Properties

Label 2028.2.q.i.1837.1
Level $2028$
Weight $2$
Character 2028.1837
Analytic conductor $16.194$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,2,Mod(361,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1837.1
Root \(-0.385418 - 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 2028.1837
Dual form 2028.2.q.i.361.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} -3.04892i q^{5} +(-4.37249 + 2.52446i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(3.29257 + 1.90097i) q^{11} +(2.64044 + 1.52446i) q^{15} +(-0.178448 - 0.309081i) q^{17} +(5.31485 - 3.06853i) q^{19} -5.04892i q^{21} +(-3.96950 + 6.87538i) q^{23} -4.29590 q^{25} +1.00000 q^{27} +(-0.708947 + 1.22793i) q^{29} -5.78986i q^{31} +(-3.29257 + 1.90097i) q^{33} +(7.69687 + 13.3314i) q^{35} +(-0.0235101 - 0.0135735i) q^{37} +(-7.95529 - 4.59299i) q^{41} +(-0.609916 - 1.05641i) q^{43} +(-2.64044 + 1.52446i) q^{45} -9.56465i q^{47} +(9.24578 - 16.0142i) q^{49} +0.356896 q^{51} -4.73556 q^{53} +(5.79590 - 10.0388i) q^{55} +6.13706i q^{57} +(11.7134 - 6.76271i) q^{59} +(-0.288364 - 0.499461i) q^{61} +(4.37249 + 2.52446i) q^{63} +(-6.88584 - 3.97554i) q^{67} +(-3.96950 - 6.87538i) q^{69} +(2.66395 - 1.53803i) q^{71} -14.0368i q^{73} +(2.14795 - 3.72036i) q^{75} -19.1957 q^{77} -0.841166 q^{79} +(-0.500000 + 0.866025i) q^{81} +0.192685i q^{83} +(-0.942362 + 0.544073i) q^{85} +(-0.708947 - 1.22793i) q^{87} +(-7.97880 - 4.60656i) q^{89} +(5.01416 + 2.89493i) q^{93} +(-9.35570 - 16.2045i) q^{95} +(0.590918 - 0.341166i) q^{97} -3.80194i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} - 6 q^{9} + 6 q^{17} - 28 q^{23} + 4 q^{25} + 12 q^{27} - 20 q^{29} + 28 q^{35} - 10 q^{43} + 10 q^{49} - 12 q^{51} - 12 q^{53} + 14 q^{55} + 2 q^{61} - 28 q^{69} - 2 q^{75} - 84 q^{77} - 44 q^{79}+ \cdots - 14 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 3.04892i 1.36352i −0.731577 0.681759i \(-0.761215\pi\)
0.731577 0.681759i \(-0.238785\pi\)
\(6\) 0 0
\(7\) −4.37249 + 2.52446i −1.65265 + 0.954156i −0.676668 + 0.736289i \(0.736577\pi\)
−0.975978 + 0.217867i \(0.930090\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 3.29257 + 1.90097i 0.992749 + 0.573164i 0.906095 0.423075i \(-0.139049\pi\)
0.0866539 + 0.996238i \(0.472383\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.64044 + 1.52446i 0.681759 + 0.393614i
\(16\) 0 0
\(17\) −0.178448 0.309081i −0.0432800 0.0749631i 0.843574 0.537013i \(-0.180447\pi\)
−0.886854 + 0.462050i \(0.847114\pi\)
\(18\) 0 0
\(19\) 5.31485 3.06853i 1.21931 0.703969i 0.254540 0.967062i \(-0.418076\pi\)
0.964771 + 0.263093i \(0.0847425\pi\)
\(20\) 0 0
\(21\) 5.04892i 1.10176i
\(22\) 0 0
\(23\) −3.96950 + 6.87538i −0.827698 + 1.43362i 0.0721416 + 0.997394i \(0.477017\pi\)
−0.899840 + 0.436221i \(0.856317\pi\)
\(24\) 0 0
\(25\) −4.29590 −0.859179
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.708947 + 1.22793i −0.131648 + 0.228021i −0.924312 0.381638i \(-0.875360\pi\)
0.792664 + 0.609659i \(0.208694\pi\)
\(30\) 0 0
\(31\) 5.78986i 1.03989i −0.854200 0.519944i \(-0.825953\pi\)
0.854200 0.519944i \(-0.174047\pi\)
\(32\) 0 0
\(33\) −3.29257 + 1.90097i −0.573164 + 0.330916i
\(34\) 0 0
\(35\) 7.69687 + 13.3314i 1.30101 + 2.25341i
\(36\) 0 0
\(37\) −0.0235101 0.0135735i −0.00386503 0.00223148i 0.498066 0.867139i \(-0.334044\pi\)
−0.501931 + 0.864908i \(0.667377\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.95529 4.59299i −1.24241 0.717305i −0.272824 0.962064i \(-0.587958\pi\)
−0.969584 + 0.244759i \(0.921291\pi\)
\(42\) 0 0
\(43\) −0.609916 1.05641i −0.0930114 0.161100i 0.815766 0.578383i \(-0.196316\pi\)
−0.908777 + 0.417282i \(0.862983\pi\)
\(44\) 0 0
\(45\) −2.64044 + 1.52446i −0.393614 + 0.227253i
\(46\) 0 0
\(47\) 9.56465i 1.39515i −0.716513 0.697574i \(-0.754263\pi\)
0.716513 0.697574i \(-0.245737\pi\)
\(48\) 0 0
\(49\) 9.24578 16.0142i 1.32083 2.28774i
\(50\) 0 0
\(51\) 0.356896 0.0499754
\(52\) 0 0
\(53\) −4.73556 −0.650479 −0.325240 0.945632i \(-0.605445\pi\)
−0.325240 + 0.945632i \(0.605445\pi\)
\(54\) 0 0
\(55\) 5.79590 10.0388i 0.781519 1.35363i
\(56\) 0 0
\(57\) 6.13706i 0.812874i
\(58\) 0 0
\(59\) 11.7134 6.76271i 1.52495 0.880430i 0.525386 0.850864i \(-0.323921\pi\)
0.999563 0.0295658i \(-0.00941247\pi\)
\(60\) 0 0
\(61\) −0.288364 0.499461i −0.0369213 0.0639495i 0.846974 0.531634i \(-0.178422\pi\)
−0.883896 + 0.467684i \(0.845088\pi\)
\(62\) 0 0
\(63\) 4.37249 + 2.52446i 0.550882 + 0.318052i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.88584 3.97554i −0.841239 0.485690i 0.0164461 0.999865i \(-0.494765\pi\)
−0.857685 + 0.514175i \(0.828098\pi\)
\(68\) 0 0
\(69\) −3.96950 6.87538i −0.477872 0.827698i
\(70\) 0 0
\(71\) 2.66395 1.53803i 0.316153 0.182531i −0.333524 0.942742i \(-0.608238\pi\)
0.649676 + 0.760211i \(0.274904\pi\)
\(72\) 0 0
\(73\) 14.0368i 1.64289i −0.570290 0.821444i \(-0.693169\pi\)
0.570290 0.821444i \(-0.306831\pi\)
\(74\) 0 0
\(75\) 2.14795 3.72036i 0.248024 0.429590i
\(76\) 0 0
\(77\) −19.1957 −2.18755
\(78\) 0 0
\(79\) −0.841166 −0.0946386 −0.0473193 0.998880i \(-0.515068\pi\)
−0.0473193 + 0.998880i \(0.515068\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 0.192685i 0.0211500i 0.999944 + 0.0105750i \(0.00336619\pi\)
−0.999944 + 0.0105750i \(0.996634\pi\)
\(84\) 0 0
\(85\) −0.942362 + 0.544073i −0.102214 + 0.0590130i
\(86\) 0 0
\(87\) −0.708947 1.22793i −0.0760071 0.131648i
\(88\) 0 0
\(89\) −7.97880 4.60656i −0.845751 0.488295i 0.0134637 0.999909i \(-0.495714\pi\)
−0.859215 + 0.511615i \(0.829048\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.01416 + 2.89493i 0.519944 + 0.300190i
\(94\) 0 0
\(95\) −9.35570 16.2045i −0.959875 1.66255i
\(96\) 0 0
\(97\) 0.590918 0.341166i 0.0599986 0.0346402i −0.469701 0.882826i \(-0.655638\pi\)
0.529699 + 0.848186i \(0.322305\pi\)
\(98\) 0 0
\(99\) 3.80194i 0.382109i
\(100\) 0 0
\(101\) 3.37531 5.84621i 0.335856 0.581720i −0.647793 0.761817i \(-0.724308\pi\)
0.983649 + 0.180097i \(0.0576410\pi\)
\(102\) 0 0
\(103\) −7.78017 −0.766603 −0.383301 0.923623i \(-0.625213\pi\)
−0.383301 + 0.923623i \(0.625213\pi\)
\(104\) 0 0
\(105\) −15.3937 −1.50227
\(106\) 0 0
\(107\) −4.25786 + 7.37484i −0.411623 + 0.712953i −0.995067 0.0992008i \(-0.968371\pi\)
0.583444 + 0.812153i \(0.301705\pi\)
\(108\) 0 0
\(109\) 1.08815i 0.104225i 0.998641 + 0.0521127i \(0.0165955\pi\)
−0.998641 + 0.0521127i \(0.983404\pi\)
\(110\) 0 0
\(111\) 0.0235101 0.0135735i 0.00223148 0.00128834i
\(112\) 0 0
\(113\) −1.83728 3.18226i −0.172837 0.299362i 0.766574 0.642156i \(-0.221960\pi\)
−0.939411 + 0.342794i \(0.888627\pi\)
\(114\) 0 0
\(115\) 20.9625 + 12.1027i 1.95476 + 1.12858i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.56052 + 0.900969i 0.143053 + 0.0825917i
\(120\) 0 0
\(121\) 1.72737 + 2.99188i 0.157033 + 0.271989i
\(122\) 0 0
\(123\) 7.95529 4.59299i 0.717305 0.414136i
\(124\) 0 0
\(125\) 2.14675i 0.192011i
\(126\) 0 0
\(127\) 5.90581 10.2292i 0.524056 0.907692i −0.475552 0.879688i \(-0.657752\pi\)
0.999608 0.0280041i \(-0.00891515\pi\)
\(128\) 0 0
\(129\) 1.21983 0.107400
\(130\) 0 0
\(131\) 12.5579 1.09719 0.548596 0.836087i \(-0.315162\pi\)
0.548596 + 0.836087i \(0.315162\pi\)
\(132\) 0 0
\(133\) −15.4928 + 26.8343i −1.34339 + 2.32682i
\(134\) 0 0
\(135\) 3.04892i 0.262409i
\(136\) 0 0
\(137\) −5.76614 + 3.32908i −0.492635 + 0.284423i −0.725667 0.688046i \(-0.758469\pi\)
0.233032 + 0.972469i \(0.425135\pi\)
\(138\) 0 0
\(139\) 3.08695 + 5.34675i 0.261832 + 0.453506i 0.966729 0.255804i \(-0.0823401\pi\)
−0.704897 + 0.709310i \(0.749007\pi\)
\(140\) 0 0
\(141\) 8.28323 + 4.78232i 0.697574 + 0.402744i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.74387 + 2.16152i 0.310911 + 0.179505i
\(146\) 0 0
\(147\) 9.24578 + 16.0142i 0.762579 + 1.32083i
\(148\) 0 0
\(149\) 0.127091 0.0733760i 0.0104117 0.00601120i −0.494785 0.869015i \(-0.664753\pi\)
0.505197 + 0.863004i \(0.331420\pi\)
\(150\) 0 0
\(151\) 9.36658i 0.762242i 0.924525 + 0.381121i \(0.124462\pi\)
−0.924525 + 0.381121i \(0.875538\pi\)
\(152\) 0 0
\(153\) −0.178448 + 0.309081i −0.0144267 + 0.0249877i
\(154\) 0 0
\(155\) −17.6528 −1.41791
\(156\) 0 0
\(157\) −4.03146 −0.321745 −0.160873 0.986975i \(-0.551431\pi\)
−0.160873 + 0.986975i \(0.551431\pi\)
\(158\) 0 0
\(159\) 2.36778 4.10112i 0.187777 0.325240i
\(160\) 0 0
\(161\) 40.0834i 3.15901i
\(162\) 0 0
\(163\) 9.02475 5.21044i 0.706873 0.408113i −0.103029 0.994678i \(-0.532854\pi\)
0.809902 + 0.586565i \(0.199520\pi\)
\(164\) 0 0
\(165\) 5.79590 + 10.0388i 0.451210 + 0.781519i
\(166\) 0 0
\(167\) −8.92490 5.15279i −0.690629 0.398735i 0.113218 0.993570i \(-0.463884\pi\)
−0.803848 + 0.594835i \(0.797217\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −5.31485 3.06853i −0.406437 0.234656i
\(172\) 0 0
\(173\) −11.1516 19.3151i −0.847840 1.46850i −0.883132 0.469125i \(-0.844569\pi\)
0.0352915 0.999377i \(-0.488764\pi\)
\(174\) 0 0
\(175\) 18.7838 10.8448i 1.41992 0.819791i
\(176\) 0 0
\(177\) 13.5254i 1.01663i
\(178\) 0 0
\(179\) −8.68867 + 15.0492i −0.649422 + 1.12483i 0.333840 + 0.942630i \(0.391656\pi\)
−0.983261 + 0.182201i \(0.941678\pi\)
\(180\) 0 0
\(181\) 24.4644 1.81843 0.909213 0.416331i \(-0.136684\pi\)
0.909213 + 0.416331i \(0.136684\pi\)
\(182\) 0 0
\(183\) 0.576728 0.0426330
\(184\) 0 0
\(185\) −0.0413846 + 0.0716802i −0.00304266 + 0.00527003i
\(186\) 0 0
\(187\) 1.35690i 0.0992261i
\(188\) 0 0
\(189\) −4.37249 + 2.52446i −0.318052 + 0.183627i
\(190\) 0 0
\(191\) −10.7044 18.5406i −0.774543 1.34155i −0.935051 0.354513i \(-0.884647\pi\)
0.160508 0.987035i \(-0.448687\pi\)
\(192\) 0 0
\(193\) 12.4947 + 7.21379i 0.899385 + 0.519260i 0.877001 0.480489i \(-0.159541\pi\)
0.0223843 + 0.999749i \(0.492874\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.77234 1.02326i −0.126274 0.0729044i 0.435532 0.900173i \(-0.356560\pi\)
−0.561807 + 0.827269i \(0.689893\pi\)
\(198\) 0 0
\(199\) −2.77748 4.81073i −0.196890 0.341024i 0.750628 0.660725i \(-0.229751\pi\)
−0.947519 + 0.319701i \(0.896418\pi\)
\(200\) 0 0
\(201\) 6.88584 3.97554i 0.485690 0.280413i
\(202\) 0 0
\(203\) 7.15883i 0.502452i
\(204\) 0 0
\(205\) −14.0036 + 24.2550i −0.978057 + 1.69404i
\(206\) 0 0
\(207\) 7.93900 0.551799
\(208\) 0 0
\(209\) 23.3327 1.61396
\(210\) 0 0
\(211\) 10.9046 18.8874i 0.750705 1.30026i −0.196777 0.980448i \(-0.563047\pi\)
0.947482 0.319810i \(-0.103619\pi\)
\(212\) 0 0
\(213\) 3.07606i 0.210768i
\(214\) 0 0
\(215\) −3.22089 + 1.85958i −0.219663 + 0.126823i
\(216\) 0 0
\(217\) 14.6163 + 25.3161i 0.992216 + 1.71857i
\(218\) 0 0
\(219\) 12.1563 + 7.01842i 0.821444 + 0.474261i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.1715 + 12.8007i 1.48472 + 0.857201i 0.999849 0.0173869i \(-0.00553470\pi\)
0.484867 + 0.874588i \(0.338868\pi\)
\(224\) 0 0
\(225\) 2.14795 + 3.72036i 0.143197 + 0.248024i
\(226\) 0 0
\(227\) −2.36068 + 1.36294i −0.156684 + 0.0904613i −0.576292 0.817244i \(-0.695501\pi\)
0.419608 + 0.907705i \(0.362167\pi\)
\(228\) 0 0
\(229\) 18.1075i 1.19658i −0.801280 0.598289i \(-0.795847\pi\)
0.801280 0.598289i \(-0.204153\pi\)
\(230\) 0 0
\(231\) 9.59783 16.6239i 0.631491 1.09377i
\(232\) 0 0
\(233\) 18.9051 1.23852 0.619259 0.785187i \(-0.287433\pi\)
0.619259 + 0.785187i \(0.287433\pi\)
\(234\) 0 0
\(235\) −29.1618 −1.90231
\(236\) 0 0
\(237\) 0.420583 0.728471i 0.0273198 0.0473193i
\(238\) 0 0
\(239\) 20.3099i 1.31374i 0.754005 + 0.656869i \(0.228120\pi\)
−0.754005 + 0.656869i \(0.771880\pi\)
\(240\) 0 0
\(241\) −13.6782 + 7.89708i −0.881087 + 0.508696i −0.871017 0.491253i \(-0.836539\pi\)
−0.0100704 + 0.999949i \(0.503206\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −48.8259 28.1896i −3.11937 1.80097i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −0.166870 0.0963427i −0.0105750 0.00610547i
\(250\) 0 0
\(251\) −3.94116 6.82628i −0.248764 0.430871i 0.714419 0.699718i \(-0.246691\pi\)
−0.963183 + 0.268846i \(0.913358\pi\)
\(252\) 0 0
\(253\) −26.1398 + 15.0918i −1.64339 + 0.948813i
\(254\) 0 0
\(255\) 1.08815i 0.0681423i
\(256\) 0 0
\(257\) 9.29859 16.1056i 0.580030 1.00464i −0.415445 0.909618i \(-0.636374\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(258\) 0 0
\(259\) 0.137063 0.00851670
\(260\) 0 0
\(261\) 1.41789 0.0877655
\(262\) 0 0
\(263\) −0.628334 + 1.08831i −0.0387447 + 0.0671079i −0.884748 0.466071i \(-0.845669\pi\)
0.846003 + 0.533179i \(0.179003\pi\)
\(264\) 0 0
\(265\) 14.4383i 0.886940i
\(266\) 0 0
\(267\) 7.97880 4.60656i 0.488295 0.281917i
\(268\) 0 0
\(269\) 9.44720 + 16.3630i 0.576006 + 0.997671i 0.995932 + 0.0901129i \(0.0287228\pi\)
−0.419926 + 0.907558i \(0.637944\pi\)
\(270\) 0 0
\(271\) −17.8472 10.3041i −1.08414 0.625929i −0.152131 0.988360i \(-0.548613\pi\)
−0.932010 + 0.362431i \(0.881947\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.1446 8.16637i −0.852949 0.492450i
\(276\) 0 0
\(277\) 5.94451 + 10.2962i 0.357171 + 0.618638i 0.987487 0.157700i \(-0.0504080\pi\)
−0.630316 + 0.776339i \(0.717075\pi\)
\(278\) 0 0
\(279\) −5.01416 + 2.89493i −0.300190 + 0.173315i
\(280\) 0 0
\(281\) 7.74333i 0.461928i 0.972962 + 0.230964i \(0.0741880\pi\)
−0.972962 + 0.230964i \(0.925812\pi\)
\(282\) 0 0
\(283\) −6.11745 + 10.5957i −0.363645 + 0.629851i −0.988558 0.150843i \(-0.951801\pi\)
0.624913 + 0.780694i \(0.285134\pi\)
\(284\) 0 0
\(285\) 18.7114 1.10837
\(286\) 0 0
\(287\) 46.3793 2.73768
\(288\) 0 0
\(289\) 8.43631 14.6121i 0.496254 0.859537i
\(290\) 0 0
\(291\) 0.682333i 0.0399991i
\(292\) 0 0
\(293\) 16.1068 9.29925i 0.940968 0.543268i 0.0507042 0.998714i \(-0.483853\pi\)
0.890264 + 0.455446i \(0.150520\pi\)
\(294\) 0 0
\(295\) −20.6189 35.7131i −1.20048 2.07929i
\(296\) 0 0
\(297\) 3.29257 + 1.90097i 0.191055 + 0.110305i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 5.33371 + 3.07942i 0.307430 + 0.177495i
\(302\) 0 0
\(303\) 3.37531 + 5.84621i 0.193907 + 0.335856i
\(304\) 0 0
\(305\) −1.52282 + 0.879199i −0.0871962 + 0.0503428i
\(306\) 0 0
\(307\) 3.32006i 0.189486i −0.995502 0.0947429i \(-0.969797\pi\)
0.995502 0.0947429i \(-0.0302029\pi\)
\(308\) 0 0
\(309\) 3.89008 6.73782i 0.221299 0.383301i
\(310\) 0 0
\(311\) −20.2881 −1.15043 −0.575217 0.818001i \(-0.695082\pi\)
−0.575217 + 0.818001i \(0.695082\pi\)
\(312\) 0 0
\(313\) −14.3870 −0.813203 −0.406601 0.913606i \(-0.633286\pi\)
−0.406601 + 0.913606i \(0.633286\pi\)
\(314\) 0 0
\(315\) 7.69687 13.3314i 0.433669 0.751137i
\(316\) 0 0
\(317\) 12.4450i 0.698983i −0.936939 0.349492i \(-0.886354\pi\)
0.936939 0.349492i \(-0.113646\pi\)
\(318\) 0 0
\(319\) −4.66852 + 2.69537i −0.261387 + 0.150912i
\(320\) 0 0
\(321\) −4.25786 7.37484i −0.237651 0.411623i
\(322\) 0 0
\(323\) −1.89685 1.09515i −0.105544 0.0609356i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.942362 0.544073i −0.0521127 0.0300873i
\(328\) 0 0
\(329\) 24.1456 + 41.8213i 1.33119 + 2.30568i
\(330\) 0 0
\(331\) −2.87411 + 1.65937i −0.157975 + 0.0912070i −0.576904 0.816812i \(-0.695739\pi\)
0.418928 + 0.908019i \(0.362406\pi\)
\(332\) 0 0
\(333\) 0.0271471i 0.00148765i
\(334\) 0 0
\(335\) −12.1211 + 20.9944i −0.662246 + 1.14704i
\(336\) 0 0
\(337\) 12.3515 0.672830 0.336415 0.941714i \(-0.390786\pi\)
0.336415 + 0.941714i \(0.390786\pi\)
\(338\) 0 0
\(339\) 3.67456 0.199575
\(340\) 0 0
\(341\) 11.0063 19.0635i 0.596027 1.03235i
\(342\) 0 0
\(343\) 58.0200i 3.13278i
\(344\) 0 0
\(345\) −20.9625 + 12.1027i −1.12858 + 0.651586i
\(346\) 0 0
\(347\) −5.24847 9.09062i −0.281753 0.488010i 0.690064 0.723749i \(-0.257582\pi\)
−0.971817 + 0.235739i \(0.924249\pi\)
\(348\) 0 0
\(349\) 12.2184 + 7.05429i 0.654036 + 0.377608i 0.790001 0.613106i \(-0.210080\pi\)
−0.135965 + 0.990714i \(0.543413\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.5736 7.25936i −0.669224 0.386377i 0.126559 0.991959i \(-0.459607\pi\)
−0.795782 + 0.605583i \(0.792940\pi\)
\(354\) 0 0
\(355\) −4.68933 8.12216i −0.248884 0.431080i
\(356\) 0 0
\(357\) −1.56052 + 0.900969i −0.0825917 + 0.0476843i
\(358\) 0 0
\(359\) 24.7144i 1.30438i 0.758058 + 0.652188i \(0.226149\pi\)
−0.758058 + 0.652188i \(0.773851\pi\)
\(360\) 0 0
\(361\) 9.33177 16.1631i 0.491146 0.850690i
\(362\) 0 0
\(363\) −3.45473 −0.181326
\(364\) 0 0
\(365\) −42.7972 −2.24011
\(366\) 0 0
\(367\) −9.75332 + 16.8932i −0.509119 + 0.881820i 0.490825 + 0.871258i \(0.336695\pi\)
−0.999944 + 0.0105619i \(0.996638\pi\)
\(368\) 0 0
\(369\) 9.18598i 0.478203i
\(370\) 0 0
\(371\) 20.7062 11.9547i 1.07501 0.620659i
\(372\) 0 0
\(373\) 1.90097 + 3.29257i 0.0984284 + 0.170483i 0.911034 0.412331i \(-0.135285\pi\)
−0.812606 + 0.582814i \(0.801952\pi\)
\(374\) 0 0
\(375\) 1.85914 + 1.07338i 0.0960057 + 0.0554289i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.90823 1.10172i −0.0980194 0.0565915i 0.450189 0.892933i \(-0.351357\pi\)
−0.548208 + 0.836342i \(0.684690\pi\)
\(380\) 0 0
\(381\) 5.90581 + 10.2292i 0.302564 + 0.524056i
\(382\) 0 0
\(383\) −26.8201 + 15.4846i −1.37044 + 0.791224i −0.990983 0.133985i \(-0.957223\pi\)
−0.379457 + 0.925209i \(0.623889\pi\)
\(384\) 0 0
\(385\) 58.5260i 2.98276i
\(386\) 0 0
\(387\) −0.609916 + 1.05641i −0.0310038 + 0.0537001i
\(388\) 0 0
\(389\) −24.4470 −1.23951 −0.619755 0.784795i \(-0.712768\pi\)
−0.619755 + 0.784795i \(0.712768\pi\)
\(390\) 0 0
\(391\) 2.83340 0.143291
\(392\) 0 0
\(393\) −6.27897 + 10.8755i −0.316732 + 0.548596i
\(394\) 0 0
\(395\) 2.56465i 0.129041i
\(396\) 0 0
\(397\) −0.631209 + 0.364429i −0.0316795 + 0.0182901i −0.515756 0.856735i \(-0.672489\pi\)
0.484077 + 0.875026i \(0.339156\pi\)
\(398\) 0 0
\(399\) −15.4928 26.8343i −0.775608 1.34339i
\(400\) 0 0
\(401\) 8.88512 + 5.12983i 0.443702 + 0.256171i 0.705167 0.709042i \(-0.250872\pi\)
−0.261465 + 0.965213i \(0.584206\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.64044 + 1.52446i 0.131205 + 0.0757510i
\(406\) 0 0
\(407\) −0.0516057 0.0893838i −0.00255800 0.00443059i
\(408\) 0 0
\(409\) −19.7194 + 11.3850i −0.975062 + 0.562952i −0.900776 0.434285i \(-0.857001\pi\)
−0.0742861 + 0.997237i \(0.523668\pi\)
\(410\) 0 0
\(411\) 6.65817i 0.328423i
\(412\) 0 0
\(413\) −34.1444 + 59.1398i −1.68013 + 2.91008i
\(414\) 0 0
\(415\) 0.587482 0.0288384
\(416\) 0 0
\(417\) −6.17390 −0.302337
\(418\) 0 0
\(419\) −9.54652 + 16.5351i −0.466378 + 0.807791i −0.999263 0.0383973i \(-0.987775\pi\)
0.532884 + 0.846188i \(0.321108\pi\)
\(420\) 0 0
\(421\) 15.8629i 0.773112i −0.922266 0.386556i \(-0.873665\pi\)
0.922266 0.386556i \(-0.126335\pi\)
\(422\) 0 0
\(423\) −8.28323 + 4.78232i −0.402744 + 0.232525i
\(424\) 0 0
\(425\) 0.766594 + 1.32778i 0.0371853 + 0.0644068i
\(426\) 0 0
\(427\) 2.52174 + 1.45593i 0.122036 + 0.0704572i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.4033 12.3572i −1.03096 0.595225i −0.113700 0.993515i \(-0.536270\pi\)
−0.917259 + 0.398290i \(0.869604\pi\)
\(432\) 0 0
\(433\) 8.09999 + 14.0296i 0.389261 + 0.674219i 0.992350 0.123454i \(-0.0393972\pi\)
−0.603090 + 0.797673i \(0.706064\pi\)
\(434\) 0 0
\(435\) −3.74387 + 2.16152i −0.179505 + 0.103637i
\(436\) 0 0
\(437\) 48.7222i 2.33070i
\(438\) 0 0
\(439\) −11.0025 + 19.0568i −0.525118 + 0.909532i 0.474454 + 0.880280i \(0.342646\pi\)
−0.999572 + 0.0292512i \(0.990688\pi\)
\(440\) 0 0
\(441\) −18.4916 −0.880551
\(442\) 0 0
\(443\) 4.33273 0.205854 0.102927 0.994689i \(-0.467179\pi\)
0.102927 + 0.994689i \(0.467179\pi\)
\(444\) 0 0
\(445\) −14.0450 + 24.3267i −0.665798 + 1.15320i
\(446\) 0 0
\(447\) 0.146752i 0.00694113i
\(448\) 0 0
\(449\) 13.9374 8.04676i 0.657747 0.379750i −0.133671 0.991026i \(-0.542677\pi\)
0.791418 + 0.611276i \(0.209343\pi\)
\(450\) 0 0
\(451\) −17.4623 30.2455i −0.822266 1.42421i
\(452\) 0 0
\(453\) −8.11170 4.68329i −0.381121 0.220040i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.938628 + 0.541917i 0.0439072 + 0.0253498i 0.521793 0.853072i \(-0.325263\pi\)
−0.477886 + 0.878422i \(0.658597\pi\)
\(458\) 0 0
\(459\) −0.178448 0.309081i −0.00832924 0.0144267i
\(460\) 0 0
\(461\) −29.5871 + 17.0821i −1.37801 + 0.795593i −0.991919 0.126869i \(-0.959507\pi\)
−0.386088 + 0.922462i \(0.626174\pi\)
\(462\) 0 0
\(463\) 23.7560i 1.10404i −0.833832 0.552018i \(-0.813858\pi\)
0.833832 0.552018i \(-0.186142\pi\)
\(464\) 0 0
\(465\) 8.82640 15.2878i 0.409314 0.708953i
\(466\) 0 0
\(467\) 42.8189 1.98142 0.990712 0.135979i \(-0.0434180\pi\)
0.990712 + 0.135979i \(0.0434180\pi\)
\(468\) 0 0
\(469\) 40.1444 1.85369
\(470\) 0 0
\(471\) 2.01573 3.49135i 0.0928799 0.160873i
\(472\) 0 0
\(473\) 4.63773i 0.213243i
\(474\) 0 0
\(475\) −22.8321 + 13.1821i −1.04761 + 0.604836i
\(476\) 0 0
\(477\) 2.36778 + 4.10112i 0.108413 + 0.187777i
\(478\) 0 0
\(479\) 4.90685 + 2.83297i 0.224200 + 0.129442i 0.607893 0.794019i \(-0.292015\pi\)
−0.383694 + 0.923460i \(0.625348\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 34.7132 + 20.0417i 1.57951 + 0.911928i
\(484\) 0 0
\(485\) −1.04019 1.80166i −0.0472325 0.0818091i
\(486\) 0 0
\(487\) 10.6099 6.12565i 0.480782 0.277580i −0.239960 0.970783i \(-0.577134\pi\)
0.720742 + 0.693203i \(0.243801\pi\)
\(488\) 0 0
\(489\) 10.4209i 0.471248i
\(490\) 0 0
\(491\) −2.48307 + 4.30081i −0.112060 + 0.194093i −0.916601 0.399804i \(-0.869078\pi\)
0.804541 + 0.593897i \(0.202411\pi\)
\(492\) 0 0
\(493\) 0.506041 0.0227909
\(494\) 0 0
\(495\) −11.5918 −0.521012
\(496\) 0 0
\(497\) −7.76540 + 13.4501i −0.348326 + 0.603318i
\(498\) 0 0
\(499\) 16.2500i 0.727448i −0.931507 0.363724i \(-0.881505\pi\)
0.931507 0.363724i \(-0.118495\pi\)
\(500\) 0 0
\(501\) 8.92490 5.15279i 0.398735 0.230210i
\(502\) 0 0
\(503\) 6.12296 + 10.6053i 0.273009 + 0.472866i 0.969631 0.244573i \(-0.0786477\pi\)
−0.696622 + 0.717439i \(0.745314\pi\)
\(504\) 0 0
\(505\) −17.8246 10.2911i −0.793185 0.457946i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.33235 + 1.92394i 0.147704 + 0.0852769i 0.572031 0.820232i \(-0.306156\pi\)
−0.424327 + 0.905509i \(0.639489\pi\)
\(510\) 0 0
\(511\) 35.4354 + 61.3759i 1.56757 + 2.71511i
\(512\) 0 0
\(513\) 5.31485 3.06853i 0.234656 0.135479i
\(514\) 0 0
\(515\) 23.7211i 1.04528i
\(516\) 0 0
\(517\) 18.1821 31.4923i 0.799648 1.38503i
\(518\) 0 0
\(519\) 22.3032 0.979002
\(520\) 0 0
\(521\) −9.42626 −0.412972 −0.206486 0.978450i \(-0.566203\pi\)
−0.206486 + 0.978450i \(0.566203\pi\)
\(522\) 0 0
\(523\) 20.2969 35.1552i 0.887520 1.53723i 0.0447212 0.999000i \(-0.485760\pi\)
0.842798 0.538229i \(-0.180907\pi\)
\(524\) 0 0
\(525\) 21.6896i 0.946613i
\(526\) 0 0
\(527\) −1.78953 + 1.03319i −0.0779533 + 0.0450064i
\(528\) 0 0
\(529\) −20.0139 34.6650i −0.870168 1.50718i
\(530\) 0 0
\(531\) −11.7134 6.76271i −0.508316 0.293477i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 22.4853 + 12.9819i 0.972123 + 0.561256i
\(536\) 0 0
\(537\) −8.68867 15.0492i −0.374944 0.649422i
\(538\) 0 0
\(539\) 60.8849 35.1519i 2.62250 1.51410i
\(540\) 0 0
\(541\) 4.32006i 0.185734i 0.995679 + 0.0928669i \(0.0296031\pi\)
−0.995679 + 0.0928669i \(0.970397\pi\)
\(542\) 0 0
\(543\) −12.2322 + 21.1868i −0.524934 + 0.909213i
\(544\) 0 0
\(545\) 3.31767 0.142113
\(546\) 0 0
\(547\) 35.8702 1.53370 0.766850 0.641826i \(-0.221823\pi\)
0.766850 + 0.641826i \(0.221823\pi\)
\(548\) 0 0
\(549\) −0.288364 + 0.499461i −0.0123071 + 0.0213165i
\(550\) 0 0
\(551\) 8.70171i 0.370705i
\(552\) 0 0
\(553\) 3.67799 2.12349i 0.156404 0.0903000i
\(554\) 0 0
\(555\) −0.0413846 0.0716802i −0.00175668 0.00304266i
\(556\) 0 0
\(557\) −26.3960 15.2397i −1.11843 0.645729i −0.177434 0.984133i \(-0.556780\pi\)
−0.941001 + 0.338404i \(0.890113\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 1.17511 + 0.678448i 0.0496130 + 0.0286441i
\(562\) 0 0
\(563\) −16.3855 28.3806i −0.690568 1.19610i −0.971652 0.236416i \(-0.924027\pi\)
0.281084 0.959683i \(-0.409306\pi\)
\(564\) 0 0
\(565\) −9.70246 + 5.60172i −0.408186 + 0.235666i
\(566\) 0 0
\(567\) 5.04892i 0.212035i
\(568\) 0 0
\(569\) −1.45593 + 2.52174i −0.0610356 + 0.105717i −0.894929 0.446209i \(-0.852774\pi\)
0.833893 + 0.551926i \(0.186107\pi\)
\(570\) 0 0
\(571\) 22.8592 0.956628 0.478314 0.878189i \(-0.341248\pi\)
0.478314 + 0.878189i \(0.341248\pi\)
\(572\) 0 0
\(573\) 21.4088 0.894365
\(574\) 0 0
\(575\) 17.0526 29.5359i 0.711141 1.23173i
\(576\) 0 0
\(577\) 7.78315i 0.324017i 0.986789 + 0.162008i \(0.0517972\pi\)
−0.986789 + 0.162008i \(0.948203\pi\)
\(578\) 0 0
\(579\) −12.4947 + 7.21379i −0.519260 + 0.299795i
\(580\) 0 0
\(581\) −0.486426 0.842515i −0.0201804 0.0349534i
\(582\) 0 0
\(583\) −15.5922 9.00216i −0.645763 0.372831i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.34090 1.35152i −0.0966193 0.0557832i 0.450912 0.892569i \(-0.351099\pi\)
−0.547531 + 0.836785i \(0.684432\pi\)
\(588\) 0 0
\(589\) −17.7664 30.7722i −0.732050 1.26795i
\(590\) 0 0
\(591\) 1.77234 1.02326i 0.0729044 0.0420914i
\(592\) 0 0
\(593\) 38.8961i 1.59727i −0.601816 0.798635i \(-0.705556\pi\)
0.601816 0.798635i \(-0.294444\pi\)
\(594\) 0 0
\(595\) 2.74698 4.75791i 0.112615 0.195055i
\(596\) 0 0
\(597\) 5.55496 0.227349
\(598\) 0 0
\(599\) 13.5308 0.552853 0.276427 0.961035i \(-0.410850\pi\)
0.276427 + 0.961035i \(0.410850\pi\)
\(600\) 0 0
\(601\) 13.1256 22.7343i 0.535406 0.927351i −0.463737 0.885973i \(-0.653492\pi\)
0.999144 0.0413781i \(-0.0131748\pi\)
\(602\) 0 0
\(603\) 7.95108i 0.323793i
\(604\) 0 0
\(605\) 9.12201 5.26659i 0.370862 0.214117i
\(606\) 0 0
\(607\) 19.0591 + 33.0114i 0.773587 + 1.33989i 0.935585 + 0.353100i \(0.114873\pi\)
−0.161999 + 0.986791i \(0.551794\pi\)
\(608\) 0 0
\(609\) 6.19973 + 3.57942i 0.251226 + 0.145045i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −17.1402 9.89589i −0.692285 0.399691i 0.112182 0.993688i \(-0.464216\pi\)
−0.804468 + 0.593997i \(0.797549\pi\)
\(614\) 0 0
\(615\) −14.0036 24.2550i −0.564682 0.978057i
\(616\) 0 0
\(617\) −42.2680 + 24.4034i −1.70164 + 0.982445i −0.757545 + 0.652783i \(0.773601\pi\)
−0.944099 + 0.329662i \(0.893065\pi\)
\(618\) 0 0
\(619\) 24.8702i 0.999619i 0.866135 + 0.499810i \(0.166597\pi\)
−0.866135 + 0.499810i \(0.833403\pi\)
\(620\) 0 0
\(621\) −3.96950 + 6.87538i −0.159291 + 0.275899i
\(622\) 0 0
\(623\) 46.5163 1.86364
\(624\) 0 0
\(625\) −28.0248 −1.12099
\(626\) 0 0
\(627\) −11.6664 + 20.2067i −0.465910 + 0.806979i
\(628\) 0 0
\(629\) 0.00968868i 0.000386313i
\(630\) 0 0
\(631\) 40.5897 23.4345i 1.61585 0.932911i 0.627871 0.778318i \(-0.283927\pi\)
0.987978 0.154593i \(-0.0494067\pi\)
\(632\) 0 0
\(633\) 10.9046 + 18.8874i 0.433420 + 0.750705i
\(634\) 0 0
\(635\) −31.1879 18.0063i −1.23765 0.714560i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.66395 1.53803i −0.105384 0.0608436i
\(640\) 0 0
\(641\) 9.05525 + 15.6842i 0.357661 + 0.619487i 0.987570 0.157182i \(-0.0502410\pi\)
−0.629909 + 0.776669i \(0.716908\pi\)
\(642\) 0 0
\(643\) 20.3792 11.7659i 0.803677 0.464003i −0.0410784 0.999156i \(-0.513079\pi\)
0.844755 + 0.535153i \(0.179746\pi\)
\(644\) 0 0
\(645\) 3.71917i 0.146442i
\(646\) 0 0
\(647\) 2.02297 3.50388i 0.0795310 0.137752i −0.823517 0.567292i \(-0.807991\pi\)
0.903048 + 0.429540i \(0.141324\pi\)
\(648\) 0 0
\(649\) 51.4228 2.01852
\(650\) 0 0
\(651\) −29.2325 −1.14571
\(652\) 0 0
\(653\) −5.11260 + 8.85529i −0.200072 + 0.346534i −0.948551 0.316623i \(-0.897451\pi\)
0.748480 + 0.663158i \(0.230784\pi\)
\(654\) 0 0
\(655\) 38.2881i 1.49604i
\(656\) 0 0
\(657\) −12.1563 + 7.01842i −0.474261 + 0.273815i
\(658\) 0 0
\(659\) 12.9378 + 22.4089i 0.503985 + 0.872928i 0.999989 + 0.00460797i \(0.00146677\pi\)
−0.496004 + 0.868320i \(0.665200\pi\)
\(660\) 0 0
\(661\) −6.36172 3.67294i −0.247442 0.142861i 0.371150 0.928573i \(-0.378963\pi\)
−0.618592 + 0.785712i \(0.712297\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 81.8154 + 47.2362i 3.17267 + 1.83174i
\(666\) 0 0
\(667\) −5.62833 9.74856i −0.217930 0.377466i
\(668\) 0 0
\(669\) −22.1715 + 12.8007i −0.857201 + 0.494905i
\(670\) 0 0
\(671\) 2.19269i 0.0846477i
\(672\) 0 0
\(673\) 17.4167 30.1666i 0.671364 1.16284i −0.306153 0.951982i \(-0.599042\pi\)
0.977517 0.210855i \(-0.0676248\pi\)
\(674\) 0 0
\(675\) −4.29590 −0.165349
\(676\) 0 0
\(677\) −17.2000 −0.661049 −0.330524 0.943797i \(-0.607226\pi\)
−0.330524 + 0.943797i \(0.607226\pi\)
\(678\) 0 0
\(679\) −1.72252 + 2.98349i −0.0661043 + 0.114496i
\(680\) 0 0
\(681\) 2.72587i 0.104456i
\(682\) 0 0
\(683\) −29.3073 + 16.9206i −1.12141 + 0.647448i −0.941761 0.336282i \(-0.890830\pi\)
−0.179652 + 0.983730i \(0.557497\pi\)
\(684\) 0 0
\(685\) 10.1501 + 17.5805i 0.387816 + 0.671716i
\(686\) 0 0
\(687\) 15.6816 + 9.05376i 0.598289 + 0.345423i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −15.3374 8.85504i −0.583461 0.336861i 0.179047 0.983841i \(-0.442699\pi\)
−0.762508 + 0.646979i \(0.776032\pi\)
\(692\) 0 0
\(693\) 9.59783 + 16.6239i 0.364592 + 0.631491i
\(694\) 0 0
\(695\) 16.3018 9.41185i 0.618363 0.357012i
\(696\) 0 0
\(697\) 3.27844i 0.124180i
\(698\) 0 0
\(699\) −9.45257 + 16.3723i −0.357529 + 0.619259i
\(700\) 0 0
\(701\) −9.22952 −0.348594 −0.174297 0.984693i \(-0.555765\pi\)
−0.174297 + 0.984693i \(0.555765\pi\)
\(702\) 0 0
\(703\) −0.166603 −0.00628356
\(704\) 0 0
\(705\) 14.5809 25.2549i 0.549149 0.951154i
\(706\) 0 0
\(707\) 34.0834i 1.28184i
\(708\) 0 0
\(709\) −0.551138 + 0.318200i −0.0206984 + 0.0119502i −0.510314 0.859988i \(-0.670471\pi\)
0.489615 + 0.871939i \(0.337137\pi\)
\(710\) 0 0
\(711\) 0.420583 + 0.728471i 0.0157731 + 0.0273198i
\(712\) 0 0
\(713\) 39.8074 + 22.9828i 1.49080 + 0.860714i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −17.5889 10.1549i −0.656869 0.379244i
\(718\) 0 0
\(719\) 4.21983 + 7.30896i 0.157373 + 0.272578i 0.933921 0.357480i \(-0.116364\pi\)
−0.776547 + 0.630059i \(0.783031\pi\)
\(720\) 0 0
\(721\) 34.0187 19.6407i 1.26692 0.731458i
\(722\) 0 0
\(723\) 15.7942i 0.587391i
\(724\) 0 0
\(725\) 3.04556 5.27507i 0.113109 0.195911i
\(726\) 0 0
\(727\) 19.9922 0.741471 0.370735 0.928739i \(-0.379106\pi\)
0.370735 + 0.928739i \(0.379106\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.217677 + 0.377027i −0.00805106 + 0.0139448i
\(732\) 0 0
\(733\) 3.93767i 0.145441i −0.997352 0.0727206i \(-0.976832\pi\)
0.997352 0.0727206i \(-0.0231681\pi\)
\(734\) 0 0
\(735\) 48.8259 28.1896i 1.80097 1.03979i
\(736\) 0 0
\(737\) −15.1148 26.1795i −0.556759 0.964336i
\(738\) 0 0
\(739\) 20.5707 + 11.8765i 0.756706 + 0.436884i 0.828112 0.560563i \(-0.189415\pi\)
−0.0714057 + 0.997447i \(0.522749\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −32.1042 18.5353i −1.17779 0.679996i −0.222286 0.974982i \(-0.571352\pi\)
−0.955502 + 0.294986i \(0.904685\pi\)
\(744\) 0 0
\(745\) −0.223717 0.387490i −0.00819637 0.0141965i
\(746\) 0 0
\(747\) 0.166870 0.0963427i 0.00610547 0.00352500i
\(748\) 0 0
\(749\) 42.9952i 1.57101i
\(750\) 0 0
\(751\) −5.27987 + 9.14501i −0.192665 + 0.333706i −0.946133 0.323779i \(-0.895046\pi\)
0.753467 + 0.657485i \(0.228380\pi\)
\(752\) 0 0
\(753\) 7.88231 0.287247
\(754\) 0 0
\(755\) 28.5579 1.03933
\(756\) 0 0
\(757\) 1.45162 2.51427i 0.0527598 0.0913827i −0.838439 0.544995i \(-0.816532\pi\)
0.891199 + 0.453612i \(0.149865\pi\)
\(758\) 0 0
\(759\) 30.1836i 1.09559i
\(760\) 0 0
\(761\) 20.1125 11.6119i 0.729077 0.420933i −0.0890077 0.996031i \(-0.528370\pi\)
0.818084 + 0.575098i \(0.195036\pi\)
\(762\) 0 0
\(763\) −2.74698 4.75791i −0.0994473 0.172248i
\(764\) 0 0
\(765\) 0.942362 + 0.544073i 0.0340712 + 0.0196710i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −34.4036 19.8629i −1.24063 0.716276i −0.271404 0.962465i \(-0.587488\pi\)
−0.969222 + 0.246190i \(0.920821\pi\)
\(770\) 0 0
\(771\) 9.29859 + 16.1056i 0.334880 + 0.580030i
\(772\) 0 0
\(773\) −2.74609 + 1.58546i −0.0987701 + 0.0570249i −0.548571 0.836104i \(-0.684828\pi\)
0.449801 + 0.893129i \(0.351495\pi\)
\(774\) 0 0
\(775\) 24.8726i 0.893451i
\(776\) 0 0
\(777\) −0.0685317 + 0.118700i −0.00245856 + 0.00425835i
\(778\) 0 0
\(779\) −56.3749 −2.01984
\(780\) 0 0
\(781\) 11.6950 0.418480
\(782\) 0 0
\(783\) −0.708947 + 1.22793i −0.0253357 + 0.0438827i
\(784\) 0 0
\(785\) 12.2916i 0.438705i
\(786\) 0 0
\(787\) −6.49088 + 3.74751i −0.231375 + 0.133584i −0.611206 0.791471i \(-0.709315\pi\)
0.379831 + 0.925056i \(0.375982\pi\)
\(788\) 0 0
\(789\) −0.628334 1.08831i −0.0223693 0.0387447i
\(790\) 0 0
\(791\) 16.0670 + 9.27628i 0.571276 + 0.329827i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −12.5040 7.21917i −0.443470 0.256038i
\(796\) 0 0
\(797\) −19.8388 34.3618i −0.702725 1.21716i −0.967506 0.252847i \(-0.918633\pi\)
0.264781 0.964309i \(-0.414700\pi\)
\(798\) 0 0
\(799\) −2.95625 + 1.70679i −0.104585 + 0.0603819i
\(800\) 0 0
\(801\) 9.21313i 0.325530i
\(802\) 0 0
\(803\) 26.6836 46.2173i 0.941643 1.63097i
\(804\) 0 0
\(805\) −122.211 −4.30737
\(806\) 0 0
\(807\) −18.8944 −0.665114
\(808\) 0 0
\(809\) −25.0090 + 43.3169i −0.879270 + 1.52294i −0.0271276 + 0.999632i \(0.508636\pi\)
−0.852143 + 0.523309i \(0.824697\pi\)
\(810\) 0 0
\(811\) 28.7590i 1.00986i −0.863159 0.504932i \(-0.831517\pi\)
0.863159 0.504932i \(-0.168483\pi\)
\(812\) 0 0
\(813\) 17.8472 10.3041i 0.625929 0.361380i
\(814\) 0 0
\(815\) −15.8862 27.5157i −0.556469 0.963833i
\(816\) 0 0
\(817\) −6.48323 3.74309i −0.226820 0.130954i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.5325 + 19.3600i 1.17029 + 0.675669i 0.953749 0.300604i \(-0.0971882\pi\)
0.216544 + 0.976273i \(0.430522\pi\)
\(822\) 0 0
\(823\) −1.54623 2.67815i −0.0538982 0.0933543i 0.837818 0.545950i \(-0.183831\pi\)
−0.891716 + 0.452596i \(0.850498\pi\)
\(824\) 0 0
\(825\) 14.1446 8.16637i 0.492450 0.284316i
\(826\) 0 0
\(827\) 4.80194i 0.166980i 0.996509 + 0.0834899i \(0.0266066\pi\)
−0.996509 + 0.0834899i \(0.973393\pi\)
\(828\) 0 0
\(829\) −10.4906 + 18.1703i −0.364354 + 0.631079i −0.988672 0.150091i \(-0.952043\pi\)
0.624318 + 0.781170i \(0.285377\pi\)
\(830\) 0 0
\(831\) −11.8890 −0.412425
\(832\) 0 0
\(833\) −6.59956 −0.228661
\(834\) 0 0
\(835\) −15.7104 + 27.2113i −0.543682 + 0.941685i
\(836\) 0 0
\(837\) 5.78986i 0.200127i
\(838\) 0 0
\(839\) −28.9480 + 16.7131i −0.999395 + 0.577001i −0.908069 0.418820i \(-0.862444\pi\)
−0.0913261 + 0.995821i \(0.529111\pi\)
\(840\) 0 0
\(841\) 13.4948 + 23.3737i 0.465337 + 0.805988i
\(842\) 0 0
\(843\) −6.70592 3.87167i −0.230964 0.133347i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −15.1058 8.72132i −0.519041 0.299668i
\(848\) 0 0
\(849\) −6.11745 10.5957i −0.209950 0.363645i
\(850\) 0 0
\(851\) 0.186646 0.107760i 0.00639816 0.00369398i
\(852\) 0 0
\(853\) 51.1527i 1.75144i 0.482823 + 0.875718i \(0.339611\pi\)
−0.482823 + 0.875718i \(0.660389\pi\)
\(854\) 0 0
\(855\) −9.35570 + 16.2045i −0.319958 + 0.554184i
\(856\) 0 0
\(857\) −12.7004 −0.433837 −0.216918 0.976190i \(-0.569601\pi\)
−0.216918 + 0.976190i \(0.569601\pi\)
\(858\) 0 0
\(859\) −34.0455 −1.16162 −0.580808 0.814041i \(-0.697263\pi\)
−0.580808 + 0.814041i \(0.697263\pi\)
\(860\) 0 0
\(861\) −23.1896 + 40.1656i −0.790300 + 1.36884i
\(862\) 0 0
\(863\) 23.8775i 0.812801i −0.913695 0.406400i \(-0.866784\pi\)
0.913695 0.406400i \(-0.133216\pi\)
\(864\) 0 0
\(865\) −58.8902 + 34.0003i −2.00233 + 1.15604i
\(866\) 0 0
\(867\) 8.43631 + 14.6121i 0.286512 + 0.496254i
\(868\) 0 0
\(869\) −2.76960 1.59903i −0.0939524 0.0542434i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −0.590918 0.341166i −0.0199995 0.0115467i
\(874\) 0 0
\(875\) 5.41939 + 9.38665i 0.183209 + 0.317327i
\(876\) 0 0
\(877\) 13.4275 7.75236i 0.453414 0.261778i −0.255857 0.966715i \(-0.582358\pi\)
0.709271 + 0.704936i \(0.249024\pi\)
\(878\) 0 0
\(879\) 18.5985i 0.627312i
\(880\) 0 0
\(881\) 20.9659 36.3140i 0.706359 1.22345i −0.259839 0.965652i \(-0.583670\pi\)
0.966199 0.257799i \(-0.0829971\pi\)
\(882\) 0 0
\(883\) −58.8219 −1.97951 −0.989757 0.142760i \(-0.954402\pi\)
−0.989757 + 0.142760i \(0.954402\pi\)
\(884\) 0 0
\(885\) 41.2379 1.38620
\(886\) 0 0
\(887\) −5.14622 + 8.91351i −0.172793 + 0.299287i −0.939395 0.342836i \(-0.888613\pi\)
0.766602 + 0.642122i \(0.221946\pi\)
\(888\) 0 0
\(889\) 59.6359i 2.00012i
\(890\) 0 0
\(891\) −3.29257 + 1.90097i −0.110305 + 0.0636849i
\(892\) 0 0
\(893\) −29.3494 50.8347i −0.982141 1.70112i
\(894\) 0 0
\(895\) 45.8838 + 26.4910i 1.53373 + 0.885498i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.10955 + 4.10470i 0.237117 + 0.136900i
\(900\) 0 0
\(901\) 0.845051 + 1.46367i 0.0281527 + 0.0487620i
\(902\) 0 0
\(903\) −5.33371 + 3.07942i −0.177495 + 0.102477i
\(904\) 0 0
\(905\) 74.5900i 2.47946i
\(906\) 0 0
\(907\) −11.3503 + 19.6593i −0.376881 + 0.652778i −0.990607 0.136742i \(-0.956337\pi\)
0.613725 + 0.789520i \(0.289670\pi\)
\(908\) 0 0
\(909\) −6.75063 −0.223904
\(910\) 0 0
\(911\) −37.3019 −1.23587 −0.617933 0.786231i \(-0.712030\pi\)
−0.617933 + 0.786231i \(0.712030\pi\)
\(912\) 0 0
\(913\) −0.366289 + 0.634431i −0.0121224 + 0.0209966i
\(914\) 0 0
\(915\) 1.75840i 0.0581308i
\(916\) 0 0
\(917\) −54.9095 + 31.7020i −1.81327 + 1.04689i
\(918\) 0 0
\(919\) 4.74214 + 8.21362i 0.156429 + 0.270942i 0.933578 0.358373i \(-0.116669\pi\)
−0.777150 + 0.629316i \(0.783335\pi\)
\(920\) 0 0
\(921\) 2.87526 + 1.66003i 0.0947429 + 0.0546999i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.100997 + 0.0583105i 0.00332075 + 0.00191724i
\(926\) 0 0
\(927\) 3.89008 + 6.73782i 0.127767 + 0.221299i
\(928\) 0 0
\(929\) 4.60938 2.66123i 0.151229 0.0873120i −0.422476 0.906374i \(-0.638839\pi\)
0.573705 + 0.819062i \(0.305506\pi\)
\(930\) 0 0
\(931\) 113.484i 3.71929i
\(932\) 0 0
\(933\) 10.1441 17.5700i 0.332102 0.575217i
\(934\) 0 0
\(935\) −4.13706 −0.135296
\(936\) 0 0
\(937\) −20.2097 −0.660221 −0.330111 0.943942i \(-0.607086\pi\)
−0.330111 + 0.943942i \(0.607086\pi\)
\(938\) 0 0
\(939\) 7.19351 12.4595i 0.234751 0.406601i
\(940\) 0 0
\(941\) 43.1135i 1.40546i −0.711457 0.702730i \(-0.751964\pi\)
0.711457 0.702730i \(-0.248036\pi\)
\(942\) 0 0
\(943\) 63.1571 36.4638i 2.05668 1.18742i
\(944\) 0 0
\(945\) 7.69687 + 13.3314i 0.250379 + 0.433669i
\(946\) 0 0
\(947\) 48.4651 + 27.9813i 1.57490 + 0.909272i 0.995554 + 0.0941931i \(0.0300271\pi\)
0.579351 + 0.815078i \(0.303306\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 10.7777 + 6.22252i 0.349492 + 0.201779i
\(952\) 0 0
\(953\) −7.59150 13.1489i −0.245913 0.425933i 0.716475 0.697613i \(-0.245754\pi\)
−0.962388 + 0.271679i \(0.912421\pi\)
\(954\) 0 0
\(955\) −56.5286 + 32.6368i −1.82922 + 1.05610i
\(956\) 0 0
\(957\) 5.39075i 0.174258i
\(958\) 0 0
\(959\) 16.8083 29.1128i 0.542767 0.940101i
\(960\) 0 0
\(961\) −2.52243 −0.0813688
\(962\) 0 0
\(963\) 8.51573 0.274416
\(964\) 0 0
\(965\) 21.9943 38.0952i 0.708020 1.22633i
\(966\) 0 0
\(967\) 15.4064i 0.495437i −0.968832 0.247718i \(-0.920319\pi\)
0.968832 0.247718i \(-0.0796807\pi\)
\(968\) 0 0
\(969\) 1.89685 1.09515i 0.0609356 0.0351812i
\(970\) 0 0
\(971\) −3.00066 5.19730i −0.0962959 0.166789i 0.813853 0.581071i \(-0.197366\pi\)
−0.910149 + 0.414282i \(0.864033\pi\)
\(972\) 0 0
\(973\) −26.9953 15.5858i −0.865430 0.499656i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17.6610 10.1966i −0.565025 0.326217i 0.190135 0.981758i \(-0.439107\pi\)
−0.755160 + 0.655541i \(0.772441\pi\)
\(978\) 0 0
\(979\) −17.5139 30.3349i −0.559746 0.969508i
\(980\) 0 0
\(981\) 0.942362 0.544073i 0.0300873 0.0173709i
\(982\) 0 0
\(983\) 29.9764i 0.956100i 0.878333 + 0.478050i \(0.158656\pi\)
−0.878333 + 0.478050i \(0.841344\pi\)
\(984\) 0 0
\(985\) −3.11984 + 5.40372i −0.0994064 + 0.172177i
\(986\) 0 0
\(987\) −48.2911 −1.53712
\(988\) 0 0
\(989\) 9.68425 0.307941
\(990\) 0 0
\(991\) −18.2361 + 31.5858i −0.579289 + 1.00336i 0.416272 + 0.909240i \(0.363336\pi\)
−0.995561 + 0.0941174i \(0.969997\pi\)
\(992\) 0 0
\(993\) 3.31873i 0.105317i
\(994\) 0 0
\(995\) −14.6675 + 8.46830i −0.464992 + 0.268463i
\(996\) 0 0
\(997\) 10.9799 + 19.0177i 0.347735 + 0.602295i 0.985847 0.167649i \(-0.0536174\pi\)
−0.638111 + 0.769944i \(0.720284\pi\)
\(998\) 0 0
\(999\) −0.0235101 0.0135735i −0.000743825 0.000429448i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.q.i.1837.1 12
13.2 odd 12 2028.2.i.j.2005.1 6
13.3 even 3 inner 2028.2.q.i.361.1 12
13.4 even 6 2028.2.b.g.337.6 6
13.5 odd 4 2028.2.i.j.529.1 6
13.6 odd 12 2028.2.a.l.1.1 yes 3
13.7 odd 12 2028.2.a.k.1.3 3
13.8 odd 4 2028.2.i.k.529.3 6
13.9 even 3 2028.2.b.g.337.1 6
13.10 even 6 inner 2028.2.q.i.361.6 12
13.11 odd 12 2028.2.i.k.2005.3 6
13.12 even 2 inner 2028.2.q.i.1837.6 12
39.17 odd 6 6084.2.b.q.4393.1 6
39.20 even 12 6084.2.a.z.1.1 3
39.32 even 12 6084.2.a.ba.1.3 3
39.35 odd 6 6084.2.b.q.4393.6 6
52.7 even 12 8112.2.a.cd.1.3 3
52.19 even 12 8112.2.a.ca.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2028.2.a.k.1.3 3 13.7 odd 12
2028.2.a.l.1.1 yes 3 13.6 odd 12
2028.2.b.g.337.1 6 13.9 even 3
2028.2.b.g.337.6 6 13.4 even 6
2028.2.i.j.529.1 6 13.5 odd 4
2028.2.i.j.2005.1 6 13.2 odd 12
2028.2.i.k.529.3 6 13.8 odd 4
2028.2.i.k.2005.3 6 13.11 odd 12
2028.2.q.i.361.1 12 13.3 even 3 inner
2028.2.q.i.361.6 12 13.10 even 6 inner
2028.2.q.i.1837.1 12 1.1 even 1 trivial
2028.2.q.i.1837.6 12 13.12 even 2 inner
6084.2.a.z.1.1 3 39.20 even 12
6084.2.a.ba.1.3 3 39.32 even 12
6084.2.b.q.4393.1 6 39.17 odd 6
6084.2.b.q.4393.6 6 39.35 odd 6
8112.2.a.ca.1.1 3 52.19 even 12
8112.2.a.cd.1.3 3 52.7 even 12