Properties

Label 3375.1.m.b.2024.1
Level 33753375
Weight 11
Character 3375.2024
Analytic conductor 1.6841.684
Analytic rank 00
Dimension 88
Projective image A5A_{5}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3375,1,Mod(674,3375)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3375, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3375.674");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3375=3353 3375 = 3^{3} \cdot 5^{3}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3375.m (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.684344417641.68434441764
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 675)
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.31640625.2

Embedding invariants

Embedding label 2024.1
Root 0.9510570.309017i-0.951057 - 0.309017i of defining polynomial
Character χ\chi == 3375.2024
Dual form 3375.1.m.b.1349.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.1909830.587785i)q2+(0.500000+0.363271i)q40.618034iq7+(0.8090170.587785i)q8+(0.9510570.309017i)q11+(0.3632710.118034i)q14+(0.8090170.587785i)q17+(0.809017+0.587785i)q19+(0.363271+0.500000i)q22+(0.3090170.951057i)q23+(0.2245140.309017i)q28+(0.9510571.30902i)q29+1.00000q32+(0.1909830.587785i)q34+(1.538840.500000i)q37+(0.190983+0.587785i)q38+(0.951057+0.309017i)q41+(0.3632710.500000i)q44+(0.5000000.363271i)q46+(1.309020.951057i)q47+0.618034q49+(0.500000+0.363271i)q53+(0.3632710.500000i)q56+(0.5877850.809017i)q58+(0.309017+0.951057i)q61+(0.1909830.587785i)q64+(0.363271+0.500000i)q67+0.618034q68+(0.951057+1.30902i)q711.00000iq740.618034q76+(0.190983+0.587785i)q77+(1.30902+0.951057i)q79+0.618034iq82+(0.500000+0.363271i)q83+(0.951057+0.309017i)q88+(0.951057+0.309017i)q89+(0.5000000.363271i)q92+(0.809017+0.587785i)q94+(0.587785+0.809017i)q97+(0.1180340.363271i)q98+O(q100)q+(0.190983 - 0.587785i) q^{2} +(0.500000 + 0.363271i) q^{4} -0.618034i q^{7} +(0.809017 - 0.587785i) q^{8} +(-0.951057 - 0.309017i) q^{11} +(-0.363271 - 0.118034i) q^{14} +(0.809017 - 0.587785i) q^{17} +(-0.809017 + 0.587785i) q^{19} +(-0.363271 + 0.500000i) q^{22} +(0.309017 - 0.951057i) q^{23} +(0.224514 - 0.309017i) q^{28} +(0.951057 - 1.30902i) q^{29} +1.00000 q^{32} +(-0.190983 - 0.587785i) q^{34} +(1.53884 - 0.500000i) q^{37} +(0.190983 + 0.587785i) q^{38} +(-0.951057 + 0.309017i) q^{41} +(-0.363271 - 0.500000i) q^{44} +(-0.500000 - 0.363271i) q^{46} +(-1.30902 - 0.951057i) q^{47} +0.618034 q^{49} +(0.500000 + 0.363271i) q^{53} +(-0.363271 - 0.500000i) q^{56} +(-0.587785 - 0.809017i) q^{58} +(-0.309017 + 0.951057i) q^{61} +(0.190983 - 0.587785i) q^{64} +(0.363271 + 0.500000i) q^{67} +0.618034 q^{68} +(-0.951057 + 1.30902i) q^{71} -1.00000i q^{74} -0.618034 q^{76} +(-0.190983 + 0.587785i) q^{77} +(1.30902 + 0.951057i) q^{79} +0.618034i q^{82} +(-0.500000 + 0.363271i) q^{83} +(-0.951057 + 0.309017i) q^{88} +(0.951057 + 0.309017i) q^{89} +(0.500000 - 0.363271i) q^{92} +(-0.809017 + 0.587785i) q^{94} +(-0.587785 + 0.809017i) q^{97} +(0.118034 - 0.363271i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+6q2+4q4+2q8+2q172q192q23+8q326q34+6q384q466q474q49+4q53+2q61+6q644q68+4q766q77+6q79+8q98+O(q100) 8 q + 6 q^{2} + 4 q^{4} + 2 q^{8} + 2 q^{17} - 2 q^{19} - 2 q^{23} + 8 q^{32} - 6 q^{34} + 6 q^{38} - 4 q^{46} - 6 q^{47} - 4 q^{49} + 4 q^{53} + 2 q^{61} + 6 q^{64} - 4 q^{68} + 4 q^{76} - 6 q^{77} + 6 q^{79}+ \cdots - 8 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3375Z)×\left(\mathbb{Z}/3375\mathbb{Z}\right)^\times.

nn 10011001 23772377
χ(n)\chi(n) 1-1 e(110)e\left(\frac{1}{10}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
33 0 0
44 0.500000 + 0.363271i 0.500000 + 0.363271i
55 0 0
66 0 0
77 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
88 0.809017 0.587785i 0.809017 0.587785i
99 0 0
1010 0 0
1111 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
1212 0 0
1313 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
1414 −0.363271 0.118034i −0.363271 0.118034i
1515 0 0
1616 0 0
1717 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
1818 0 0
1919 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
2020 0 0
2121 0 0
2222 −0.363271 + 0.500000i −0.363271 + 0.500000i
2323 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0.224514 0.309017i 0.224514 0.309017i
2929 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
3030 0 0
3131 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
3232 1.00000 1.00000
3333 0 0
3434 −0.190983 0.587785i −0.190983 0.587785i
3535 0 0
3636 0 0
3737 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
3838 0.190983 + 0.587785i 0.190983 + 0.587785i
3939 0 0
4040 0 0
4141 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 −0.363271 0.500000i −0.363271 0.500000i
4545 0 0
4646 −0.500000 0.363271i −0.500000 0.363271i
4747 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
4848 0 0
4949 0.618034 0.618034
5050 0 0
5151 0 0
5252 0 0
5353 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
5454 0 0
5555 0 0
5656 −0.363271 0.500000i −0.363271 0.500000i
5757 0 0
5858 −0.587785 0.809017i −0.587785 0.809017i
5959 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
6060 0 0
6161 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
6262 0 0
6363 0 0
6464 0.190983 0.587785i 0.190983 0.587785i
6565 0 0
6666 0 0
6767 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
6868 0.618034 0.618034
6969 0 0
7070 0 0
7171 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
7272 0 0
7373 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
7474 1.00000i 1.00000i
7575 0 0
7676 −0.618034 −0.618034
7777 −0.190983 + 0.587785i −0.190983 + 0.587785i
7878 0 0
7979 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
8080 0 0
8181 0 0
8282 0.618034i 0.618034i
8383 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −0.951057 + 0.309017i −0.951057 + 0.309017i
8989 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
9090 0 0
9191 0 0
9292 0.500000 0.363271i 0.500000 0.363271i
9393 0 0
9494 −0.809017 + 0.587785i −0.809017 + 0.587785i
9595 0 0
9696 0 0
9797 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
9898 0.118034 0.363271i 0.118034 0.363271i
9999 0 0
100100 0 0
101101 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
102102 0 0
103103 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
104104 0 0
105105 0 0
106106 0.309017 0.224514i 0.309017 0.224514i
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
114114 0 0
115115 0 0
116116 0.951057 0.309017i 0.951057 0.309017i
117117 0 0
118118 0 0
119119 −0.363271 0.500000i −0.363271 0.500000i
120120 0 0
121121 0 0
122122 0.500000 + 0.363271i 0.500000 + 0.363271i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
128128 0.500000 + 0.363271i 0.500000 + 0.363271i
129129 0 0
130130 0 0
131131 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0.363271 + 0.500000i 0.363271 + 0.500000i
134134 0.363271 0.118034i 0.363271 0.118034i
135135 0 0
136136 0.309017 0.951057i 0.309017 0.951057i
137137 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
138138 0 0
139139 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
140140 0 0
141141 0 0
142142 0.587785 + 0.809017i 0.587785 + 0.809017i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0.951057 + 0.309017i 0.951057 + 0.309017i
149149 0.618034i 0.618034i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 −0.309017 + 0.951057i −0.309017 + 0.951057i
153153 0 0
154154 0.309017 + 0.224514i 0.309017 + 0.224514i
155155 0 0
156156 0 0
157157 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
158158 0.809017 0.587785i 0.809017 0.587785i
159159 0 0
160160 0 0
161161 −0.587785 0.190983i −0.587785 0.190983i
162162 0 0
163163 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
164164 −0.587785 0.190983i −0.587785 0.190983i
165165 0 0
166166 0.118034 + 0.363271i 0.118034 + 0.363271i
167167 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
168168 0 0
169169 −0.809017 + 0.587785i −0.809017 + 0.587785i
170170 0 0
171171 0 0
172172 0 0
173173 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0.363271 0.500000i 0.363271 0.500000i
179179 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
180180 0 0
181181 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
182182 0 0
183183 0 0
184184 −0.309017 0.951057i −0.309017 0.951057i
185185 0 0
186186 0 0
187187 −0.951057 + 0.309017i −0.951057 + 0.309017i
188188 −0.309017 0.951057i −0.309017 0.951057i
189189 0 0
190190 0 0
191191 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
192192 0 0
193193 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
194194 0.363271 + 0.500000i 0.363271 + 0.500000i
195195 0 0
196196 0.309017 + 0.224514i 0.309017 + 0.224514i
197197 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 −0.587785 0.190983i −0.587785 0.190983i
203203 −0.809017 0.587785i −0.809017 0.587785i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0.951057 0.309017i 0.951057 0.309017i
210210 0 0
211211 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
212212 0.118034 + 0.363271i 0.118034 + 0.363271i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −0.618034 −0.618034
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
224224 0.618034i 0.618034i
225225 0 0
226226 0 0
227227 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
228228 0 0
229229 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
230230 0 0
231231 0 0
232232 1.61803i 1.61803i
233233 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 −0.363271 + 0.118034i −0.363271 + 0.118034i
239239 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
242242 0 0
243243 0 0
244244 −0.500000 + 0.363271i −0.500000 + 0.363271i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
252252 0 0
253253 −0.587785 + 0.809017i −0.587785 + 0.809017i
254254 −0.587785 + 0.809017i −0.587785 + 0.809017i
255255 0 0
256256 0.809017 0.587785i 0.809017 0.587785i
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 −0.309017 0.951057i −0.309017 0.951057i
260260 0 0
261261 0 0
262262 0.951057 0.309017i 0.951057 0.309017i
263263 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
264264 0 0
265265 0 0
266266 0.363271 0.118034i 0.363271 0.118034i
267267 0 0
268268 0.381966i 0.381966i
269269 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
270270 0 0
271271 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
272272 0 0
273273 0 0
274274 −0.618034 −0.618034
275275 0 0
276276 0 0
277277 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
278278 −0.500000 0.363271i −0.500000 0.363271i
279279 0 0
280280 0 0
281281 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
282282 0 0
283283 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
284284 −0.951057 + 0.309017i −0.951057 + 0.309017i
285285 0 0
286286 0 0
287287 0.190983 + 0.587785i 0.190983 + 0.587785i
288288 0 0
289289 0 0
290290 0 0
291291 0 0
292292 0 0
293293 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
294294 0 0
295295 0 0
296296 0.951057 1.30902i 0.951057 1.30902i
297297 0 0
298298 0.363271 + 0.118034i 0.363271 + 0.118034i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
308308 −0.309017 + 0.224514i −0.309017 + 0.224514i
309309 0 0
310310 0 0
311311 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
312312 0 0
313313 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
314314 −0.951057 0.309017i −0.951057 0.309017i
315315 0 0
316316 0.309017 + 0.951057i 0.309017 + 0.951057i
317317 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
318318 0 0
319319 −1.30902 + 0.951057i −1.30902 + 0.951057i
320320 0 0
321321 0 0
322322 −0.224514 + 0.309017i −0.224514 + 0.309017i
323323 −0.309017 + 0.951057i −0.309017 + 0.951057i
324324 0 0
325325 0 0
326326 0.618034i 0.618034i
327327 0 0
328328 −0.587785 + 0.809017i −0.587785 + 0.809017i
329329 −0.587785 + 0.809017i −0.587785 + 0.809017i
330330 0 0
331331 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
332332 −0.381966 −0.381966
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
338338 0.190983 + 0.587785i 0.190983 + 0.587785i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000i 1.00000i
344344 0 0
345345 0 0
346346 0.809017 + 0.587785i 0.809017 + 0.587785i
347347 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 −0.951057 0.309017i −0.951057 0.309017i
353353 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
354354 0 0
355355 0 0
356356 0.363271 + 0.500000i 0.363271 + 0.500000i
357357 0 0
358358 0.587785 + 0.809017i 0.587785 + 0.809017i
359359 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
360360 0 0
361361 0 0
362362 0.190983 + 0.587785i 0.190983 + 0.587785i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
368368 0 0
369369 0 0
370370 0 0
371371 0.224514 0.309017i 0.224514 0.309017i
372372 0 0
373373 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
374374 0.618034i 0.618034i
375375 0 0
376376 −1.61803 −1.61803
377377 0 0
378378 0 0
379379 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
380380 0 0
381381 0 0
382382 0.381966i 0.381966i
383383 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0.587785 + 0.190983i 0.587785 + 0.190983i
387387 0 0
388388 −0.587785 + 0.190983i −0.587785 + 0.190983i
389389 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
390390 0 0
391391 −0.309017 0.951057i −0.309017 0.951057i
392392 0.500000 0.363271i 0.500000 0.363271i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
398398 0 0
399399 0 0
400400 0 0
401401 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
402402 0 0
403403 0 0
404404 0.363271 0.500000i 0.363271 0.500000i
405405 0 0
406406 −0.500000 + 0.363271i −0.500000 + 0.363271i
407407 −1.61803 −1.61803
408408 0 0
409409 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0.618034i 0.618034i
419419 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
420420 0 0
421421 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
422422 0.309017 + 0.224514i 0.309017 + 0.224514i
423423 0 0
424424 0.618034 0.618034
425425 0 0
426426 0 0
427427 0.587785 + 0.190983i 0.587785 + 0.190983i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
432432 0 0
433433 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
434434 0 0
435435 0 0
436436 0.190983 0.587785i 0.190983 0.587785i
437437 0.309017 + 0.951057i 0.309017 + 0.951057i
438438 0 0
439439 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
440440 0 0
441441 0 0
442442 0 0
443443 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 0 0
446446 −0.224514 + 0.309017i −0.224514 + 0.309017i
447447 0 0
448448 −0.363271 0.118034i −0.363271 0.118034i
449449 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
450450 0 0
451451 1.00000 1.00000
452452 0 0
453453 0 0
454454 0.309017 + 0.224514i 0.309017 + 0.224514i
455455 0 0
456456 0 0
457457 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
458458 0 0
459459 0 0
460460 0 0
461461 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
462462 0 0
463463 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
464464 0 0
465465 0 0
466466 0.190983 + 0.587785i 0.190983 + 0.587785i
467467 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
468468 0 0
469469 0.309017 0.224514i 0.309017 0.224514i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0.381966i 0.381966i
477477 0 0
478478 0.224514 0.309017i 0.224514 0.309017i
479479 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
480480 0 0
481481 0 0
482482 −1.00000 −1.00000
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
488488 0.309017 + 0.951057i 0.309017 + 0.951057i
489489 0 0
490490 0 0
491491 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
492492 0 0
493493 1.61803i 1.61803i
494494 0 0
495495 0 0
496496 0 0
497497 0.809017 + 0.587785i 0.809017 + 0.587785i
498498 0 0
499499 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
500500 0 0
501501 0 0
502502 0.587785 + 0.190983i 0.587785 + 0.190983i
503503 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
504504 0 0
505505 0 0
506506 0.363271 + 0.500000i 0.363271 + 0.500000i
507507 0 0
508508 −0.587785 0.809017i −0.587785 0.809017i
509509 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0.951057 + 1.30902i 0.951057 + 1.30902i
518518 −0.618034 −0.618034
519519 0 0
520520 0 0
521521 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
522522 0 0
523523 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
524524 1.00000i 1.00000i
525525 0 0
526526 −0.618034 −0.618034
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0.381966i 0.381966i
533533 0 0
534534 0 0
535535 0 0
536536 0.587785 + 0.190983i 0.587785 + 0.190983i
537537 0 0
538538 0.587785 0.190983i 0.587785 0.190983i
539539 −0.587785 0.190983i −0.587785 0.190983i
540540 0 0
541541 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
542542 −0.500000 + 0.363271i −0.500000 + 0.363271i
543543 0 0
544544 0.809017 0.587785i 0.809017 0.587785i
545545 0 0
546546 0 0
547547 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
548548 0.190983 0.587785i 0.190983 0.587785i
549549 0 0
550550 0 0
551551 1.61803i 1.61803i
552552 0 0
553553 0.587785 0.809017i 0.587785 0.809017i
554554 0 0
555555 0 0
556556 0.500000 0.363271i 0.500000 0.363271i
557557 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −0.587785 + 0.190983i −0.587785 + 0.190983i
563563 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0.587785 0.190983i 0.587785 0.190983i
567567 0 0
568568 1.61803i 1.61803i
569569 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
570570 0 0
571571 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
572572 0 0
573573 0 0
574574 0.381966 0.381966
575575 0 0
576576 0 0
577577 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
578578 0 0
579579 0 0
580580 0 0
581581 0.224514 + 0.309017i 0.224514 + 0.309017i
582582 0 0
583583 −0.363271 0.500000i −0.363271 0.500000i
584584 0 0
585585 0 0
586586 0.190983 0.587785i 0.190983 0.587785i
587587 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 0 0
595595 0 0
596596 −0.224514 + 0.309017i −0.224514 + 0.309017i
597597 0 0
598598 0 0
599599 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 −0.809017 + 0.587785i −0.809017 + 0.587785i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
614614 0.951057 + 0.309017i 0.951057 + 0.309017i
615615 0 0
616616 0.190983 + 0.587785i 0.190983 + 0.587785i
617617 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
618618 0 0
619619 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
620620 0 0
621621 0 0
622622 0.363271 0.500000i 0.363271 0.500000i
623623 0.190983 0.587785i 0.190983 0.587785i
624624 0 0
625625 0 0
626626 0.381966i 0.381966i
627627 0 0
628628 0.587785 0.809017i 0.587785 0.809017i
629629 0.951057 1.30902i 0.951057 1.30902i
630630 0 0
631631 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
632632 1.61803 1.61803
633633 0 0
634634 0.118034 + 0.363271i 0.118034 + 0.363271i
635635 0 0
636636 0 0
637637 0 0
638638 0.309017 + 0.951057i 0.309017 + 0.951057i
639639 0 0
640640 0 0
641641 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
642642 0 0
643643 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
644644 −0.224514 0.309017i −0.224514 0.309017i
645645 0 0
646646 0.500000 + 0.363271i 0.500000 + 0.363271i
647647 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0.587785 + 0.190983i 0.587785 + 0.190983i
653653 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0.363271 + 0.500000i 0.363271 + 0.500000i
659659 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
660660 0 0
661661 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
662662 0 0
663663 0 0
664664 −0.190983 + 0.587785i −0.190983 + 0.587785i
665665 0 0
666666 0 0
667667 −0.951057 1.30902i −0.951057 1.30902i
668668 0 0
669669 0 0
670670 0 0
671671 0.587785 0.809017i 0.587785 0.809017i
672672 0 0
673673 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 −0.618034 −0.618034
677677 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
678678 0 0
679679 0.500000 + 0.363271i 0.500000 + 0.363271i
680680 0 0
681681 0 0
682682 0 0
683683 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
684684 0 0
685685 0 0
686686 −0.587785 0.190983i −0.587785 0.190983i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
692692 −0.809017 + 0.587785i −0.809017 + 0.587785i
693693 0 0
694694 −0.500000 + 0.363271i −0.500000 + 0.363271i
695695 0 0
696696 0 0
697697 −0.587785 + 0.809017i −0.587785 + 0.809017i
698698 0 0
699699 0 0
700700 0 0
701701 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
702702 0 0
703703 −0.951057 + 1.30902i −0.951057 + 1.30902i
704704 −0.363271 + 0.500000i −0.363271 + 0.500000i
705705 0 0
706706 −0.309017 + 0.224514i −0.309017 + 0.224514i
707707 −0.618034 −0.618034
708708 0 0
709709 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
710710 0 0
711711 0 0
712712 0.951057 0.309017i 0.951057 0.309017i
713713 0 0
714714 0 0
715715 0 0
716716 −0.951057 + 0.309017i −0.951057 + 0.309017i
717717 0 0
718718 0.618034i 0.618034i
719719 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 −0.618034 −0.618034
725725 0 0
726726 0 0
727727 1.90211 + 0.618034i 1.90211 + 0.618034i 0.951057 + 0.309017i 0.100000π0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
734734 0.587785 0.190983i 0.587785 0.190983i
735735 0 0
736736 0.309017 0.951057i 0.309017 0.951057i
737737 −0.190983 0.587785i −0.190983 0.587785i
738738 0 0
739739 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
740740 0 0
741741 0 0
742742 −0.138757 0.190983i −0.138757 0.190983i
743743 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
744744 0 0
745745 0 0
746746 −0.363271 + 0.500000i −0.363271 + 0.500000i
747747 0 0
748748 −0.587785 0.190983i −0.587785 0.190983i
749749 0 0
750750 0 0
751751 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
758758 0.809017 0.587785i 0.809017 0.587785i
759759 0 0
760760 0 0
761761 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
762762 0 0
763763 −0.587785 + 0.190983i −0.587785 + 0.190983i
764764 0.363271 + 0.118034i 0.363271 + 0.118034i
765765 0 0
766766 0.309017 + 0.951057i 0.309017 + 0.951057i
767767 0 0
768768 0 0
769769 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
770770 0 0
771771 0 0
772772 −0.363271 + 0.500000i −0.363271 + 0.500000i
773773 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
774774 0 0
775775 0 0
776776 1.00000i 1.00000i
777777 0 0
778778 0 0
779779 0.587785 0.809017i 0.587785 0.809017i
780780 0 0
781781 1.30902 0.951057i 1.30902 0.951057i
782782 −0.618034 −0.618034
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0.224514 + 0.309017i 0.224514 + 0.309017i
795795 0 0
796796 0 0
797797 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
798798 0 0
799799 −1.61803 −1.61803
800800 0 0
801801 0 0
802802 −0.363271 0.118034i −0.363271 0.118034i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −0.587785 0.809017i −0.587785 0.809017i
809809 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
810810 0 0
811811 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
812812 −0.190983 0.587785i −0.190983 0.587785i
813813 0 0
814814 −0.309017 + 0.951057i −0.309017 + 0.951057i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
822822 0 0
823823 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
828828 0 0
829829 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0.500000 0.363271i 0.500000 0.363271i
834834 0 0
835835 0 0
836836 0.587785 + 0.190983i 0.587785 + 0.190983i
837837 0 0
838838 0.363271 0.118034i 0.363271 0.118034i
839839 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
840840 0 0
841841 −0.500000 1.53884i −0.500000 1.53884i
842842 0.500000 0.363271i 0.500000 0.363271i
843843 0 0
844844 −0.309017 + 0.224514i −0.309017 + 0.224514i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 1.61803i 1.61803i
852852 0 0
853853 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
854854 0.224514 0.309017i 0.224514 0.309017i
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
864864 0 0
865865 0 0
866866 −0.587785 + 0.190983i −0.587785 + 0.190983i
867867 0 0
868868 0 0
869869 −0.951057 1.30902i −0.951057 1.30902i
870870 0 0
871871 0 0
872872 −0.809017 0.587785i −0.809017 0.587785i
873873 0 0
874874 0.618034 0.618034
875875 0 0
876876 0 0
877877 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
878878 −0.500000 0.363271i −0.500000 0.363271i
879879 0 0
880880 0 0
881881 −1.17557 1.61803i −1.17557 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 0.809017i 0.700000π-0.700000\pi
882882 0 0
883883 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
884884 0 0
885885 0 0
886886 −0.190983 + 0.587785i −0.190983 + 0.587785i
887887 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
888888 0 0
889889 −0.309017 + 0.951057i −0.309017 + 0.951057i
890890 0 0
891891 0 0
892892 −0.224514 0.309017i −0.224514 0.309017i
893893 1.61803 1.61803
894894 0 0
895895 0 0
896896 0.224514 0.309017i 0.224514 0.309017i
897897 0 0
898898 0.951057 + 0.309017i 0.951057 + 0.309017i
899899 0 0
900900 0 0
901901 0.618034 0.618034
902902 0.190983 0.587785i 0.190983 0.587785i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
908908 −0.309017 + 0.224514i −0.309017 + 0.224514i
909909 0 0
910910 0 0
911911 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
912912 0 0
913913 0.587785 0.190983i 0.587785 0.190983i
914914 −0.587785 0.190983i −0.587785 0.190983i
915915 0 0
916916 0 0
917917 0.809017 0.587785i 0.809017 0.587785i
918918 0 0
919919 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
920920 0 0
921921 0 0
922922 0.363271 0.500000i 0.363271 0.500000i
923923 0 0
924924 0 0
925925 0 0
926926 0.618034i 0.618034i
927927 0 0
928928 0.951057 1.30902i 0.951057 1.30902i
929929 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
930930 0 0
931931 −0.500000 + 0.363271i −0.500000 + 0.363271i
932932 −0.618034 −0.618034
933933 0 0
934934 0.309017 + 0.951057i 0.309017 + 0.951057i
935935 0 0
936936 0 0
937937 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
938938 −0.0729490 0.224514i −0.0729490 0.224514i
939939 0 0
940940 0 0
941941 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
942942 0 0
943943 1.00000i 1.00000i
944944 0 0
945945 0 0
946946 0 0
947947 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 −0.587785 0.190983i −0.587785 0.190983i
953953 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
954954 0 0
955955 0 0
956956 0.224514 + 0.309017i 0.224514 + 0.309017i
957957 0 0
958958 0 0
959959 −0.587785 + 0.190983i −0.587785 + 0.190983i
960960 0 0
961961 −0.309017 + 0.951057i −0.309017 + 0.951057i
962962 0 0
963963 0 0
964964 0.309017 0.951057i 0.309017 0.951057i
965965 0 0
966966 0 0
967967 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
972972 0 0
973973 −0.587785 0.190983i −0.587785 0.190983i
974974 0.618034i 0.618034i
975975 0 0
976976 0 0
977977 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
978978 0 0
979979 −0.809017 0.587785i −0.809017 0.587785i
980980 0 0
981981 0 0
982982 0 0
983983 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
984984 0 0
985985 0 0
986986 −0.951057 0.309017i −0.951057 0.309017i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
992992 0 0
993993 0 0
994994 0.500000 0.363271i 0.500000 0.363271i
995995 0 0
996996 0 0
997997 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
998998 0.190983 0.587785i 0.190983 0.587785i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3375.1.m.b.2024.1 8
3.2 odd 2 3375.1.m.a.2024.1 8
5.2 odd 4 675.1.o.a.296.2 yes 8
5.3 odd 4 3375.1.o.a.2726.1 8
5.4 even 2 3375.1.m.a.2024.2 8
15.2 even 4 675.1.o.a.296.1 8
15.8 even 4 3375.1.o.a.2726.2 8
15.14 odd 2 inner 3375.1.m.b.2024.2 8
25.6 even 5 inner 3375.1.m.b.1349.1 8
25.8 odd 20 3375.1.o.a.26.2 8
25.17 odd 20 675.1.o.a.431.1 yes 8
25.19 even 10 3375.1.m.a.1349.2 8
45.2 even 12 2025.1.y.a.296.2 16
45.7 odd 12 2025.1.y.a.296.1 16
45.22 odd 12 2025.1.y.a.1646.1 16
45.32 even 12 2025.1.y.a.1646.2 16
75.8 even 20 3375.1.o.a.26.1 8
75.17 even 20 675.1.o.a.431.2 yes 8
75.44 odd 10 inner 3375.1.m.b.1349.2 8
75.56 odd 10 3375.1.m.a.1349.1 8
225.67 odd 60 2025.1.y.a.431.2 16
225.92 even 60 2025.1.y.a.1106.1 16
225.142 odd 60 2025.1.y.a.1106.2 16
225.167 even 60 2025.1.y.a.431.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.1.o.a.296.1 8 15.2 even 4
675.1.o.a.296.2 yes 8 5.2 odd 4
675.1.o.a.431.1 yes 8 25.17 odd 20
675.1.o.a.431.2 yes 8 75.17 even 20
2025.1.y.a.296.1 16 45.7 odd 12
2025.1.y.a.296.2 16 45.2 even 12
2025.1.y.a.431.1 16 225.167 even 60
2025.1.y.a.431.2 16 225.67 odd 60
2025.1.y.a.1106.1 16 225.92 even 60
2025.1.y.a.1106.2 16 225.142 odd 60
2025.1.y.a.1646.1 16 45.22 odd 12
2025.1.y.a.1646.2 16 45.32 even 12
3375.1.m.a.1349.1 8 75.56 odd 10
3375.1.m.a.1349.2 8 25.19 even 10
3375.1.m.a.2024.1 8 3.2 odd 2
3375.1.m.a.2024.2 8 5.4 even 2
3375.1.m.b.1349.1 8 25.6 even 5 inner
3375.1.m.b.1349.2 8 75.44 odd 10 inner
3375.1.m.b.2024.1 8 1.1 even 1 trivial
3375.1.m.b.2024.2 8 15.14 odd 2 inner
3375.1.o.a.26.1 8 75.8 even 20
3375.1.o.a.26.2 8 25.8 odd 20
3375.1.o.a.2726.1 8 5.3 odd 4
3375.1.o.a.2726.2 8 15.8 even 4