Properties

Label 2020.1.k.a
Level $2020$
Weight $1$
Character orbit 2020.k
Analytic conductor $1.008$
Analytic rank $0$
Dimension $4$
Projective image $D_{12}$
RM discriminant 101
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2020,1,Mod(1413,2020)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2020, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2020.1413");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2020 = 2^{2} \cdot 5 \cdot 101 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2020.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00811132552\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{2} q^{5} - \zeta_{12}^{3} q^{9} + (\zeta_{12}^{2} - \zeta_{12}) q^{13} + ( - \zeta_{12}^{2} - \zeta_{12}) q^{17} + \zeta_{12}^{3} q^{19} + ( - \zeta_{12}^{5} - \zeta_{12}^{4}) q^{23} + \zeta_{12}^{4} q^{25} + \cdots + ( - \zeta_{12}^{3} - 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + 2 q^{13} - 2 q^{17} + 2 q^{23} - 2 q^{25} - 4 q^{37} + 4 q^{43} + 2 q^{47} + 2 q^{65} + 4 q^{71} - 4 q^{81} - 2 q^{85} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2020\mathbb{Z}\right)^\times\).

\(n\) \(1011\) \(1617\) \(1921\)
\(\chi(n)\) \(1\) \(\zeta_{12}^{3}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1413.1
−0.866025 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0 0 0 −0.500000 0.866025i 0 0 0 1.00000i 0
1413.2 0 0 0 −0.500000 + 0.866025i 0 0 0 1.00000i 0
1817.1 0 0 0 −0.500000 0.866025i 0 0 0 1.00000i 0
1817.2 0 0 0 −0.500000 + 0.866025i 0 0 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
101.b even 2 1 RM by \(\Q(\sqrt{101}) \)
5.c odd 4 1 inner
505.h odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2020.1.k.a 4
5.c odd 4 1 inner 2020.1.k.a 4
101.b even 2 1 RM 2020.1.k.a 4
505.h odd 4 1 inner 2020.1.k.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2020.1.k.a 4 1.a even 1 1 trivial
2020.1.k.a 4 5.c odd 4 1 inner
2020.1.k.a 4 101.b even 2 1 RM
2020.1.k.a 4 505.h odd 4 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2020, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T - 1)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
show more
show less