Properties

Label 2025.1.y.a.296.1
Level 20252025
Weight 11
Character 2025.296
Analytic conductor 1.0111.011
Analytic rank 00
Dimension 1616
Projective image A5A_{5}
CM/RM no
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,1,Mod(296,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([25, 18])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.296"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2025=3452 2025 = 3^{4} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2025.y (of order 3030, degree 88, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.010606650581.01060665058
Analytic rank: 00
Dimension: 1616
Relative dimension: 22 over Q(ζ30)\Q(\zeta_{30})
Coefficient field: Q(ζ60)\Q(\zeta_{60})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x16+x14x10x8x6+x2+1 x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 675)
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.31640625.2

Embedding invariants

Embedding label 296.1
Root 0.2079120.978148i0.207912 - 0.978148i of defining polynomial
Character χ\chi == 2025.296
Dual form 2025.1.y.a.431.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.1284960.604528i)q2+(0.5646020.251377i)q4+(0.207912+0.978148i)q5+(0.3090170.535233i)q7+(0.5877850.809017i)q8+0.618034q10+(0.207912+0.978148i)q11+(0.283856+0.255585i)q14+(0.587785+0.809017i)q17+(0.8090170.587785i)q19+(0.128496+0.604528i)q20+(0.5646020.251377i)q22+(0.7431450.669131i)q23+(0.9135450.406737i)q25+(0.3090170.224514i)q28+(1.60917+0.169131i)q29+(0.8660250.500000i)q32+(0.4135450.459289i)q34+(0.5877850.190983i)q35+(0.500000+1.53884i)q37+(0.4592890.413545i)q38+(0.9135450.406737i)q40+(0.2079120.978148i)q41+(0.363271+0.500000i)q44+(0.5000000.363271i)q46+(1.609170.169131i)q47+(0.3090170.535233i)q49+(0.128496+0.604528i)q50+(0.3632710.500000i)q531.00000q55+(0.251377+0.564602i)q56+(0.1045280.994522i)q58+(0.9781480.207912i)q61+(0.190983+0.587785i)q64+(0.06460210.614648i)q67+(0.535233+0.309017i)q68+(0.1909830.330792i)q70+(0.951057+1.30902i)q71+(0.8660250.500000i)q74+(0.3090170.535233i)q76+(0.4592890.413545i)q77+(0.169131+1.60917i)q790.618034q82+(0.2513770.564602i)q83+(0.913545+0.406737i)q85+(0.6691310.743145i)q88+(0.9510570.309017i)q89+(0.2513770.564602i)q92+(0.104528+0.994522i)q94+(0.406737+0.913545i)q95+(0.104528+0.994522i)q97+(0.3632710.118034i)q98+O(q100)q+(-0.128496 - 0.604528i) q^{2} +(0.564602 - 0.251377i) q^{4} +(-0.207912 + 0.978148i) q^{5} +(-0.309017 - 0.535233i) q^{7} +(-0.587785 - 0.809017i) q^{8} +0.618034 q^{10} +(0.207912 + 0.978148i) q^{11} +(-0.283856 + 0.255585i) q^{14} +(0.587785 + 0.809017i) q^{17} +(0.809017 - 0.587785i) q^{19} +(0.128496 + 0.604528i) q^{20} +(0.564602 - 0.251377i) q^{22} +(0.743145 - 0.669131i) q^{23} +(-0.913545 - 0.406737i) q^{25} +(-0.309017 - 0.224514i) q^{28} +(1.60917 + 0.169131i) q^{29} +(-0.866025 - 0.500000i) q^{32} +(0.413545 - 0.459289i) q^{34} +(0.587785 - 0.190983i) q^{35} +(0.500000 + 1.53884i) q^{37} +(-0.459289 - 0.413545i) q^{38} +(0.913545 - 0.406737i) q^{40} +(0.207912 - 0.978148i) q^{41} +(0.363271 + 0.500000i) q^{44} +(-0.500000 - 0.363271i) q^{46} +(-1.60917 - 0.169131i) q^{47} +(0.309017 - 0.535233i) q^{49} +(-0.128496 + 0.604528i) q^{50} +(0.363271 - 0.500000i) q^{53} -1.00000 q^{55} +(-0.251377 + 0.564602i) q^{56} +(-0.104528 - 0.994522i) q^{58} +(0.978148 - 0.207912i) q^{61} +(-0.190983 + 0.587785i) q^{64} +(-0.0646021 - 0.614648i) q^{67} +(0.535233 + 0.309017i) q^{68} +(-0.190983 - 0.330792i) q^{70} +(-0.951057 + 1.30902i) q^{71} +(0.866025 - 0.500000i) q^{74} +(0.309017 - 0.535233i) q^{76} +(0.459289 - 0.413545i) q^{77} +(-0.169131 + 1.60917i) q^{79} -0.618034 q^{82} +(0.251377 - 0.564602i) q^{83} +(-0.913545 + 0.406737i) q^{85} +(0.669131 - 0.743145i) q^{88} +(-0.951057 - 0.309017i) q^{89} +(0.251377 - 0.564602i) q^{92} +(0.104528 + 0.994522i) q^{94} +(0.406737 + 0.913545i) q^{95} +(-0.104528 + 0.994522i) q^{97} +(-0.363271 - 0.118034i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q4+4q78q10+4q19+4q222q25+4q286q34+8q37+2q408q464q4916q55+2q582q6112q64+4q6712q70++2q97+O(q100) 16 q + 4 q^{4} + 4 q^{7} - 8 q^{10} + 4 q^{19} + 4 q^{22} - 2 q^{25} + 4 q^{28} - 6 q^{34} + 8 q^{37} + 2 q^{40} - 8 q^{46} - 4 q^{49} - 16 q^{55} + 2 q^{58} - 2 q^{61} - 12 q^{64} + 4 q^{67} - 12 q^{70}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2025Z)×\left(\mathbb{Z}/2025\mathbb{Z}\right)^\times.

nn 326326 17021702
χ(n)\chi(n) e(56)e\left(\frac{5}{6}\right) e(35)e\left(\frac{3}{5}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.128496 0.604528i −0.128496 0.604528i −0.994522 0.104528i 0.966667π-0.966667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
33 0 0
44 0.564602 0.251377i 0.564602 0.251377i
55 −0.207912 + 0.978148i −0.207912 + 0.978148i
66 0 0
77 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
88 −0.587785 0.809017i −0.587785 0.809017i
99 0 0
1010 0.618034 0.618034
1111 0.207912 + 0.978148i 0.207912 + 0.978148i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
1212 0 0
1313 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
1414 −0.283856 + 0.255585i −0.283856 + 0.255585i
1515 0 0
1616 0 0
1717 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
1818 0 0
1919 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
2020 0.128496 + 0.604528i 0.128496 + 0.604528i
2121 0 0
2222 0.564602 0.251377i 0.564602 0.251377i
2323 0.743145 0.669131i 0.743145 0.669131i −0.207912 0.978148i 0.566667π-0.566667\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
2424 0 0
2525 −0.913545 0.406737i −0.913545 0.406737i
2626 0 0
2727 0 0
2828 −0.309017 0.224514i −0.309017 0.224514i
2929 1.60917 + 0.169131i 1.60917 + 0.169131i 0.866025 0.500000i 0.166667π-0.166667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
3030 0 0
3131 0 0 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
3232 −0.866025 0.500000i −0.866025 0.500000i
3333 0 0
3434 0.413545 0.459289i 0.413545 0.459289i
3535 0.587785 0.190983i 0.587785 0.190983i
3636 0 0
3737 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3838 −0.459289 0.413545i −0.459289 0.413545i
3939 0 0
4040 0.913545 0.406737i 0.913545 0.406737i
4141 0.207912 0.978148i 0.207912 0.978148i −0.743145 0.669131i 0.766667π-0.766667\pi
0.951057 0.309017i 0.100000π-0.100000\pi
4242 0 0
4343 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4444 0.363271 + 0.500000i 0.363271 + 0.500000i
4545 0 0
4646 −0.500000 0.363271i −0.500000 0.363271i
4747 −1.60917 0.169131i −1.60917 0.169131i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4848 0 0
4949 0.309017 0.535233i 0.309017 0.535233i
5050 −0.128496 + 0.604528i −0.128496 + 0.604528i
5151 0 0
5252 0 0
5353 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
5454 0 0
5555 −1.00000 −1.00000
5656 −0.251377 + 0.564602i −0.251377 + 0.564602i
5757 0 0
5858 −0.104528 0.994522i −0.104528 0.994522i
5959 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
6060 0 0
6161 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
6262 0 0
6363 0 0
6464 −0.190983 + 0.587785i −0.190983 + 0.587785i
6565 0 0
6666 0 0
6767 −0.0646021 0.614648i −0.0646021 0.614648i −0.978148 0.207912i 0.933333π-0.933333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
6868 0.535233 + 0.309017i 0.535233 + 0.309017i
6969 0 0
7070 −0.190983 0.330792i −0.190983 0.330792i
7171 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
7272 0 0
7373 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
7474 0.866025 0.500000i 0.866025 0.500000i
7575 0 0
7676 0.309017 0.535233i 0.309017 0.535233i
7777 0.459289 0.413545i 0.459289 0.413545i
7878 0 0
7979 −0.169131 + 1.60917i −0.169131 + 1.60917i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
8080 0 0
8181 0 0
8282 −0.618034 −0.618034
8383 0.251377 0.564602i 0.251377 0.564602i −0.743145 0.669131i 0.766667π-0.766667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
8484 0 0
8585 −0.913545 + 0.406737i −0.913545 + 0.406737i
8686 0 0
8787 0 0
8888 0.669131 0.743145i 0.669131 0.743145i
8989 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
9090 0 0
9191 0 0
9292 0.251377 0.564602i 0.251377 0.564602i
9393 0 0
9494 0.104528 + 0.994522i 0.104528 + 0.994522i
9595 0.406737 + 0.913545i 0.406737 + 0.913545i
9696 0 0
9797 −0.104528 + 0.994522i −0.104528 + 0.994522i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
9898 −0.363271 0.118034i −0.363271 0.118034i
9999 0 0
100100 −0.618034 −0.618034
101101 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
104104 0 0
105105 0 0
106106 −0.348943 0.155360i −0.348943 0.155360i
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
110110 0.128496 + 0.604528i 0.128496 + 0.604528i
111111 0 0
112112 0 0
113113 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
114114 0 0
115115 0.500000 + 0.866025i 0.500000 + 0.866025i
116116 0.951057 0.309017i 0.951057 0.309017i
117117 0 0
118118 0 0
119119 0.251377 0.564602i 0.251377 0.564602i
120120 0 0
121121 0 0
122122 −0.251377 0.564602i −0.251377 0.564602i
123123 0 0
124124 0 0
125125 0.587785 0.809017i 0.587785 0.809017i
126126 0 0
127127 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
128128 −0.614648 0.0646021i −0.614648 0.0646021i
129129 0 0
130130 0 0
131131 −1.60917 + 0.169131i −1.60917 + 0.169131i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
132132 0 0
133133 −0.564602 0.251377i −0.564602 0.251377i
134134 −0.363271 + 0.118034i −0.363271 + 0.118034i
135135 0 0
136136 0.309017 0.951057i 0.309017 0.951057i
137137 −0.743145 0.669131i −0.743145 0.669131i 0.207912 0.978148i 0.433333π-0.433333\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
138138 0 0
139139 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
140140 0.283856 0.255585i 0.283856 0.255585i
141141 0 0
142142 0.913545 + 0.406737i 0.913545 + 0.406737i
143143 0 0
144144 0 0
145145 −0.500000 + 1.53884i −0.500000 + 1.53884i
146146 0 0
147147 0 0
148148 0.669131 + 0.743145i 0.669131 + 0.743145i
149149 0.535233 + 0.309017i 0.535233 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
150150 0 0
151151 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
152152 −0.951057 0.309017i −0.951057 0.309017i
153153 0 0
154154 −0.309017 0.224514i −0.309017 0.224514i
155155 0 0
156156 0 0
157157 −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i 0.466667π0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
158158 0.994522 0.104528i 0.994522 0.104528i
159159 0 0
160160 0.669131 0.743145i 0.669131 0.743145i
161161 −0.587785 0.190983i −0.587785 0.190983i
162162 0 0
163163 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
164164 −0.128496 0.604528i −0.128496 0.604528i
165165 0 0
166166 −0.373619 0.0794152i −0.373619 0.0794152i
167167 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
168168 0 0
169169 −0.913545 0.406737i −0.913545 0.406737i
170170 0.363271 + 0.500000i 0.363271 + 0.500000i
171171 0 0
172172 0 0
173173 −0.336408 1.58268i −0.336408 1.58268i −0.743145 0.669131i 0.766667π-0.766667\pi
0.406737 0.913545i 0.366667π-0.366667\pi
174174 0 0
175175 0.0646021 + 0.614648i 0.0646021 + 0.614648i
176176 0 0
177177 0 0
178178 −0.0646021 + 0.614648i −0.0646021 + 0.614648i
179179 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
180180 0 0
181181 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
182182 0 0
183183 0 0
184184 −0.978148 0.207912i −0.978148 0.207912i
185185 −1.60917 + 0.169131i −1.60917 + 0.169131i
186186 0 0
187187 −0.669131 + 0.743145i −0.669131 + 0.743145i
188188 −0.951057 + 0.309017i −0.951057 + 0.309017i
189189 0 0
190190 0.500000 0.363271i 0.500000 0.363271i
191191 −0.459289 0.413545i −0.459289 0.413545i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
192192 0 0
193193 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
194194 0.614648 0.0646021i 0.614648 0.0646021i
195195 0 0
196196 0.0399263 0.379874i 0.0399263 0.379874i
197197 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0.207912 + 0.978148i 0.207912 + 0.978148i
201201 0 0
202202 0.413545 + 0.459289i 0.413545 + 0.459289i
203203 −0.406737 0.913545i −0.406737 0.913545i
204204 0 0
205205 0.913545 + 0.406737i 0.913545 + 0.406737i
206206 0 0
207207 0 0
208208 0 0
209209 0.743145 + 0.669131i 0.743145 + 0.669131i
210210 0 0
211211 −0.413545 0.459289i −0.413545 0.459289i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
212212 0.0794152 0.373619i 0.0794152 0.373619i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0.535233 0.309017i 0.535233 0.309017i
219219 0 0
220220 −0.564602 + 0.251377i −0.564602 + 0.251377i
221221 0 0
222222 0 0
223223 0.604528 0.128496i 0.604528 0.128496i 0.104528 0.994522i 0.466667π-0.466667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
224224 0.618034i 0.618034i
225225 0 0
226226 0 0
227227 0.128496 + 0.604528i 0.128496 + 0.604528i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
228228 0 0
229229 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
230230 0.459289 0.413545i 0.459289 0.413545i
231231 0 0
232232 −0.809017 1.40126i −0.809017 1.40126i
233233 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
234234 0 0
235235 0.500000 1.53884i 0.500000 1.53884i
236236 0 0
237237 0 0
238238 −0.373619 0.0794152i −0.373619 0.0794152i
239239 0.459289 0.413545i 0.459289 0.413545i −0.406737 0.913545i 0.633333π-0.633333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
240240 0 0
241241 −1.08268 + 1.20243i −1.08268 + 1.20243i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
242242 0 0
243243 0 0
244244 0.500000 0.363271i 0.500000 0.363271i
245245 0.459289 + 0.413545i 0.459289 + 0.413545i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 −0.564602 0.251377i −0.564602 0.251377i
251251 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
252252 0 0
253253 0.809017 + 0.587785i 0.809017 + 0.587785i
254254 −0.994522 0.104528i −0.994522 0.104528i
255255 0 0
256256 0.104528 + 0.994522i 0.104528 + 0.994522i
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0.669131 0.743145i 0.669131 0.743145i
260260 0 0
261261 0 0
262262 0.309017 + 0.951057i 0.309017 + 0.951057i
263263 0.743145 + 0.669131i 0.743145 + 0.669131i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
264264 0 0
265265 0.413545 + 0.459289i 0.413545 + 0.459289i
266266 −0.0794152 + 0.373619i −0.0794152 + 0.373619i
267267 0 0
268268 −0.190983 0.330792i −0.190983 0.330792i
269269 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
270270 0 0
271271 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
272272 0 0
273273 0 0
274274 −0.309017 + 0.535233i −0.309017 + 0.535233i
275275 0.207912 0.978148i 0.207912 0.978148i
276276 0 0
277277 0 0 −0.207912 0.978148i 0.566667π-0.566667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
278278 −0.363271 + 0.500000i −0.363271 + 0.500000i
279279 0 0
280280 −0.500000 0.363271i −0.500000 0.363271i
281281 −0.406737 + 0.913545i −0.406737 + 0.913545i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
282282 0 0
283283 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
284284 −0.207912 + 0.978148i −0.207912 + 0.978148i
285285 0 0
286286 0 0
287287 −0.587785 + 0.190983i −0.587785 + 0.190983i
288288 0 0
289289 0 0
290290 0.994522 + 0.104528i 0.994522 + 0.104528i
291291 0 0
292292 0 0
293293 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 0.951057 1.30902i 0.951057 1.30902i
297297 0 0
298298 0.118034 0.363271i 0.118034 0.363271i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 1.00000i 1.00000i
306306 0 0
307307 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
308308 0.155360 0.348943i 0.155360 0.348943i
309309 0 0
310310 0 0
311311 −0.743145 + 0.669131i −0.743145 + 0.669131i −0.951057 0.309017i 0.900000π-0.900000\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
312312 0 0
313313 −0.413545 + 0.459289i −0.413545 + 0.459289i −0.913545 0.406737i 0.866667π-0.866667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 0.951057 + 0.309017i 0.951057 + 0.309017i
315315 0 0
316316 0.309017 + 0.951057i 0.309017 + 0.951057i
317317 −0.251377 + 0.564602i −0.251377 + 0.564602i −0.994522 0.104528i 0.966667π-0.966667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
318318 0 0
319319 0.169131 + 1.60917i 0.169131 + 1.60917i
320320 −0.535233 0.309017i −0.535233 0.309017i
321321 0 0
322322 −0.0399263 + 0.379874i −0.0399263 + 0.379874i
323323 0.951057 + 0.309017i 0.951057 + 0.309017i
324324 0 0
325325 0 0
326326 −0.535233 + 0.309017i −0.535233 + 0.309017i
327327 0 0
328328 −0.913545 + 0.406737i −0.913545 + 0.406737i
329329 0.406737 + 0.913545i 0.406737 + 0.913545i
330330 0 0
331331 0 0 0.406737 0.913545i 0.366667π-0.366667\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
332332 0.381966i 0.381966i
333333 0 0
334334 0 0
335335 0.614648 + 0.0646021i 0.614648 + 0.0646021i
336336 0 0
337337 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
338338 −0.128496 + 0.604528i −0.128496 + 0.604528i
339339 0 0
340340 −0.413545 + 0.459289i −0.413545 + 0.459289i
341341 0 0
342342 0 0
343343 −1.00000 −1.00000
344344 0 0
345345 0 0
346346 −0.913545 + 0.406737i −0.913545 + 0.406737i
347347 0.406737 + 0.913545i 0.406737 + 0.913545i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
348348 0 0
349349 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
350350 0.363271 0.118034i 0.363271 0.118034i
351351 0 0
352352 0.309017 0.951057i 0.309017 0.951057i
353353 0.614648 + 0.0646021i 0.614648 + 0.0646021i 0.406737 0.913545i 0.366667π-0.366667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
354354 0 0
355355 −1.08268 1.20243i −1.08268 1.20243i
356356 −0.614648 + 0.0646021i −0.614648 + 0.0646021i
357357 0 0
358358 −0.913545 0.406737i −0.913545 0.406737i
359359 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
360360 0 0
361361 0 0
362362 0.459289 + 0.413545i 0.459289 + 0.413545i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0.913545 + 0.406737i 0.913545 + 0.406737i 0.809017 0.587785i 0.200000π-0.200000\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
368368 0 0
369369 0 0
370370 0.309017 + 0.951057i 0.309017 + 0.951057i
371371 −0.379874 0.0399263i −0.379874 0.0399263i
372372 0 0
373373 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
374374 0.535233 + 0.309017i 0.535233 + 0.309017i
375375 0 0
376376 0.809017 + 1.40126i 0.809017 + 1.40126i
377377 0 0
378378 0 0
379379 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
380380 0.459289 + 0.413545i 0.459289 + 0.413545i
381381 0 0
382382 −0.190983 + 0.330792i −0.190983 + 0.330792i
383383 −1.60917 + 0.169131i −1.60917 + 0.169131i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
384384 0 0
385385 0.309017 + 0.535233i 0.309017 + 0.535233i
386386 0.587785 + 0.190983i 0.587785 + 0.190983i
387387 0 0
388388 0.190983 + 0.587785i 0.190983 + 0.587785i
389389 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
390390 0 0
391391 0.978148 + 0.207912i 0.978148 + 0.207912i
392392 −0.614648 + 0.0646021i −0.614648 + 0.0646021i
393393 0 0
394394 0 0
395395 −1.53884 0.500000i −1.53884 0.500000i
396396 0 0
397397 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
398398 0 0
399399 0 0
400400 0 0
401401 0.535233 + 0.309017i 0.535233 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
402402 0 0
403403 0 0
404404 −0.363271 + 0.500000i −0.363271 + 0.500000i
405405 0 0
406406 −0.500000 + 0.363271i −0.500000 + 0.363271i
407407 −1.40126 + 0.809017i −1.40126 + 0.809017i
408408 0 0
409409 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
410410 0.128496 0.604528i 0.128496 0.604528i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0.500000 + 0.363271i 0.500000 + 0.363271i
416416 0 0
417417 0 0
418418 0.309017 0.535233i 0.309017 0.535233i
419419 0.614648 0.0646021i 0.614648 0.0646021i 0.207912 0.978148i 0.433333π-0.433333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
420420 0 0
421421 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
422422 −0.224514 + 0.309017i −0.224514 + 0.309017i
423423 0 0
424424 −0.618034 −0.618034
425425 −0.207912 0.978148i −0.207912 0.978148i
426426 0 0
427427 −0.413545 0.459289i −0.413545 0.459289i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
432432 0 0
433433 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
434434 0 0
435435 0 0
436436 0.413545 + 0.459289i 0.413545 + 0.459289i
437437 0.207912 0.978148i 0.207912 0.978148i
438438 0 0
439439 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
440440 0.587785 + 0.809017i 0.587785 + 0.809017i
441441 0 0
442442 0 0
443443 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
444444 0 0
445445 0.500000 0.866025i 0.500000 0.866025i
446446 −0.155360 0.348943i −0.155360 0.348943i
447447 0 0
448448 0.373619 0.0794152i 0.373619 0.0794152i
449449 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
450450 0 0
451451 1.00000 1.00000
452452 0 0
453453 0 0
454454 0.348943 0.155360i 0.348943 0.155360i
455455 0 0
456456 0 0
457457 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0.500000 + 0.363271i 0.500000 + 0.363271i
461461 −0.207912 0.978148i −0.207912 0.978148i −0.951057 0.309017i 0.900000π-0.900000\pi
0.743145 0.669131i 0.233333π-0.233333\pi
462462 0 0
463463 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
464464 0 0
465465 0 0
466466 0.413545 0.459289i 0.413545 0.459289i
467467 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
468468 0 0
469469 −0.309017 + 0.224514i −0.309017 + 0.224514i
470470 −0.994522 0.104528i −0.994522 0.104528i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −0.978148 + 0.207912i −0.978148 + 0.207912i
476476 0.381966i 0.381966i
477477 0 0
478478 −0.309017 0.224514i −0.309017 0.224514i
479479 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
480480 0 0
481481 0 0
482482 0.866025 + 0.500000i 0.866025 + 0.500000i
483483 0 0
484484 0 0
485485 −0.951057 0.309017i −0.951057 0.309017i
486486 0 0
487487 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
488488 −0.743145 0.669131i −0.743145 0.669131i
489489 0 0
490490 0.190983 0.330792i 0.190983 0.330792i
491491 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
492492 0 0
493493 0.809017 + 1.40126i 0.809017 + 1.40126i
494494 0 0
495495 0 0
496496 0 0
497497 0.994522 + 0.104528i 0.994522 + 0.104528i
498498 0 0
499499 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
500500 0.128496 0.604528i 0.128496 0.604528i
501501 0 0
502502 0.604528 0.128496i 0.604528 0.128496i
503503 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
504504 0 0
505505 −0.309017 0.951057i −0.309017 0.951057i
506506 0.251377 0.564602i 0.251377 0.564602i
507507 0 0
508508 −0.104528 0.994522i −0.104528 0.994522i
509509 0.128496 0.604528i 0.128496 0.604528i −0.866025 0.500000i 0.833333π-0.833333\pi
0.994522 0.104528i 0.0333333π-0.0333333\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 −0.169131 1.60917i −0.169131 1.60917i
518518 −0.535233 0.309017i −0.535233 0.309017i
519519 0 0
520520 0 0
521521 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
522522 0 0
523523 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
524524 −0.866025 + 0.500000i −0.866025 + 0.500000i
525525 0 0
526526 0.309017 0.535233i 0.309017 0.535233i
527527 0 0
528528 0 0
529529 0 0
530530 0.224514 0.309017i 0.224514 0.309017i
531531 0 0
532532 −0.381966 −0.381966
533533 0 0
534534 0 0
535535 0 0
536536 −0.459289 + 0.413545i −0.459289 + 0.413545i
537537 0 0
538538 −0.413545 + 0.459289i −0.413545 + 0.459289i
539539 0.587785 + 0.190983i 0.587785 + 0.190983i
540540 0 0
541541 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
542542 −0.251377 + 0.564602i −0.251377 + 0.564602i
543543 0 0
544544 −0.104528 0.994522i −0.104528 0.994522i
545545 −0.994522 + 0.104528i −0.994522 + 0.104528i
546546 0 0
547547 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
548548 −0.587785 0.190983i −0.587785 0.190983i
549549 0 0
550550 −0.618034 −0.618034
551551 1.40126 0.809017i 1.40126 0.809017i
552552 0 0
553553 0.913545 0.406737i 0.913545 0.406737i
554554 0 0
555555 0 0
556556 −0.564602 0.251377i −0.564602 0.251377i
557557 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0.604528 + 0.128496i 0.604528 + 0.128496i
563563 0.128496 0.604528i 0.128496 0.604528i −0.866025 0.500000i 0.833333π-0.833333\pi
0.994522 0.104528i 0.0333333π-0.0333333\pi
564564 0 0
565565 0 0
566566 0.587785 0.190983i 0.587785 0.190983i
567567 0 0
568568 1.61803 1.61803
569569 −0.251377 + 0.564602i −0.251377 + 0.564602i −0.994522 0.104528i 0.966667π-0.966667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
570570 0 0
571571 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
572572 0 0
573573 0 0
574574 0.190983 + 0.330792i 0.190983 + 0.330792i
575575 −0.951057 + 0.309017i −0.951057 + 0.309017i
576576 0 0
577577 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
578578 0 0
579579 0 0
580580 0.104528 + 0.994522i 0.104528 + 0.994522i
581581 −0.379874 + 0.0399263i −0.379874 + 0.0399263i
582582 0 0
583583 0.564602 + 0.251377i 0.564602 + 0.251377i
584584 0 0
585585 0 0
586586 0.190983 0.587785i 0.190983 0.587785i
587587 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
594594 0 0
595595 0.500000 + 0.363271i 0.500000 + 0.363271i
596596 0.379874 + 0.0399263i 0.379874 + 0.0399263i
597597 0 0
598598 0 0
599599 −0.535233 0.309017i −0.535233 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
600600 0 0
601601 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
608608 −0.994522 + 0.104528i −0.994522 + 0.104528i
609609 0 0
610610 0.604528 0.128496i 0.604528 0.128496i
611611 0 0
612612 0 0
613613 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
614614 0.207912 + 0.978148i 0.207912 + 0.978148i
615615 0 0
616616 −0.604528 0.128496i −0.604528 0.128496i
617617 0.994522 0.104528i 0.994522 0.104528i 0.406737 0.913545i 0.366667π-0.366667\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
618618 0 0
619619 −0.564602 0.251377i −0.564602 0.251377i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
620620 0 0
621621 0 0
622622 0.500000 + 0.363271i 0.500000 + 0.363271i
623623 0.128496 + 0.604528i 0.128496 + 0.604528i
624624 0 0
625625 0.669131 + 0.743145i 0.669131 + 0.743145i
626626 0.330792 + 0.190983i 0.330792 + 0.190983i
627627 0 0
628628 −0.104528 + 0.994522i −0.104528 + 0.994522i
629629 −0.951057 + 1.30902i −0.951057 + 1.30902i
630630 0 0
631631 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
632632 1.40126 0.809017i 1.40126 0.809017i
633633 0 0
634634 0.373619 + 0.0794152i 0.373619 + 0.0794152i
635635 1.40126 + 0.809017i 1.40126 + 0.809017i
636636 0 0
637637 0 0
638638 0.951057 0.309017i 0.951057 0.309017i
639639 0 0
640640 0.190983 0.587785i 0.190983 0.587785i
641641 −0.743145 0.669131i −0.743145 0.669131i 0.207912 0.978148i 0.433333π-0.433333\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
642642 0 0
643643 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
644644 −0.379874 + 0.0399263i −0.379874 + 0.0399263i
645645 0 0
646646 0.0646021 0.614648i 0.0646021 0.614648i
647647 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 −0.413545 0.459289i −0.413545 0.459289i
653653 0.406737 + 0.913545i 0.406737 + 0.913545i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
654654 0 0
655655 0.169131 1.60917i 0.169131 1.60917i
656656 0 0
657657 0 0
658658 0.500000 0.363271i 0.500000 0.363271i
659659 −1.20243 1.08268i −1.20243 1.08268i −0.994522 0.104528i 0.966667π-0.966667\pi
−0.207912 0.978148i 0.566667π-0.566667\pi
660660 0 0
661661 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
662662 0 0
663663 0 0
664664 −0.604528 + 0.128496i −0.604528 + 0.128496i
665665 0.363271 0.500000i 0.363271 0.500000i
666666 0 0
667667 1.30902 0.951057i 1.30902 0.951057i
668668 0 0
669669 0 0
670670 −0.0399263 0.379874i −0.0399263 0.379874i
671671 0.406737 + 0.913545i 0.406737 + 0.913545i
672672 0 0
673673 −0.604528 + 0.128496i −0.604528 + 0.128496i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
674674 0 0
675675 0 0
676676 −0.618034 −0.618034
677677 0.128496 + 0.604528i 0.128496 + 0.604528i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
678678 0 0
679679 0.564602 0.251377i 0.564602 0.251377i
680680 0.866025 + 0.500000i 0.866025 + 0.500000i
681681 0 0
682682 0 0
683683 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
684684 0 0
685685 0.809017 0.587785i 0.809017 0.587785i
686686 0.128496 + 0.604528i 0.128496 + 0.604528i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
692692 −0.587785 0.809017i −0.587785 0.809017i
693693 0 0
694694 0.500000 0.363271i 0.500000 0.363271i
695695 0.866025 0.500000i 0.866025 0.500000i
696696 0 0
697697 0.913545 0.406737i 0.913545 0.406737i
698698 0 0
699699 0 0
700700 0.190983 + 0.330792i 0.190983 + 0.330792i
701701 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
702702 0 0
703703 1.30902 + 0.951057i 1.30902 + 0.951057i
704704 −0.614648 0.0646021i −0.614648 0.0646021i
705705 0 0
706706 −0.0399263 0.379874i −0.0399263 0.379874i
707707 0.535233 + 0.309017i 0.535233 + 0.309017i
708708 0 0
709709 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
710710 −0.587785 + 0.809017i −0.587785 + 0.809017i
711711 0 0
712712 0.309017 + 0.951057i 0.309017 + 0.951057i
713713 0 0
714714 0 0
715715 0 0
716716 0.207912 0.978148i 0.207912 0.978148i
717717 0 0
718718 −0.309017 0.535233i −0.309017 0.535233i
719719 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 −0.309017 + 0.535233i −0.309017 + 0.535233i
725725 −1.40126 0.809017i −1.40126 0.809017i
726726 0 0
727727 1.95630 0.415823i 1.95630 0.415823i 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
734734 0.128496 0.604528i 0.128496 0.604528i
735735 0 0
736736 −0.978148 + 0.207912i −0.978148 + 0.207912i
737737 0.587785 0.190983i 0.587785 0.190983i
738738 0 0
739739 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
740740 −0.866025 + 0.500000i −0.866025 + 0.500000i
741741 0 0
742742 0.0246758 + 0.234775i 0.0246758 + 0.234775i
743743 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 0 0
745745 −0.413545 + 0.459289i −0.413545 + 0.459289i
746746 −0.363271 + 0.500000i −0.363271 + 0.500000i
747747 0 0
748748 −0.190983 + 0.587785i −0.190983 + 0.587785i
749749 0 0
750750 0 0
751751 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
758758 −0.406737 + 0.913545i −0.406737 + 0.913545i
759759 0 0
760760 0.500000 0.866025i 0.500000 0.866025i
761761 1.20243 1.08268i 1.20243 1.08268i 0.207912 0.978148i 0.433333π-0.433333\pi
0.994522 0.104528i 0.0333333π-0.0333333\pi
762762 0 0
763763 0.413545 0.459289i 0.413545 0.459289i
764764 −0.363271 0.118034i −0.363271 0.118034i
765765 0 0
766766 0.309017 + 0.951057i 0.309017 + 0.951057i
767767 0 0
768768 0 0
769769 0 0 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
770770 0.283856 0.255585i 0.283856 0.255585i
771771 0 0
772772 −0.0646021 + 0.614648i −0.0646021 + 0.614648i
773773 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
774774 0 0
775775 0 0
776776 0.866025 0.500000i 0.866025 0.500000i
777777 0 0
778778 0 0
779779 −0.406737 0.913545i −0.406737 0.913545i
780780 0 0
781781 −1.47815 0.658114i −1.47815 0.658114i
782782 0.618034i 0.618034i
783783 0 0
784784 0 0
785785 −1.20243 1.08268i −1.20243 1.08268i
786786 0 0
787787 −0.604528 0.128496i −0.604528 0.128496i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 0 0
789789 0 0
790790 −0.104528 + 0.994522i −0.104528 + 0.994522i
791791 0 0
792792 0 0
793793 0 0
794794 −0.155360 + 0.348943i −0.155360 + 0.348943i
795795 0 0
796796 0 0
797797 −0.406737 0.913545i −0.406737 0.913545i −0.994522 0.104528i 0.966667π-0.966667\pi
0.587785 0.809017i 0.300000π-0.300000\pi
798798 0 0
799799 −0.809017 1.40126i −0.809017 1.40126i
800800 0.587785 + 0.809017i 0.587785 + 0.809017i
801801 0 0
802802 0.118034 0.363271i 0.118034 0.363271i
803803 0 0
804804 0 0
805805 0.309017 0.535233i 0.309017 0.535233i
806806 0 0
807807 0 0
808808 0.913545 + 0.406737i 0.913545 + 0.406737i
809809 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
810810 0 0
811811 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
812812 −0.459289 0.413545i −0.459289 0.413545i
813813 0 0
814814 0.669131 + 0.743145i 0.669131 + 0.743145i
815815 0.994522 0.104528i 0.994522 0.104528i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0.618034 0.618034
821821 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
822822 0 0
823823 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
828828 0 0
829829 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
830830 0.155360 0.348943i 0.155360 0.348943i
831831 0 0
832832 0 0
833833 0.614648 0.0646021i 0.614648 0.0646021i
834834 0 0
835835 0 0
836836 0.587785 + 0.190983i 0.587785 + 0.190983i
837837 0 0
838838 −0.118034 0.363271i −0.118034 0.363271i
839839 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
840840 0 0
841841 1.58268 + 0.336408i 1.58268 + 0.336408i
842842 −0.614648 + 0.0646021i −0.614648 + 0.0646021i
843843 0 0
844844 −0.348943 0.155360i −0.348943 0.155360i
845845 0.587785 0.809017i 0.587785 0.809017i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 −0.564602 + 0.251377i −0.564602 + 0.251377i
851851 1.40126 + 0.809017i 1.40126 + 0.809017i
852852 0 0
853853 0.169131 1.60917i 0.169131 1.60917i −0.500000 0.866025i 0.666667π-0.666667\pi
0.669131 0.743145i 0.266667π-0.266667\pi
854854 −0.224514 + 0.309017i −0.224514 + 0.309017i
855855 0 0
856856 0 0
857857 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 0 0
859859 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
864864 0 0
865865 1.61803 1.61803
866866 0.459289 + 0.413545i 0.459289 + 0.413545i
867867 0 0
868868 0 0
869869 −1.60917 + 0.169131i −1.60917 + 0.169131i
870870 0 0
871871 0 0
872872 0.587785 0.809017i 0.587785 0.809017i
873873 0 0
874874 −0.618034 −0.618034
875875 −0.614648 0.0646021i −0.614648 0.0646021i
876876 0 0
877877 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
878878 −0.251377 0.564602i −0.251377 0.564602i
879879 0 0
880880 0 0
881881 −1.17557 1.61803i −1.17557 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 0.809017i 0.700000π-0.700000\pi
882882 0 0
883883 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
884884 0 0
885885 0 0
886886 −0.413545 0.459289i −0.413545 0.459289i
887887 −0.207912 + 0.978148i −0.207912 + 0.978148i 0.743145 + 0.669131i 0.233333π0.233333\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
888888 0 0
889889 −0.978148 + 0.207912i −0.978148 + 0.207912i
890890 −0.587785 0.190983i −0.587785 0.190983i
891891 0 0
892892 0.309017 0.224514i 0.309017 0.224514i
893893 −1.40126 + 0.809017i −1.40126 + 0.809017i
894894 0 0
895895 1.08268 + 1.20243i 1.08268 + 1.20243i
896896 0.155360 + 0.348943i 0.155360 + 0.348943i
897897 0 0
898898 −0.978148 + 0.207912i −0.978148 + 0.207912i
899899 0 0
900900 0 0
901901 0.618034 0.618034
902902 −0.128496 0.604528i −0.128496 0.604528i
903903 0 0
904904 0 0
905905 −0.406737 0.913545i −0.406737 0.913545i
906906 0 0
907907 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
908908 0.224514 + 0.309017i 0.224514 + 0.309017i
909909 0 0
910910 0 0
911911 −0.336408 1.58268i −0.336408 1.58268i −0.743145 0.669131i 0.766667π-0.766667\pi
0.406737 0.913545i 0.366667π-0.366667\pi
912912 0 0
913913 0.604528 + 0.128496i 0.604528 + 0.128496i
914914 −0.459289 + 0.413545i −0.459289 + 0.413545i
915915 0 0
916916 0 0
917917 0.587785 + 0.809017i 0.587785 + 0.809017i
918918 0 0
919919 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
920920 0.406737 0.913545i 0.406737 0.913545i
921921 0 0
922922 −0.564602 + 0.251377i −0.564602 + 0.251377i
923923 0 0
924924 0 0
925925 0.169131 1.60917i 0.169131 1.60917i
926926 0.618034i 0.618034i
927927 0 0
928928 −1.30902 0.951057i −1.30902 0.951057i
929929 −0.614648 0.0646021i −0.614648 0.0646021i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
930930 0 0
931931 −0.0646021 0.614648i −0.0646021 0.614648i
932932 0.535233 + 0.309017i 0.535233 + 0.309017i
933933 0 0
934934 −0.669131 + 0.743145i −0.669131 + 0.743145i
935935 −0.587785 0.809017i −0.587785 0.809017i
936936 0 0
937937 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
938938 0.175433 + 0.157960i 0.175433 + 0.157960i
939939 0 0
940940 −0.104528 0.994522i −0.104528 0.994522i
941941 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
942942 0 0
943943 −0.500000 0.866025i −0.500000 0.866025i
944944 0 0
945945 0 0
946946 0 0
947947 1.60917 + 0.169131i 1.60917 + 0.169131i 0.866025 0.500000i 0.166667π-0.166667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
948948 0 0
949949 0 0
950950 0.251377 + 0.564602i 0.251377 + 0.564602i
951951 0 0
952952 −0.604528 + 0.128496i −0.604528 + 0.128496i
953953 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
954954 0 0
955955 0.500000 0.363271i 0.500000 0.363271i
956956 0.155360 0.348943i 0.155360 0.348943i
957957 0 0
958958 0 0
959959 −0.128496 + 0.604528i −0.128496 + 0.604528i
960960 0 0
961961 0.978148 0.207912i 0.978148 0.207912i
962962 0 0
963963 0 0
964964 −0.309017 + 0.951057i −0.309017 + 0.951057i
965965 −0.743145 0.669131i −0.743145 0.669131i
966966 0 0
967967 0.169131 + 1.60917i 0.169131 + 1.60917i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 0 0
969969 0 0
970970 −0.0646021 + 0.614648i −0.0646021 + 0.614648i
971971 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
972972 0 0
973973 −0.190983 + 0.587785i −0.190983 + 0.587785i
974974 0.535233 0.309017i 0.535233 0.309017i
975975 0 0
976976 0 0
977977 −0.743145 + 0.669131i −0.743145 + 0.669131i −0.951057 0.309017i 0.900000π-0.900000\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
978978 0 0
979979 0.104528 0.994522i 0.104528 0.994522i
980980 0.363271 + 0.118034i 0.363271 + 0.118034i
981981 0 0
982982 0 0
983983 −0.658114 + 1.47815i −0.658114 + 1.47815i 0.207912 + 0.978148i 0.433333π0.433333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
984984 0 0
985985 0 0
986986 0.743145 0.669131i 0.743145 0.669131i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
992992 0 0
993993 0 0
994994 −0.0646021 0.614648i −0.0646021 0.614648i
995995 0 0
996996 0 0
997997 −0.0646021 + 0.614648i −0.0646021 + 0.614648i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
998998 −0.587785 0.190983i −0.587785 0.190983i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.1.y.a.296.1 16
3.2 odd 2 inner 2025.1.y.a.296.2 16
9.2 odd 6 inner 2025.1.y.a.1646.2 16
9.4 even 3 675.1.o.a.296.2 yes 8
9.5 odd 6 675.1.o.a.296.1 8
9.7 even 3 inner 2025.1.y.a.1646.1 16
25.6 even 5 inner 2025.1.y.a.1106.2 16
45.4 even 6 3375.1.o.a.2726.1 8
45.13 odd 12 3375.1.m.b.2024.1 8
45.14 odd 6 3375.1.o.a.2726.2 8
45.22 odd 12 3375.1.m.a.2024.2 8
45.23 even 12 3375.1.m.a.2024.1 8
45.32 even 12 3375.1.m.b.2024.2 8
75.56 odd 10 inner 2025.1.y.a.1106.1 16
225.31 even 15 675.1.o.a.431.1 yes 8
225.56 odd 30 inner 2025.1.y.a.431.1 16
225.58 odd 60 3375.1.m.b.1349.1 8
225.67 odd 60 3375.1.m.a.1349.2 8
225.94 even 30 3375.1.o.a.26.2 8
225.106 even 15 inner 2025.1.y.a.431.2 16
225.131 odd 30 675.1.o.a.431.2 yes 8
225.158 even 60 3375.1.m.a.1349.1 8
225.167 even 60 3375.1.m.b.1349.2 8
225.194 odd 30 3375.1.o.a.26.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.1.o.a.296.1 8 9.5 odd 6
675.1.o.a.296.2 yes 8 9.4 even 3
675.1.o.a.431.1 yes 8 225.31 even 15
675.1.o.a.431.2 yes 8 225.131 odd 30
2025.1.y.a.296.1 16 1.1 even 1 trivial
2025.1.y.a.296.2 16 3.2 odd 2 inner
2025.1.y.a.431.1 16 225.56 odd 30 inner
2025.1.y.a.431.2 16 225.106 even 15 inner
2025.1.y.a.1106.1 16 75.56 odd 10 inner
2025.1.y.a.1106.2 16 25.6 even 5 inner
2025.1.y.a.1646.1 16 9.7 even 3 inner
2025.1.y.a.1646.2 16 9.2 odd 6 inner
3375.1.m.a.1349.1 8 225.158 even 60
3375.1.m.a.1349.2 8 225.67 odd 60
3375.1.m.a.2024.1 8 45.23 even 12
3375.1.m.a.2024.2 8 45.22 odd 12
3375.1.m.b.1349.1 8 225.58 odd 60
3375.1.m.b.1349.2 8 225.167 even 60
3375.1.m.b.2024.1 8 45.13 odd 12
3375.1.m.b.2024.2 8 45.32 even 12
3375.1.o.a.26.1 8 225.194 odd 30
3375.1.o.a.26.2 8 225.94 even 30
3375.1.o.a.2726.1 8 45.4 even 6
3375.1.o.a.2726.2 8 45.14 odd 6