0.405889\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) − 7.40998i − 0.673634i −0.941570 0.336817i \(-0.890650\pi\)
0.941570 0.336817i \(-0.109350\pi\)
\(12\) 0 0
\(13\) −24.0934 −1.85333 −0.926667 0.375882i \(-0.877340\pi\)
−0.926667 + 0.375882i \(0.877340\pi\)
\(14\) 0 0
\(15\) − 5.04668i − 0.336445i
\(16\) 0 0
\(17\) 17.2598 1.01528 0.507640 0.861569i \(-0.330518\pi\)
0.507640 + 0.861569i \(0.330518\pi\)
\(18\) 0 0
\(19\) − 12.9926i − 0.683819i −0.939733 0.341909i \(-0.888926\pi\)
0.939733 0.341909i \(-0.111074\pi\)
\(20\) 0 0
\(21\) 4.58258 0.218218
\(22\) 0 0
\(23\) − 32.4315i − 1.41007i −0.709174 0.705033i \(-0.750932\pi\)
0.709174 0.705033i \(-0.249068\pi\)
\(24\) 0 0
\(25\) −16.5103 −0.660414
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −38.8341 −1.33911 −0.669553 0.742764i \(-0.733514\pi\)
−0.669553 + 0.742764i \(0.733514\pi\)
\(30\) 0 0
\(31\) − 37.4320i − 1.20748i −0.797180 0.603741i \(-0.793676\pi\)
0.797180 0.603741i \(-0.206324\pi\)
\(32\) 0 0
\(33\) −12.8345 −0.388923
\(34\) 0 0
\(35\) 7.70893i 0.220255i
\(36\) 0 0
\(37\) 70.3892 1.90241 0.951205 0.308560i \(-0.0998469\pi\)
0.951205 + 0.308560i \(0.0998469\pi\)
\(38\) 0 0
\(39\) 41.7309i 1.07002i
\(40\) 0 0
\(41\) 24.9436 0.608380 0.304190 0.952611i \(-0.401614\pi\)
0.304190 + 0.952611i \(0.401614\pi\)
\(42\) 0 0
\(43\) − 28.3154i − 0.658498i −0.944243 0.329249i \(-0.893204\pi\)
0.944243 0.329249i \(-0.106796\pi\)
\(44\) 0 0
\(45\) −8.74110 −0.194247
\(46\) 0 0
\(47\) 40.8631i 0.869427i 0.900569 + 0.434714i \(0.143150\pi\)
−0.900569 + 0.434714i \(0.856850\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) − 29.8948i − 0.586172i
\(52\) 0 0
\(53\) −89.0084 −1.67940 −0.839702 0.543048i \(-0.817270\pi\)
−0.839702 + 0.543048i \(0.817270\pi\)
\(54\) 0 0
\(55\) − 21.5905i − 0.392554i
\(56\) 0 0
\(57\) −22.5038 −0.394803
\(58\) 0 0
\(59\) − 80.7391i − 1.36846i −0.729267 0.684229i \(-0.760139\pi\)
0.729267 0.684229i \(-0.239861\pi\)
\(60\) 0 0
\(61\) −61.6021 −1.00987 −0.504935 0.863157i \(-0.668484\pi\)
−0.504935 + 0.863157i \(0.668484\pi\)
\(62\) 0 0
\(63\) − 7.93725i − 0.125988i
\(64\) 0 0
\(65\) −70.2008 −1.08001
\(66\) 0 0
\(67\) − 92.1412i − 1.37524i −0.726070 0.687621i \(-0.758655\pi\)
0.726070 0.687621i \(-0.241345\pi\)
\(68\) 0 0
\(69\) −56.1731 −0.814102
\(70\) 0 0
\(71\) 61.5975i 0.867571i 0.901016 + 0.433786i \(0.142822\pi\)
−0.901016 + 0.433786i \(0.857178\pi\)
\(72\) 0 0
\(73\) −52.4880 −0.719014 −0.359507 0.933142i \(-0.617055\pi\)
−0.359507 + 0.933142i \(0.617055\pi\)
\(74\) 0 0
\(75\) 28.5968i 0.381290i
\(76\) 0 0
\(77\) 19.6050 0.254610
\(78\) 0 0
\(79\) 91.8555i 1.16273i 0.813643 + 0.581364i \(0.197481\pi\)
−0.813643 + 0.581364i \(0.802519\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 98.3206i − 1.18459i −0.805723 0.592293i \(-0.798223\pi\)
0.805723 0.592293i \(-0.201777\pi\)
\(84\) 0 0
\(85\) 50.2898 0.591644
\(86\) 0 0
\(87\) 67.2626i 0.773133i
\(88\) 0 0
\(89\) −67.5476 −0.758962 −0.379481 0.925200i \(-0.623897\pi\)
−0.379481 + 0.925200i \(0.623897\pi\)
\(90\) 0 0
\(91\) − 63.7450i − 0.700495i
\(92\) 0 0
\(93\) −64.8341 −0.697140
\(94\) 0 0
\(95\) − 37.8564i − 0.398488i
\(96\) 0 0
\(97\) 41.1094 0.423809 0.211904 0.977290i \(-0.432033\pi\)
0.211904 + 0.977290i \(0.432033\pi\)
\(98\) 0 0
\(99\) 22.2299i 0.224545i
\(100\) 0 0
\(101\) −24.8723 −0.246260 −0.123130 0.992391i \(-0.539293\pi\)
−0.123130 + 0.992391i \(0.539293\pi\)
\(102\) 0 0
\(103\) − 10.8569i − 0.105407i −0.998610 0.0527036i \(-0.983216\pi\)
0.998610 0.0527036i \(-0.0167839\pi\)
\(104\) 0 0
\(105\) 13.3523 0.127164
\(106\) 0 0
\(107\) 29.7875i 0.278388i 0.990265 + 0.139194i \(0.0444512\pi\)
−0.990265 + 0.139194i \(0.955549\pi\)
\(108\) 0 0
\(109\) 60.4044 0.554169 0.277085 0.960846i \(-0.410632\pi\)
0.277085 + 0.960846i \(0.410632\pi\)
\(110\) 0 0
\(111\) − 121.918i − 1.09836i
\(112\) 0 0
\(113\) 21.5134 0.190384 0.0951922 0.995459i \(-0.469653\pi\)
0.0951922 + 0.995459i \(0.469653\pi\)
\(114\) 0 0
\(115\) − 94.4958i − 0.821702i
\(116\) 0 0
\(117\) 72.2801 0.617778
\(118\) 0 0
\(119\) 45.6650i 0.383740i
\(120\) 0 0
\(121\) 66.0922 0.546217
\(122\) 0 0
\(123\) − 43.2035i − 0.351248i
\(124\) 0 0
\(125\) −120.949 −0.967590
\(126\) 0 0
\(127\) − 84.9278i − 0.668723i −0.942445 0.334361i \(-0.891479\pi\)
0.942445 0.334361i \(-0.108521\pi\)
\(128\) 0 0
\(129\) −49.0437 −0.380184
\(130\) 0 0
\(131\) 157.348i 1.20113i 0.799576 + 0.600565i \(0.205058\pi\)
−0.799576 + 0.600565i \(0.794942\pi\)
\(132\) 0 0
\(133\) 34.3751 0.258459
\(134\) 0 0
\(135\) 15.1400i 0.112148i
\(136\) 0 0
\(137\) −8.23390 −0.0601014 −0.0300507 0.999548i \(-0.509567\pi\)
−0.0300507 + 0.999548i \(0.509567\pi\)
\(138\) 0 0
\(139\) − 192.415i − 1.38428i −0.721764 0.692139i \(-0.756668\pi\)
0.721764 0.692139i \(-0.243332\pi\)
\(140\) 0 0
\(141\) 70.7769 0.501964
\(142\) 0 0
\(143\) 178.531i 1.24847i
\(144\) 0 0
\(145\) −113.151 −0.780351
\(146\) 0 0
\(147\) 12.1244i 0.0824786i
\(148\) 0 0
\(149\) 59.5926 0.399951 0.199975 0.979801i \(-0.435914\pi\)
0.199975 + 0.979801i \(0.435914\pi\)
\(150\) 0 0
\(151\) 163.350i 1.08179i 0.841091 + 0.540894i \(0.181914\pi\)
−0.841091 + 0.540894i \(0.818086\pi\)
\(152\) 0 0
\(153\) −51.7793 −0.338427
\(154\) 0 0
\(155\) − 109.066i − 0.703649i
\(156\) 0 0
\(157\) 194.988 1.24196 0.620981 0.783825i \(-0.286734\pi\)
0.620981 + 0.783825i \(0.286734\pi\)
\(158\) 0 0
\(159\) 154.167i 0.969604i
\(160\) 0 0
\(161\) 85.8058 0.532955
\(162\) 0 0
\(163\) − 70.8941i − 0.434933i −0.976068 0.217466i \(-0.930221\pi\)
0.976068 0.217466i \(-0.0697793\pi\)
\(164\) 0 0
\(165\) −37.3958 −0.226641
\(166\) 0 0
\(167\) 153.404i 0.918589i 0.888284 + 0.459295i \(0.151898\pi\)
−0.888284 + 0.459295i \(0.848102\pi\)
\(168\) 0 0
\(169\) 411.490 2.43485
\(170\) 0 0
\(171\) 38.9777i 0.227940i
\(172\) 0 0
\(173\) 70.9393 0.410054 0.205027 0.978756i \(-0.434272\pi\)
0.205027 + 0.978756i \(0.434272\pi\)
\(174\) 0 0
\(175\) − 43.6823i − 0.249613i
\(176\) 0 0
\(177\) −139.844 −0.790080
\(178\) 0 0
\(179\) 288.549i 1.61201i 0.591911 + 0.806003i \(0.298374\pi\)
−0.591911 + 0.806003i \(0.701626\pi\)
\(180\) 0 0
\(181\) 351.047 1.93949 0.969743 0.244127i \(-0.0785013\pi\)
0.969743 + 0.244127i \(0.0785013\pi\)
\(182\) 0 0
\(183\) 106.698i 0.583049i
\(184\) 0 0
\(185\) 205.093 1.10861
\(186\) 0 0
\(187\) − 127.894i − 0.683927i
\(188\) 0 0
\(189\) −13.7477 −0.0727393
\(190\) 0 0
\(191\) 163.611i 0.856601i 0.903636 + 0.428301i \(0.140888\pi\)
−0.903636 + 0.428301i \(0.859112\pi\)
\(192\) 0 0
\(193\) −137.688 −0.713408 −0.356704 0.934217i \(-0.616100\pi\)
−0.356704 + 0.934217i \(0.616100\pi\)
\(194\) 0 0
\(195\) 121.591i 0.623546i
\(196\) 0 0
\(197\) −170.743 −0.866716 −0.433358 0.901222i \(-0.642671\pi\)
−0.433358 + 0.901222i \(0.642671\pi\)
\(198\) 0 0
\(199\) − 202.599i − 1.01809i −0.860741 0.509043i \(-0.830000\pi\)
0.860741 0.509043i \(-0.170000\pi\)
\(200\) 0 0
\(201\) −159.593 −0.793996
\(202\) 0 0
\(203\) − 102.745i − 0.506134i
\(204\) 0 0
\(205\) 72.6781 0.354527
\(206\) 0 0
\(207\) 97.2946i 0.470022i
\(208\) 0 0
\(209\) −96.2745 −0.460644
\(210\) 0 0
\(211\) 236.951i 1.12299i 0.827480 + 0.561496i \(0.189774\pi\)
−0.827480 + 0.561496i \(0.810226\pi\)
\(212\) 0 0
\(213\) 106.690 0.500892
\(214\) 0 0
\(215\) − 82.5026i − 0.383733i
\(216\) 0 0
\(217\) 99.0357 0.456386
\(218\) 0 0
\(219\) 90.9119i 0.415123i
\(220\) 0 0
\(221\) −415.845 −1.88165
\(222\) 0 0
\(223\) − 214.219i − 0.960623i −0.877098 0.480311i \(-0.840524\pi\)
0.877098 0.480311i \(-0.159476\pi\)
\(224\) 0 0
\(225\) 49.5310 0.220138
\(226\) 0 0
\(227\) − 316.287i − 1.39334i −0.717393 0.696668i \(-0.754665\pi\)
0.717393 0.696668i \(-0.245335\pi\)
\(228\) 0 0
\(229\) 193.656 0.845660 0.422830 0.906209i \(-0.361037\pi\)
0.422830 + 0.906209i \(0.361037\pi\)
\(230\) 0 0
\(231\) − 33.9568i − 0.146999i
\(232\) 0 0
\(233\) 222.042 0.952969 0.476485 0.879183i \(-0.341911\pi\)
0.476485 + 0.879183i \(0.341911\pi\)
\(234\) 0 0
\(235\) 119.063i 0.506650i
\(236\) 0 0
\(237\) 159.098 0.671302
\(238\) 0 0
\(239\) − 26.4216i − 0.110551i −0.998471 0.0552754i \(-0.982396\pi\)
0.998471 0.0552754i \(-0.0176037\pi\)
\(240\) 0 0
\(241\) 178.900 0.742324 0.371162 0.928568i \(-0.378959\pi\)
0.371162 + 0.928568i \(0.378959\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) −20.3959 −0.0832486
\(246\) 0 0
\(247\) 313.034i 1.26734i
\(248\) 0 0
\(249\) −170.296 −0.683921
\(250\) 0 0
\(251\) 24.2905i 0.0967750i 0.998829 + 0.0483875i \(0.0154082\pi\)
−0.998829 + 0.0483875i \(0.984592\pi\)
\(252\) 0 0
\(253\) −240.317 −0.949869
\(254\) 0 0
\(255\) − 87.1044i − 0.341586i
\(256\) 0 0
\(257\) 308.081 1.19876 0.599380 0.800465i \(-0.295414\pi\)
0.599380 + 0.800465i \(0.295414\pi\)
\(258\) 0 0
\(259\) 186.232i 0.719043i
\(260\) 0 0
\(261\) 116.502 0.446369
\(262\) 0 0
\(263\) 438.932i 1.66894i 0.551052 + 0.834471i \(0.314226\pi\)
−0.551052 + 0.834471i \(0.685774\pi\)
\(264\) 0 0
\(265\) −259.344 −0.978656
\(266\) 0 0
\(267\) 116.996i 0.438187i
\(268\) 0 0
\(269\) −119.003 −0.442391 −0.221195 0.975229i \(-0.570996\pi\)
−0.221195 + 0.975229i \(0.570996\pi\)
\(270\) 0 0
\(271\) − 67.2292i − 0.248078i −0.992277 0.124039i \(-0.960415\pi\)
0.992277 0.124039i \(-0.0395848\pi\)
\(272\) 0 0
\(273\) −110.410 −0.404431
\(274\) 0 0
\(275\) 122.341i 0.444877i
\(276\) 0 0
\(277\) −182.471 −0.658739 −0.329369 0.944201i \(-0.606836\pi\)
−0.329369 + 0.944201i \(0.606836\pi\)
\(278\) 0 0
\(279\) 112.296i 0.402494i
\(280\) 0 0
\(281\) 401.986 1.43056 0.715278 0.698840i \(-0.246300\pi\)
0.715278 + 0.698840i \(0.246300\pi\)
\(282\) 0 0
\(283\) 222.644i 0.786726i 0.919383 + 0.393363i \(0.128688\pi\)
−0.919383 + 0.393363i \(0.871312\pi\)
\(284\) 0 0
\(285\) −65.5692 −0.230067
\(286\) 0 0
\(287\) 65.9945i 0.229946i
\(288\) 0 0
\(289\) 8.89923 0.0307932
\(290\) 0 0
\(291\) − 71.2036i − 0.244686i
\(292\) 0 0
\(293\) 505.760 1.72614 0.863072 0.505081i \(-0.168537\pi\)
0.863072 + 0.505081i \(0.168537\pi\)
\(294\) 0 0
\(295\) − 235.249i − 0.797456i
\(296\) 0 0
\(297\) 38.5034 0.129641
\(298\) 0 0
\(299\) 781.384i 2.61333i
\(300\) 0 0
\(301\) 74.9155 0.248889
\(302\) 0 0
\(303\) 43.0801i 0.142179i
\(304\) 0 0
\(305\) −179.490 −0.588492
\(306\) 0 0
\(307\) − 156.777i − 0.510675i −0.966852 0.255337i \(-0.917813\pi\)
0.966852 0.255337i \(-0.0821866\pi\)
\(308\) 0 0
\(309\) −18.8048 −0.0608569
\(310\) 0 0
\(311\) − 525.603i − 1.69004i −0.534734 0.845020i \(-0.679588\pi\)
0.534734 0.845020i \(-0.320412\pi\)
\(312\) 0 0
\(313\) −22.7440 −0.0726646 −0.0363323 0.999340i \(-0.511567\pi\)
−0.0363323 + 0.999340i \(0.511567\pi\)
\(314\) 0 0
\(315\) − 23.1268i − 0.0734184i
\(316\) 0 0
\(317\) −323.942 −1.02190 −0.510949 0.859611i \(-0.670706\pi\)
−0.510949 + 0.859611i \(0.670706\pi\)
\(318\) 0 0
\(319\) 287.760i 0.902067i
\(320\) 0 0
\(321\) 51.5935 0.160728
\(322\) 0 0
\(323\) − 224.248i − 0.694267i
\(324\) 0 0
\(325\) 397.790 1.22397
\(326\) 0 0
\(327\) − 104.624i − 0.319950i
\(328\) 0 0
\(329\) −108.114 −0.328613
\(330\) 0 0
\(331\) − 454.289i − 1.37247i −0.727378 0.686237i \(-0.759261\pi\)
0.727378 0.686237i \(-0.240739\pi\)
\(332\) 0 0
\(333\) −211.168 −0.634137
\(334\) 0 0
\(335\) − 268.472i − 0.801408i
\(336\) 0 0
\(337\) −112.431 −0.333622 −0.166811 0.985989i \(-0.553347\pi\)
−0.166811 + 0.985989i \(0.553347\pi\)
\(338\) 0 0
\(339\) − 37.2623i − 0.109918i
\(340\) 0 0
\(341\) −277.370 −0.813402
\(342\) 0 0
\(343\) − 18.5203i − 0.0539949i
\(344\) 0 0
\(345\) −163.671 −0.474410
\(346\) 0 0
\(347\) − 29.7063i − 0.0856088i −0.999083 0.0428044i \(-0.986371\pi\)
0.999083 0.0428044i \(-0.0136292\pi\)
\(348\) 0 0
\(349\) 180.808 0.518075 0.259037 0.965867i \(-0.416595\pi\)
0.259037 + 0.965867i \(0.416595\pi\)
\(350\) 0 0
\(351\) − 125.193i − 0.356674i
\(352\) 0 0
\(353\) −309.246 −0.876052 −0.438026 0.898962i \(-0.644322\pi\)
−0.438026 + 0.898962i \(0.644322\pi\)
\(354\) 0 0
\(355\) 179.477i 0.505568i
\(356\) 0 0
\(357\) 79.0941 0.221552
\(358\) 0 0
\(359\) 21.7887i 0.0606927i 0.999539 + 0.0303464i \(0.00966103\pi\)
−0.999539 + 0.0303464i \(0.990339\pi\)
\(360\) 0 0
\(361\) 192.194 0.532392
\(362\) 0 0
\(363\) − 114.475i − 0.315358i
\(364\) 0 0
\(365\) −152.934 −0.418998
\(366\) 0 0
\(367\) 331.819i 0.904140i 0.891982 + 0.452070i \(0.149314\pi\)
−0.891982 + 0.452070i \(0.850686\pi\)
\(368\) 0 0
\(369\) −74.8307 −0.202793
\(370\) 0 0
\(371\) − 235.494i − 0.634755i
\(372\) 0 0
\(373\) −297.079 −0.796458 −0.398229 0.917286i \(-0.630375\pi\)
−0.398229 + 0.917286i \(0.630375\pi\)
\(374\) 0 0
\(375\) 209.489i 0.558638i
\(376\) 0 0
\(377\) 935.643 2.48181
\(378\) 0 0
\(379\) − 568.577i − 1.50020i −0.661323 0.750101i \(-0.730005\pi\)
0.661323 0.750101i \(-0.269995\pi\)
\(380\) 0 0
\(381\) −147.099 −0.386087
\(382\) 0 0
\(383\) 34.1267i 0.0891036i 0.999007 + 0.0445518i \(0.0141860\pi\)
−0.999007 + 0.0445518i \(0.985814\pi\)
\(384\) 0 0
\(385\) 57.1230 0.148371
\(386\) 0 0
\(387\) 84.9462i 0.219499i
\(388\) 0 0
\(389\) −185.697 −0.477369 −0.238685 0.971097i \(-0.576716\pi\)
−0.238685 + 0.971097i \(0.576716\pi\)
\(390\) 0 0
\(391\) − 559.760i − 1.43161i
\(392\) 0 0
\(393\) 272.535 0.693473
\(394\) 0 0
\(395\) 267.640i 0.677568i
\(396\) 0 0
\(397\) −277.517 −0.699035 −0.349518 0.936930i \(-0.613654\pi\)
−0.349518 + 0.936930i \(0.613654\pi\)
\(398\) 0 0
\(399\) − 59.5394i − 0.149221i
\(400\) 0 0
\(401\) −530.463 −1.32285 −0.661425 0.750012i \(-0.730048\pi\)
−0.661425 + 0.750012i \(0.730048\pi\)
\(402\) 0 0
\(403\) 901.862i 2.23787i
\(404\) 0 0
\(405\) 26.2233 0.0647489
\(406\) 0 0
\(407\) − 521.582i − 1.28153i
\(408\) 0 0
\(409\) 681.101 1.66528 0.832642 0.553812i \(-0.186827\pi\)
0.832642 + 0.553812i \(0.186827\pi\)
\(410\) 0 0
\(411\) 14.2615i 0.0346996i
\(412\) 0 0
\(413\) 213.615 0.517229
\(414\) 0 0
\(415\) − 286.477i − 0.690306i
\(416\) 0 0
\(417\) −333.272 −0.799214
\(418\) 0 0
\(419\) − 208.004i − 0.496430i −0.968705 0.248215i \(-0.920156\pi\)
0.968705 0.248215i \(-0.0798439\pi\)
\(420\) 0 0
\(421\) 58.5750 0.139133 0.0695665 0.997577i \(-0.477838\pi\)
0.0695665 + 0.997577i \(0.477838\pi\)
\(422\) 0 0
\(423\) − 122.589i − 0.289809i
\(424\) 0 0
\(425\) −284.965 −0.670505
\(426\) 0 0
\(427\) − 162.984i − 0.381695i
\(428\) 0 0
\(429\) 309.225 0.720804
\(430\) 0 0
\(431\) − 376.105i − 0.872634i −0.899793 0.436317i \(-0.856283\pi\)
0.899793 0.436317i \(-0.143717\pi\)
\(432\) 0 0
\(433\) −120.961 −0.279355 −0.139677 0.990197i \(-0.544607\pi\)
−0.139677 + 0.990197i \(0.544607\pi\)
\(434\) 0 0
\(435\) 195.983i 0.450536i
\(436\) 0 0
\(437\) −421.368 −0.964230
\(438\) 0 0
\(439\) − 747.561i − 1.70287i −0.524459 0.851436i \(-0.675732\pi\)
0.524459 0.851436i \(-0.324268\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) 654.425i 1.47726i 0.674112 + 0.738629i \(0.264526\pi\)
−0.674112 + 0.738629i \(0.735474\pi\)
\(444\) 0 0
\(445\) −196.813 −0.442277
\(446\) 0 0
\(447\) − 103.217i − 0.230912i
\(448\) 0 0
\(449\) 412.318 0.918303 0.459152 0.888358i \(-0.348153\pi\)
0.459152 + 0.888358i \(0.348153\pi\)
\(450\) 0 0
\(451\) − 184.831i − 0.409825i
\(452\) 0 0
\(453\) 282.930 0.624570
\(454\) 0 0
\(455\) − 185.734i − 0.408206i
\(456\) 0 0
\(457\) −860.397 −1.88271 −0.941353 0.337422i \(-0.890445\pi\)
−0.941353 + 0.337422i \(0.890445\pi\)
\(458\) 0 0
\(459\) 89.6843i 0.195391i
\(460\) 0 0
\(461\) −406.149 −0.881018 −0.440509 0.897748i \(-0.645202\pi\)
−0.440509 + 0.897748i \(0.645202\pi\)
\(462\) 0 0
\(463\) − 492.223i − 1.06312i −0.847022 0.531558i \(-0.821607\pi\)
0.847022 0.531558i \(-0.178393\pi\)
\(464\) 0 0
\(465\) −188.907 −0.406252
\(466\) 0 0
\(467\) − 594.456i − 1.27293i −0.771307 0.636463i \(-0.780397\pi\)
0.771307 0.636463i \(-0.219603\pi\)
\(468\) 0 0
\(469\) 243.783 0.519792
\(470\) 0 0
\(471\) − 337.729i − 0.717048i
\(472\) 0 0
\(473\) −209.817 −0.443587
\(474\) 0 0
\(475\) 214.512i 0.451603i
\(476\) 0 0
\(477\) 267.025 0.559801
\(478\) 0 0
\(479\) − 201.151i − 0.419940i −0.977708 0.209970i \(-0.932663\pi\)
0.977708 0.209970i \(-0.0673367\pi\)
\(480\) 0 0
\(481\) −1695.91 −3.52580
\(482\) 0 0
\(483\) − 148.620i − 0.307702i
\(484\) 0 0
\(485\) 119.781 0.246970
\(486\) 0 0
\(487\) 376.266i 0.772619i 0.922369 + 0.386310i \(0.126250\pi\)
−0.922369 + 0.386310i \(0.873750\pi\)
\(488\) 0 0
\(489\) −122.792 −0.251109
\(490\) 0 0
\(491\) 186.938i 0.380729i 0.981713 + 0.190365i \(0.0609670\pi\)
−0.981713 + 0.190365i \(0.939033\pi\)
\(492\) 0 0
\(493\) −670.267 −1.35957
\(494\) 0 0
\(495\) 64.7714i 0.130851i
\(496\) 0 0
\(497\) −162.972 −0.327911
\(498\) 0 0
\(499\) 298.003i 0.597200i 0.954378 + 0.298600i \(0.0965196\pi\)
−0.954378 + 0.298600i \(0.903480\pi\)
\(500\) 0 0
\(501\) 265.704 0.530348
\(502\) 0 0
\(503\) − 474.049i − 0.942444i −0.882015 0.471222i \(-0.843813\pi\)
0.882015 0.471222i \(-0.156187\pi\)
\(504\) 0 0
\(505\) −72.4704 −0.143506
\(506\) 0 0
\(507\) − 712.721i − 1.40576i
\(508\) 0 0
\(509\) 147.496 0.289776 0.144888 0.989448i \(-0.453718\pi\)
0.144888 + 0.989448i \(0.453718\pi\)
\(510\) 0 0
\(511\) − 138.870i − 0.271762i
\(512\) 0 0
\(513\) 67.5113 0.131601
\(514\) 0 0
\(515\) − 31.6339i − 0.0614250i
\(516\) 0 0
\(517\) 302.794 0.585676
\(518\) 0 0
\(519\) − 122.870i − 0.236745i
\(520\) 0 0
\(521\) 700.270 1.34409 0.672044 0.740511i \(-0.265417\pi\)
0.672044 + 0.740511i \(0.265417\pi\)
\(522\) 0 0
\(523\) 695.893i 1.33058i 0.746586 + 0.665289i \(0.231692\pi\)
−0.746586 + 0.665289i \(0.768308\pi\)
\(524\) 0 0
\(525\) −75.6599 −0.144114
\(526\) 0 0
\(527\) − 646.067i − 1.22593i
\(528\) 0 0
\(529\) −522.804 −0.988288
\(530\) 0 0
\(531\) 242.217i 0.456153i
\(532\) 0 0
\(533\) −600.974 −1.12753
\(534\) 0 0
\(535\) 86.7920i 0.162228i
\(536\) 0 0
\(537\) 499.782 0.930693
\(538\) 0 0
\(539\) 51.8698i 0.0962335i
\(540\) 0 0
\(541\) 596.690 1.10294 0.551470 0.834195i \(-0.314067\pi\)
0.551470 + 0.834195i \(0.314067\pi\)
\(542\) 0 0
\(543\) − 608.031i − 1.11976i
\(544\) 0 0
\(545\) 176.000 0.322937
\(546\) 0 0
\(547\) − 265.842i − 0.486000i −0.970026 0.243000i \(-0.921868\pi\)
0.970026 0.243000i \(-0.0781316\pi\)
\(548\) 0 0
\(549\) 184.806 0.336623
\(550\) 0 0
\(551\) 504.554i 0.915705i
\(552\) 0 0
\(553\) −243.027 −0.439470
\(554\) 0 0
\(555\) − 355.231i − 0.640057i
\(556\) 0 0
\(557\) −1021.63 −1.83416 −0.917080 0.398703i \(-0.869460\pi\)
−0.917080 + 0.398703i \(0.869460\pi\)
\(558\) 0 0
\(559\) 682.213i 1.22042i
\(560\) 0 0
\(561\) −221.520 −0.394866
\(562\) 0 0
\(563\) 402.546i 0.715002i 0.933913 + 0.357501i \(0.116371\pi\)
−0.933913 + 0.357501i \(0.883629\pi\)
\(564\) 0 0
\(565\) 62.6837 0.110945
\(566\) 0 0
\(567\) 23.8118i 0.0419961i
\(568\) 0 0
\(569\) 275.167 0.483598 0.241799 0.970326i \(-0.422263\pi\)
0.241799 + 0.970326i \(0.422263\pi\)
\(570\) 0 0
\(571\) 684.768i 1.19924i 0.800284 + 0.599622i \(0.204682\pi\)
−0.800284 + 0.599622i \(0.795318\pi\)
\(572\) 0 0
\(573\) 283.382 0.494559
\(574\) 0 0
\(575\) 535.456i 0.931228i
\(576\) 0 0
\(577\) 226.867 0.393183 0.196592 0.980485i \(-0.437013\pi\)
0.196592 + 0.980485i \(0.437013\pi\)
\(578\) 0 0
\(579\) 238.482i 0.411887i
\(580\) 0 0
\(581\) 260.132 0.447731
\(582\) 0 0
\(583\) 659.550i 1.13130i
\(584\) 0 0
\(585\) 210.602 0.360004
\(586\) 0 0
\(587\) 320.491i 0.545981i 0.962017 + 0.272991i \(0.0880128\pi\)
−0.962017 + 0.272991i \(0.911987\pi\)
\(588\) 0 0
\(589\) −486.337 −0.825699
\(590\) 0 0
\(591\) 295.735i 0.500398i
\(592\) 0 0
\(593\) −814.649 −1.37378 −0.686888 0.726764i \(-0.741024\pi\)
−0.686888 + 0.726764i \(0.741024\pi\)
\(594\) 0 0
\(595\) 133.054i 0.223621i
\(596\) 0 0
\(597\) −350.912 −0.587792
\(598\) 0 0
\(599\) 505.842i 0.844478i 0.906485 + 0.422239i \(0.138756\pi\)
−0.906485 + 0.422239i \(0.861244\pi\)
\(600\) 0 0
\(601\) −506.284 −0.842403 −0.421201 0.906967i \(-0.638391\pi\)
−0.421201 + 0.906967i \(0.638391\pi\)
\(602\) 0 0
\(603\) 276.423i 0.458414i
\(604\) 0 0
\(605\) 192.573 0.318302
\(606\) 0 0
\(607\) − 286.599i − 0.472156i −0.971734 0.236078i \(-0.924138\pi\)
0.971734 0.236078i \(-0.0758622\pi\)
\(608\) 0 0
\(609\) −177.960 −0.292217
\(610\) 0 0
\(611\) − 984.528i − 1.61134i
\(612\) 0 0
\(613\) −300.456 −0.490140 −0.245070 0.969505i \(-0.578811\pi\)
−0.245070 + 0.969505i \(0.578811\pi\)
\(614\) 0 0
\(615\) − 125.882i − 0.204686i
\(616\) 0 0
\(617\) 930.734 1.50848 0.754241 0.656597i \(-0.228005\pi\)
0.754241 + 0.656597i \(0.228005\pi\)
\(618\) 0 0
\(619\) − 680.636i − 1.09957i −0.835305 0.549787i \(-0.814709\pi\)
0.835305 0.549787i \(-0.185291\pi\)
\(620\) 0 0
\(621\) 168.519 0.271367
\(622\) 0 0
\(623\) − 178.714i − 0.286861i
\(624\) 0 0
\(625\) 60.3504 0.0965606
\(626\) 0 0
\(627\) 166.752i 0.265953i
\(628\) 0 0
\(629\) 1214.90 1.93148
\(630\) 0 0
\(631\) 519.319i 0.823009i 0.911408 + 0.411504i \(0.134997\pi\)
−0.911408 + 0.411504i \(0.865003\pi\)
\(632\) 0 0
\(633\) 410.412 0.648360
\(634\) 0 0
\(635\) − 247.454i − 0.389692i
\(636\) 0 0
\(637\) 168.653 0.264762
\(638\) 0 0
\(639\) − 184.793i − 0.289190i
\(640\) 0 0
\(641\) 540.111 0.842607 0.421303 0.906920i \(-0.361573\pi\)
0.421303 + 0.906920i \(0.361573\pi\)
\(642\) 0 0
\(643\) − 316.600i − 0.492380i −0.969222 0.246190i \(-0.920821\pi\)
0.969222 0.246190i \(-0.0791786\pi\)
\(644\) 0 0
\(645\) −142.899 −0.221548
\(646\) 0 0
\(647\) − 745.515i − 1.15226i −0.817356 0.576132i \(-0.804561\pi\)
0.817356 0.576132i \(-0.195439\pi\)
\(648\) 0 0
\(649\) −598.275 −0.921841
\(650\) 0 0
\(651\) − 171.535i − 0.263494i
\(652\) 0 0
\(653\) −794.499 −1.21669 −0.608345 0.793673i \(-0.708166\pi\)
−0.608345 + 0.793673i \(0.708166\pi\)
\(654\) 0 0
\(655\) 458.465i 0.699947i
\(656\) 0 0
\(657\) 157.464 0.239671
\(658\) 0 0
\(659\) − 26.4351i − 0.0401140i −0.999799 0.0200570i \(-0.993615\pi\)
0.999799 0.0200570i \(-0.00638477\pi\)
\(660\) 0 0
\(661\) 497.881 0.753223 0.376612 0.926371i \(-0.377089\pi\)
0.376612 + 0.926371i \(0.377089\pi\)
\(662\) 0 0
\(663\) 720.265i 1.08637i
\(664\) 0 0
\(665\) 100.159 0.150614
\(666\) 0 0
\(667\) 1259.45i 1.88823i
\(668\) 0 0
\(669\) −371.038 −0.554616
\(670\) 0 0
\(671\) 456.470i 0.680283i
\(672\) 0 0
\(673\) −94.9961 −0.141153 −0.0705766 0.997506i \(-0.522484\pi\)
−0.0705766 + 0.997506i \(0.522484\pi\)
\(674\) 0 0
\(675\) − 85.7903i − 0.127097i
\(676\) 0 0
\(677\) 757.820 1.11938 0.559690 0.828702i \(-0.310920\pi\)
0.559690 + 0.828702i \(0.310920\pi\)
\(678\) 0 0
\(679\) 108.765i 0.160185i
\(680\) 0 0
\(681\) −547.826 −0.804443
\(682\) 0 0
\(683\) − 432.613i − 0.633402i −0.948525 0.316701i \(-0.897425\pi\)
0.948525 0.316701i \(-0.102575\pi\)
\(684\) 0 0
\(685\) −23.9911 −0.0350235
\(686\) 0 0
\(687\) − 335.422i − 0.488242i
\(688\) 0 0
\(689\) 2144.51 3.11250
\(690\) 0 0
\(691\) − 407.736i − 0.590067i −0.955487 0.295034i \(-0.904669\pi\)
0.955487 0.295034i \(-0.0953308\pi\)
\(692\) 0 0
\(693\) −58.8149 −0.0848699
\(694\) 0 0
\(695\) − 560.639i − 0.806675i
\(696\) 0 0
\(697\) 430.520 0.617676
\(698\) 0 0
\(699\) − 384.588i − 0.550197i
\(700\) 0 0
\(701\) −206.009 −0.293879 −0.146939 0.989145i \(-0.546942\pi\)
−0.146939 + 0.989145i \(0.546942\pi\)
\(702\) 0 0
\(703\) − 914.535i − 1.30090i
\(704\) 0 0
\(705\) 206.223 0.292515
\(706\) 0 0
\(707\) − 65.8059i − 0.0930777i
\(708\) 0 0
\(709\) 511.639 0.721635 0.360817 0.932637i \(-0.382498\pi\)
0.360817 + 0.932637i \(0.382498\pi\)
\(710\) 0 0
\(711\) − 275.567i − 0.387576i
\(712\) 0 0
\(713\) −1213.98 −1.70263
\(714\) 0 0
\(715\) 520.186i 0.727533i
\(716\) 0 0
\(717\) −45.7636 −0.0638265
\(718\) 0 0
\(719\) 1045.23i 1.45373i 0.686780 + 0.726866i \(0.259024\pi\)
−0.686780 + 0.726866i \(0.740976\pi\)
\(720\) 0 0
\(721\) 28.7248 0.0398402
\(722\) 0 0
\(723\) − 309.864i − 0.428581i
\(724\) 0 0
\(725\) 641.164 0.884364
\(726\) 0 0
\(727\) − 193.079i − 0.265584i −0.991144 0.132792i \(-0.957606\pi\)
0.991144 0.132792i \(-0.0423942\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) − 488.717i − 0.668560i
\(732\) 0 0
\(733\) −851.928 −1.16225 −0.581124 0.813815i \(-0.697387\pi\)
−0.581124 + 0.813815i \(0.697387\pi\)
\(734\) 0 0
\(735\) 35.3267i 0.0480636i
\(736\) 0 0
\(737\) −682.764 −0.926410
\(738\) 0 0
\(739\) 189.437i 0.256342i 0.991752 + 0.128171i \(0.0409107\pi\)
−0.991752 + 0.128171i \(0.959089\pi\)
\(740\) 0 0
\(741\) 542.191 0.731702
\(742\) 0 0
\(743\) − 945.745i − 1.27287i −0.771329 0.636436i \(-0.780408\pi\)
0.771329 0.636436i \(-0.219592\pi\)
\(744\) 0 0
\(745\) 173.635 0.233067
\(746\) 0 0
\(747\) 294.962i 0.394862i
\(748\) 0 0
\(749\) −78.8104 −0.105221
\(750\) 0 0
\(751\) 902.515i 1.20175i 0.799342 + 0.600876i \(0.205181\pi\)
−0.799342 + 0.600876i \(0.794819\pi\)
\(752\) 0 0
\(753\) 42.0724 0.0558731
\(754\) 0 0
\(755\) 475.953i 0.630401i
\(756\) 0 0
\(757\) −1242.26 −1.64103 −0.820513 0.571627i \(-0.806312\pi\)
−0.820513 + 0.571627i \(0.806312\pi\)
\(758\) 0 0
\(759\) 416.241i 0.548407i
\(760\) 0 0
\(761\) 764.711 1.00488 0.502438 0.864613i \(-0.332436\pi\)
0.502438 + 0.864613i \(0.332436\pi\)
\(762\) 0 0
\(763\) 159.815i 0.209456i
\(764\) 0 0
\(765\) −150.869 −0.197215
\(766\) 0 0
\(767\) 1945.27i 2.53621i
\(768\) 0 0
\(769\) 896.436 1.16572 0.582858 0.812574i \(-0.301934\pi\)
0.582858 + 0.812574i \(0.301934\pi\)
\(770\) 0 0
\(771\) − 533.612i − 0.692104i
\(772\) 0 0
\(773\) −483.067 −0.624925 −0.312463 0.949930i \(-0.601154\pi\)
−0.312463 + 0.949930i \(0.601154\pi\)
\(774\) 0 0
\(775\) 618.015i 0.797438i
\(776\) 0 0
\(777\) 322.564 0.415140
\(778\) 0 0
\(779\) − 324.081i − 0.416021i
\(780\) 0 0
\(781\) 456.436 0.584426
\(782\) 0 0
\(783\) − 201.788i − 0.257711i
\(784\) 0 0
\(785\) 568.137 0.723742
\(786\) 0 0
\(787\) 1046.56i 1.32981i 0.746926 + 0.664907i \(0.231529\pi\)
−0.746926 + 0.664907i \(0.768471\pi\)
\(788\) 0 0
\(789\) 760.252 0.963564
\(790\) 0 0
\(791\) 56.9192i 0.0719585i
\(792\) 0 0
\(793\) 1484.20 1.87163
\(794\) 0 0
\(795\) 449.197i 0.565027i
\(796\) 0 0
\(797\) 820.370 1.02932 0.514661 0.857394i \(-0.327918\pi\)
0.514661 + 0.857394i \(0.327918\pi\)
\(798\) 0 0
\(799\) 705.287i 0.882712i
\(800\) 0 0
\(801\) 202.643 0.252987
\(802\) 0 0
\(803\) 388.935i 0.484352i
\(804\) 0 0
\(805\) 250.012 0.310574
\(806\) 0 0
\(807\) 206.120i 0.255415i
\(808\) 0 0
\(809\) −1254.40 −1.55056 −0.775279 0.631619i \(-0.782391\pi\)
−0.775279 + 0.631619i \(0.782391\pi\)
\(810\) 0 0
\(811\) − 118.642i − 0.146291i −0.997321 0.0731454i \(-0.976696\pi\)
0.997321 0.0731454i \(-0.0233037\pi\)
\(812\) 0 0
\(813\) −116.444 −0.143228
\(814\) 0 0
\(815\) − 206.564i − 0.253453i
\(816\) 0 0
\(817\) −367.889 −0.450293
\(818\) 0 0
\(819\) 191.235i 0.233498i
\(820\) 0 0
\(821\) 1103.74 1.34438 0.672190 0.740378i \(-0.265354\pi\)
0.672190 + 0.740378i \(0.265354\pi\)
\(822\) 0 0
\(823\) − 178.011i − 0.216295i −0.994135 0.108147i \(-0.965508\pi\)
0.994135 0.108147i \(-0.0344919\pi\)
\(824\) 0 0
\(825\) 211.901 0.256850
\(826\) 0 0
\(827\) 423.395i 0.511964i 0.966682 + 0.255982i \(0.0823988\pi\)
−0.966682 + 0.255982i \(0.917601\pi\)
\(828\) 0 0
\(829\) −1504.17 −1.81444 −0.907222 0.420651i \(-0.861802\pi\)
−0.907222 + 0.420651i \(0.861802\pi\)
\(830\) 0 0
\(831\) 316.048i 0.380323i
\(832\) 0 0
\(833\) −120.818 −0.145040
\(834\) 0 0
\(835\) 446.974i 0.535299i
\(836\) 0 0
\(837\) 194.502 0.232380
\(838\) 0 0
\(839\) − 448.309i − 0.534337i −0.963650 0.267168i \(-0.913912\pi\)
0.963650 0.267168i \(-0.0860880\pi\)
\(840\) 0 0
\(841\) 667.084 0.793204
\(842\) 0 0
\(843\) − 696.261i − 0.825932i
\(844\) 0 0
\(845\) 1198.96 1.41889
\(846\) 0 0
\(847\) 174.864i 0.206451i
\(848\) 0 0
\(849\) 385.630 0.454217
\(850\) 0 0
\(851\) − 2282.83i − 2.68253i
\(852\) 0 0
\(853\) 120.642 0.141433 0.0707163 0.997496i \(-0.477471\pi\)
0.0707163 + 0.997496i \(0.477471\pi\)
\(854\) 0 0
\(855\) 113.569i 0.132829i
\(856\) 0 0
\(857\) −1440.05 −1.68034 −0.840169 0.542325i \(-0.817544\pi\)
−0.840169 + 0.542325i \(0.817544\pi\)
\(858\) 0 0
\(859\) − 1531.82i − 1.78326i −0.452765 0.891630i \(-0.649562\pi\)
0.452765 0.891630i \(-0.350438\pi\)
\(860\) 0 0
\(861\) 114.306 0.132759
\(862\) 0 0
\(863\) − 78.9293i − 0.0914593i −0.998954 0.0457296i \(-0.985439\pi\)
0.998954 0.0457296i \(-0.0145613\pi\)
\(864\) 0 0
\(865\) 206.696 0.238955
\(866\) 0 0
\(867\) − 15.4139i − 0.0177785i
\(868\) 0 0
\(869\) 680.647 0.783254
\(870\) 0 0
\(871\) 2219.99i 2.54878i
\(872\) 0 0
\(873\) −123.328 −0.141270
\(874\) 0 0
\(875\) − 320.000i − 0.365715i
\(876\) 0 0
\(877\) 1050.60 1.19795 0.598975 0.800768i \(-0.295575\pi\)
0.598975 + 0.800768i \(0.295575\pi\)
\(878\) 0 0
\(879\) − 876.003i − 0.996590i
\(880\) 0 0
\(881\) −1135.28 −1.28862 −0.644312 0.764763i \(-0.722856\pi\)
−0.644312 + 0.764763i \(0.722856\pi\)
\(882\) 0 0
\(883\) − 1107.98i − 1.25479i −0.778703 0.627393i \(-0.784122\pi\)
0.778703 0.627393i \(-0.215878\pi\)
\(884\) 0 0
\(885\) −407.464 −0.460411
\(886\) 0 0
\(887\) − 396.514i − 0.447028i −0.974701 0.223514i \(-0.928247\pi\)
0.974701 0.223514i \(-0.0717528\pi\)
\(888\) 0 0
\(889\) 224.698 0.252753
\(890\) 0 0
\(891\) − 66.6898i − 0.0748482i
\(892\) 0 0
\(893\) 530.916 0.594530
\(894\) 0 0
\(895\) 840.746i 0.939381i
\(896\) 0 0
\(897\) 1353.40 1.50880
\(898\) 0 0
\(899\) 1453.64i 1.61695i
\(900\) 0 0
\(901\) −1536.26 −1.70506
\(902\) 0 0
\(903\) − 129.757i − 0.143696i
\(904\) 0 0
\(905\) 1022.85 1.13022
\(906\) 0 0
\(907\) 815.997i 0.899666i 0.893113 + 0.449833i \(0.148516\pi\)
−0.893113 + 0.449833i \(0.851484\pi\)
\(908\) 0 0
\(909\) 74.6169 0.0820868
\(910\) 0 0
\(911\) 1799.18i 1.97495i 0.157789 + 0.987473i \(0.449563\pi\)
−0.157789 + 0.987473i \(0.550437\pi\)
\(912\) 0 0
\(913\) −728.553 −0.797977
\(914\) 0 0
\(915\) 310.886i 0.339766i
\(916\) 0 0
\(917\) −416.304 −0.453984
\(918\) 0 0
\(919\) 1694.65i 1.84401i 0.387175 + 0.922006i \(0.373451\pi\)
−0.387175 + 0.922006i \(0.626549\pi\)
\(920\) 0 0
\(921\) −271.546 −0.294838
\(922\) 0 0
\(923\) − 1484.09i − 1.60790i
\(924\) 0 0
\(925\) −1162.15 −1.25638
\(926\) 0 0
\(927\) 32.5708i 0.0351357i
\(928\) 0 0
\(929\) 365.052 0.392952 0.196476 0.980509i \(-0.437050\pi\)
0.196476 + 0.980509i \(0.437050\pi\)
\(930\) 0 0
\(931\) 90.9479i 0.0976884i
\(932\) 0 0
\(933\) −910.370 −0.975745
\(934\) 0 0
\(935\) − 372.646i − 0.398552i
\(936\) 0 0
\(937\) −622.594 −0.664455 −0.332228 0.943199i \(-0.607800\pi\)
−0.332228 + 0.943199i \(0.607800\pi\)
\(938\) 0 0
\(939\) 39.3938i 0.0419529i
\(940\) 0 0
\(941\) 404.487 0.429848 0.214924 0.976631i \(-0.431050\pi\)
0.214924 + 0.976631i \(0.431050\pi\)
\(942\) 0 0
\(943\) − 808.958i − 0.857856i
\(944\) 0 0
\(945\) −40.0568 −0.0423881
\(946\) 0 0
\(947\) 1066.44i 1.12613i 0.826414 + 0.563063i \(0.190377\pi\)
−0.826414 + 0.563063i \(0.809623\pi\)
\(948\) 0 0
\(949\) 1264.61 1.33257
\(950\) 0 0
\(951\) 561.083i 0.589993i
\(952\) 0 0
\(953\) 1781.50 1.86936 0.934680 0.355491i \(-0.115686\pi\)
0.934680 + 0.355491i \(0.115686\pi\)
\(954\) 0 0
\(955\) 476.713i 0.499176i
\(956\) 0 0
\(957\) 498.414 0.520809
\(958\) 0 0
\(959\) − 21.7848i − 0.0227162i
\(960\) 0 0
\(961\) −440.152 −0.458015
\(962\) 0 0
\(963\) − 89.3626i − 0.0927961i
\(964\) 0 0
\(965\) −401.181 −0.415732
\(966\) 0 0
\(967\) − 1048.75i − 1.08454i −0.840205 0.542269i \(-0.817565\pi\)
0.840205 0.542269i \(-0.182435\pi\)
\(968\) 0 0
\(969\) −388.409 −0.400835
\(970\) 0 0
\(971\) 1439.69i 1.48268i 0.671127 + 0.741342i \(0.265810\pi\)
−0.671127 + 0.741342i \(0.734190\pi\)
\(972\) 0 0
\(973\) 509.082 0.523208
\(974\) 0 0
\(975\) − 688.992i − 0.706658i
\(976\) 0 0
\(977\) 562.504 0.575746 0.287873 0.957669i \(-0.407052\pi\)
0.287873 + 0.957669i \(0.407052\pi\)
\(978\) 0 0
\(979\) 500.526i 0.511263i
\(980\) 0 0
\(981\) −181.213 −0.184723
\(982\) 0 0
\(983\) − 580.429i − 0.590467i −0.955425 0.295233i \(-0.904603\pi\)
0.955425 0.295233i \(-0.0953974\pi\)
\(984\) 0 0
\(985\) −497.494 −0.505070
\(986\) 0 0
\(987\) 187.258i 0.189725i
\(988\) 0 0
\(989\) −918.312 −0.928526
\(990\) 0 0
\(991\) − 1425.05i − 1.43799i −0.695013 0.718997i \(-0.744602\pi\)
0.695013 0.718997i \(-0.255398\pi\)
\(992\) 0 0
\(993\) −786.851 −0.792398
\(994\) 0 0
\(995\) − 590.313i − 0.593279i
\(996\) 0 0
\(997\) 523.575 0.525151 0.262575 0.964912i \(-0.415428\pi\)
0.262575 + 0.964912i \(0.415428\pi\)
\(998\) 0 0
\(999\) 365.753i 0.366119i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.m.a.127.3 8
3.2 odd 2 2016.3.m.b.127.4 8
4.3 odd 2 inner 672.3.m.a.127.7 yes 8
8.3 odd 2 1344.3.m.d.127.2 8
8.5 even 2 1344.3.m.d.127.6 8
12.11 even 2 2016.3.m.b.127.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.m.a.127.3 8 1.1 even 1 trivial
672.3.m.a.127.7 yes 8 4.3 odd 2 inner
1344.3.m.d.127.2 8 8.3 odd 2
1344.3.m.d.127.6 8 8.5 even 2
2016.3.m.b.127.3 8 12.11 even 2
2016.3.m.b.127.4 8 3.2 odd 2