Properties

Label 2031.2.a.e.1.5
Level $2031$
Weight $2$
Character 2031.1
Self dual yes
Analytic conductor $16.218$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,2,Mod(1,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2031.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2176166505\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: 7.7.32354821.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 5x^{5} + 9x^{4} + 6x^{3} - 8x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.08782\) of defining polynomial
Character \(\chi\) \(=\) 2031.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.455154 q^{2} -1.00000 q^{3} -1.79283 q^{4} -3.54297 q^{5} -0.455154 q^{6} +0.0807299 q^{7} -1.72633 q^{8} +1.00000 q^{9} -1.61260 q^{10} +4.14014 q^{11} +1.79283 q^{12} +4.01429 q^{13} +0.0367446 q^{14} +3.54297 q^{15} +2.79992 q^{16} -1.28738 q^{17} +0.455154 q^{18} -4.80382 q^{19} +6.35197 q^{20} -0.0807299 q^{21} +1.88440 q^{22} +4.07574 q^{23} +1.72633 q^{24} +7.55267 q^{25} +1.82712 q^{26} -1.00000 q^{27} -0.144735 q^{28} -1.26877 q^{29} +1.61260 q^{30} -1.33574 q^{31} +4.72705 q^{32} -4.14014 q^{33} -0.585956 q^{34} -0.286024 q^{35} -1.79283 q^{36} -2.69851 q^{37} -2.18648 q^{38} -4.01429 q^{39} +6.11633 q^{40} +4.57894 q^{41} -0.0367446 q^{42} -7.83553 q^{43} -7.42259 q^{44} -3.54297 q^{45} +1.85509 q^{46} +8.49584 q^{47} -2.79992 q^{48} -6.99348 q^{49} +3.43763 q^{50} +1.28738 q^{51} -7.19695 q^{52} -4.94876 q^{53} -0.455154 q^{54} -14.6684 q^{55} -0.139366 q^{56} +4.80382 q^{57} -0.577488 q^{58} +1.26205 q^{59} -6.35197 q^{60} +10.8384 q^{61} -0.607970 q^{62} +0.0807299 q^{63} -3.44831 q^{64} -14.2225 q^{65} -1.88440 q^{66} +6.74176 q^{67} +2.30806 q^{68} -4.07574 q^{69} -0.130185 q^{70} -10.7197 q^{71} -1.72633 q^{72} -14.2072 q^{73} -1.22824 q^{74} -7.55267 q^{75} +8.61245 q^{76} +0.334233 q^{77} -1.82712 q^{78} -9.57082 q^{79} -9.92006 q^{80} +1.00000 q^{81} +2.08413 q^{82} +3.90566 q^{83} +0.144735 q^{84} +4.56115 q^{85} -3.56638 q^{86} +1.26877 q^{87} -7.14723 q^{88} +0.470731 q^{89} -1.61260 q^{90} +0.324073 q^{91} -7.30713 q^{92} +1.33574 q^{93} +3.86692 q^{94} +17.0198 q^{95} -4.72705 q^{96} -11.7474 q^{97} -3.18311 q^{98} +4.14014 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - 7 q^{3} + 2 q^{4} - 10 q^{5} + 2 q^{6} + 8 q^{7} - 3 q^{8} + 7 q^{9} - 8 q^{10} + 10 q^{11} - 2 q^{12} - 3 q^{13} - 3 q^{14} + 10 q^{15} - 12 q^{16} + 8 q^{17} - 2 q^{18} - 5 q^{19} + 4 q^{20}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.455154 0.321843 0.160921 0.986967i \(-0.448553\pi\)
0.160921 + 0.986967i \(0.448553\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.79283 −0.896417
\(5\) −3.54297 −1.58447 −0.792233 0.610219i \(-0.791082\pi\)
−0.792233 + 0.610219i \(0.791082\pi\)
\(6\) −0.455154 −0.185816
\(7\) 0.0807299 0.0305130 0.0152565 0.999884i \(-0.495144\pi\)
0.0152565 + 0.999884i \(0.495144\pi\)
\(8\) −1.72633 −0.610348
\(9\) 1.00000 0.333333
\(10\) −1.61260 −0.509949
\(11\) 4.14014 1.24830 0.624150 0.781305i \(-0.285446\pi\)
0.624150 + 0.781305i \(0.285446\pi\)
\(12\) 1.79283 0.517547
\(13\) 4.01429 1.11336 0.556681 0.830726i \(-0.312074\pi\)
0.556681 + 0.830726i \(0.312074\pi\)
\(14\) 0.0367446 0.00982040
\(15\) 3.54297 0.914792
\(16\) 2.79992 0.699981
\(17\) −1.28738 −0.312235 −0.156118 0.987738i \(-0.549898\pi\)
−0.156118 + 0.987738i \(0.549898\pi\)
\(18\) 0.455154 0.107281
\(19\) −4.80382 −1.10207 −0.551035 0.834482i \(-0.685767\pi\)
−0.551035 + 0.834482i \(0.685767\pi\)
\(20\) 6.35197 1.42034
\(21\) −0.0807299 −0.0176167
\(22\) 1.88440 0.401756
\(23\) 4.07574 0.849851 0.424925 0.905228i \(-0.360300\pi\)
0.424925 + 0.905228i \(0.360300\pi\)
\(24\) 1.72633 0.352385
\(25\) 7.55267 1.51053
\(26\) 1.82712 0.358328
\(27\) −1.00000 −0.192450
\(28\) −0.144735 −0.0273524
\(29\) −1.26877 −0.235605 −0.117803 0.993037i \(-0.537585\pi\)
−0.117803 + 0.993037i \(0.537585\pi\)
\(30\) 1.61260 0.294419
\(31\) −1.33574 −0.239907 −0.119953 0.992780i \(-0.538274\pi\)
−0.119953 + 0.992780i \(0.538274\pi\)
\(32\) 4.72705 0.835632
\(33\) −4.14014 −0.720706
\(34\) −0.585956 −0.100491
\(35\) −0.286024 −0.0483469
\(36\) −1.79283 −0.298806
\(37\) −2.69851 −0.443632 −0.221816 0.975089i \(-0.571198\pi\)
−0.221816 + 0.975089i \(0.571198\pi\)
\(38\) −2.18648 −0.354694
\(39\) −4.01429 −0.642800
\(40\) 6.11633 0.967076
\(41\) 4.57894 0.715111 0.357555 0.933892i \(-0.383610\pi\)
0.357555 + 0.933892i \(0.383610\pi\)
\(42\) −0.0367446 −0.00566981
\(43\) −7.83553 −1.19491 −0.597454 0.801904i \(-0.703821\pi\)
−0.597454 + 0.801904i \(0.703821\pi\)
\(44\) −7.42259 −1.11900
\(45\) −3.54297 −0.528155
\(46\) 1.85509 0.273518
\(47\) 8.49584 1.23925 0.619623 0.784900i \(-0.287286\pi\)
0.619623 + 0.784900i \(0.287286\pi\)
\(48\) −2.79992 −0.404134
\(49\) −6.99348 −0.999069
\(50\) 3.43763 0.486154
\(51\) 1.28738 0.180269
\(52\) −7.19695 −0.998037
\(53\) −4.94876 −0.679765 −0.339882 0.940468i \(-0.610387\pi\)
−0.339882 + 0.940468i \(0.610387\pi\)
\(54\) −0.455154 −0.0619387
\(55\) −14.6684 −1.97789
\(56\) −0.139366 −0.0186236
\(57\) 4.80382 0.636281
\(58\) −0.577488 −0.0758279
\(59\) 1.26205 0.164306 0.0821528 0.996620i \(-0.473820\pi\)
0.0821528 + 0.996620i \(0.473820\pi\)
\(60\) −6.35197 −0.820035
\(61\) 10.8384 1.38771 0.693857 0.720113i \(-0.255910\pi\)
0.693857 + 0.720113i \(0.255910\pi\)
\(62\) −0.607970 −0.0772122
\(63\) 0.0807299 0.0101710
\(64\) −3.44831 −0.431039
\(65\) −14.2225 −1.76409
\(66\) −1.88440 −0.231954
\(67\) 6.74176 0.823637 0.411819 0.911266i \(-0.364894\pi\)
0.411819 + 0.911266i \(0.364894\pi\)
\(68\) 2.30806 0.279893
\(69\) −4.07574 −0.490662
\(70\) −0.130185 −0.0155601
\(71\) −10.7197 −1.27220 −0.636098 0.771608i \(-0.719453\pi\)
−0.636098 + 0.771608i \(0.719453\pi\)
\(72\) −1.72633 −0.203449
\(73\) −14.2072 −1.66282 −0.831411 0.555657i \(-0.812467\pi\)
−0.831411 + 0.555657i \(0.812467\pi\)
\(74\) −1.22824 −0.142780
\(75\) −7.55267 −0.872107
\(76\) 8.61245 0.987915
\(77\) 0.334233 0.0380894
\(78\) −1.82712 −0.206881
\(79\) −9.57082 −1.07680 −0.538400 0.842689i \(-0.680971\pi\)
−0.538400 + 0.842689i \(0.680971\pi\)
\(80\) −9.92006 −1.10910
\(81\) 1.00000 0.111111
\(82\) 2.08413 0.230153
\(83\) 3.90566 0.428702 0.214351 0.976757i \(-0.431236\pi\)
0.214351 + 0.976757i \(0.431236\pi\)
\(84\) 0.144735 0.0157919
\(85\) 4.56115 0.494726
\(86\) −3.56638 −0.384572
\(87\) 1.26877 0.136027
\(88\) −7.14723 −0.761897
\(89\) 0.470731 0.0498974 0.0249487 0.999689i \(-0.492058\pi\)
0.0249487 + 0.999689i \(0.492058\pi\)
\(90\) −1.61260 −0.169983
\(91\) 0.324073 0.0339721
\(92\) −7.30713 −0.761821
\(93\) 1.33574 0.138510
\(94\) 3.86692 0.398842
\(95\) 17.0198 1.74619
\(96\) −4.72705 −0.482452
\(97\) −11.7474 −1.19277 −0.596384 0.802699i \(-0.703396\pi\)
−0.596384 + 0.802699i \(0.703396\pi\)
\(98\) −3.18311 −0.321543
\(99\) 4.14014 0.416100
\(100\) −13.5407 −1.35407
\(101\) −5.07845 −0.505325 −0.252662 0.967555i \(-0.581306\pi\)
−0.252662 + 0.967555i \(0.581306\pi\)
\(102\) 0.585956 0.0580183
\(103\) −15.8224 −1.55902 −0.779512 0.626387i \(-0.784533\pi\)
−0.779512 + 0.626387i \(0.784533\pi\)
\(104\) −6.92996 −0.679539
\(105\) 0.286024 0.0279131
\(106\) −2.25245 −0.218777
\(107\) −5.55150 −0.536684 −0.268342 0.963324i \(-0.586476\pi\)
−0.268342 + 0.963324i \(0.586476\pi\)
\(108\) 1.79283 0.172516
\(109\) −2.06538 −0.197828 −0.0989140 0.995096i \(-0.531537\pi\)
−0.0989140 + 0.995096i \(0.531537\pi\)
\(110\) −6.67639 −0.636569
\(111\) 2.69851 0.256131
\(112\) 0.226038 0.0213585
\(113\) −2.85424 −0.268504 −0.134252 0.990947i \(-0.542863\pi\)
−0.134252 + 0.990947i \(0.542863\pi\)
\(114\) 2.18648 0.204782
\(115\) −14.4402 −1.34656
\(116\) 2.27470 0.211201
\(117\) 4.01429 0.371121
\(118\) 0.574430 0.0528806
\(119\) −0.103930 −0.00952725
\(120\) −6.11633 −0.558342
\(121\) 6.14076 0.558251
\(122\) 4.93314 0.446626
\(123\) −4.57894 −0.412869
\(124\) 2.39477 0.215056
\(125\) −9.04403 −0.808922
\(126\) 0.0367446 0.00327347
\(127\) −5.59703 −0.496656 −0.248328 0.968676i \(-0.579881\pi\)
−0.248328 + 0.968676i \(0.579881\pi\)
\(128\) −11.0236 −0.974359
\(129\) 7.83553 0.689880
\(130\) −6.47344 −0.567758
\(131\) −1.92957 −0.168587 −0.0842936 0.996441i \(-0.526863\pi\)
−0.0842936 + 0.996441i \(0.526863\pi\)
\(132\) 7.42259 0.646053
\(133\) −0.387812 −0.0336275
\(134\) 3.06854 0.265082
\(135\) 3.54297 0.304931
\(136\) 2.22244 0.190572
\(137\) 17.7316 1.51492 0.757458 0.652884i \(-0.226441\pi\)
0.757458 + 0.652884i \(0.226441\pi\)
\(138\) −1.85509 −0.157916
\(139\) 3.42664 0.290644 0.145322 0.989384i \(-0.453578\pi\)
0.145322 + 0.989384i \(0.453578\pi\)
\(140\) 0.512794 0.0433390
\(141\) −8.49584 −0.715479
\(142\) −4.87913 −0.409447
\(143\) 16.6197 1.38981
\(144\) 2.79992 0.233327
\(145\) 4.49523 0.373309
\(146\) −6.46645 −0.535168
\(147\) 6.99348 0.576813
\(148\) 4.83797 0.397679
\(149\) −2.13254 −0.174704 −0.0873522 0.996177i \(-0.527841\pi\)
−0.0873522 + 0.996177i \(0.527841\pi\)
\(150\) −3.43763 −0.280681
\(151\) −12.1038 −0.984994 −0.492497 0.870314i \(-0.663916\pi\)
−0.492497 + 0.870314i \(0.663916\pi\)
\(152\) 8.29295 0.672647
\(153\) −1.28738 −0.104078
\(154\) 0.152128 0.0122588
\(155\) 4.73250 0.380124
\(156\) 7.19695 0.576217
\(157\) −1.04573 −0.0834582 −0.0417291 0.999129i \(-0.513287\pi\)
−0.0417291 + 0.999129i \(0.513287\pi\)
\(158\) −4.35620 −0.346561
\(159\) 4.94876 0.392462
\(160\) −16.7478 −1.32403
\(161\) 0.329034 0.0259315
\(162\) 0.455154 0.0357603
\(163\) 17.8918 1.40139 0.700695 0.713461i \(-0.252873\pi\)
0.700695 + 0.713461i \(0.252873\pi\)
\(164\) −8.20928 −0.641037
\(165\) 14.6684 1.14193
\(166\) 1.77768 0.137975
\(167\) −21.9232 −1.69647 −0.848234 0.529622i \(-0.822334\pi\)
−0.848234 + 0.529622i \(0.822334\pi\)
\(168\) 0.139366 0.0107523
\(169\) 3.11449 0.239576
\(170\) 2.07603 0.159224
\(171\) −4.80382 −0.367357
\(172\) 14.0478 1.07114
\(173\) −8.75170 −0.665380 −0.332690 0.943036i \(-0.607956\pi\)
−0.332690 + 0.943036i \(0.607956\pi\)
\(174\) 0.577488 0.0437793
\(175\) 0.609726 0.0460910
\(176\) 11.5921 0.873786
\(177\) −1.26205 −0.0948619
\(178\) 0.214255 0.0160591
\(179\) 17.7846 1.32928 0.664641 0.747163i \(-0.268585\pi\)
0.664641 + 0.747163i \(0.268585\pi\)
\(180\) 6.35197 0.473448
\(181\) 22.0033 1.63549 0.817747 0.575578i \(-0.195223\pi\)
0.817747 + 0.575578i \(0.195223\pi\)
\(182\) 0.147503 0.0109337
\(183\) −10.8384 −0.801197
\(184\) −7.03606 −0.518705
\(185\) 9.56074 0.702919
\(186\) 0.607970 0.0445785
\(187\) −5.32993 −0.389763
\(188\) −15.2316 −1.11088
\(189\) −0.0807299 −0.00587224
\(190\) 7.74664 0.562000
\(191\) 12.3455 0.893292 0.446646 0.894711i \(-0.352618\pi\)
0.446646 + 0.894711i \(0.352618\pi\)
\(192\) 3.44831 0.248860
\(193\) 16.5406 1.19062 0.595309 0.803497i \(-0.297030\pi\)
0.595309 + 0.803497i \(0.297030\pi\)
\(194\) −5.34688 −0.383884
\(195\) 14.2225 1.01850
\(196\) 12.5382 0.895583
\(197\) 6.13831 0.437337 0.218668 0.975799i \(-0.429829\pi\)
0.218668 + 0.975799i \(0.429829\pi\)
\(198\) 1.88440 0.133919
\(199\) 6.18107 0.438165 0.219082 0.975706i \(-0.429694\pi\)
0.219082 + 0.975706i \(0.429694\pi\)
\(200\) −13.0384 −0.921951
\(201\) −6.74176 −0.475527
\(202\) −2.31148 −0.162635
\(203\) −0.102428 −0.00718904
\(204\) −2.30806 −0.161596
\(205\) −16.2231 −1.13307
\(206\) −7.20162 −0.501761
\(207\) 4.07574 0.283284
\(208\) 11.2397 0.779333
\(209\) −19.8885 −1.37571
\(210\) 0.130185 0.00898363
\(211\) −15.6291 −1.07595 −0.537974 0.842961i \(-0.680810\pi\)
−0.537974 + 0.842961i \(0.680810\pi\)
\(212\) 8.87231 0.609353
\(213\) 10.7197 0.734503
\(214\) −2.52679 −0.172728
\(215\) 27.7611 1.89329
\(216\) 1.72633 0.117462
\(217\) −0.107834 −0.00732028
\(218\) −0.940069 −0.0636695
\(219\) 14.2072 0.960031
\(220\) 26.2980 1.77301
\(221\) −5.16791 −0.347631
\(222\) 1.22824 0.0824339
\(223\) −12.1765 −0.815401 −0.407701 0.913116i \(-0.633669\pi\)
−0.407701 + 0.913116i \(0.633669\pi\)
\(224\) 0.381614 0.0254977
\(225\) 7.55267 0.503511
\(226\) −1.29912 −0.0864162
\(227\) −12.8779 −0.854737 −0.427369 0.904078i \(-0.640559\pi\)
−0.427369 + 0.904078i \(0.640559\pi\)
\(228\) −8.61245 −0.570373
\(229\) −4.00438 −0.264617 −0.132308 0.991209i \(-0.542239\pi\)
−0.132308 + 0.991209i \(0.542239\pi\)
\(230\) −6.57254 −0.433381
\(231\) −0.334233 −0.0219909
\(232\) 2.19032 0.143801
\(233\) 5.37617 0.352204 0.176102 0.984372i \(-0.443651\pi\)
0.176102 + 0.984372i \(0.443651\pi\)
\(234\) 1.82712 0.119443
\(235\) −30.1005 −1.96354
\(236\) −2.26266 −0.147286
\(237\) 9.57082 0.621691
\(238\) −0.0473042 −0.00306628
\(239\) −0.517643 −0.0334835 −0.0167418 0.999860i \(-0.505329\pi\)
−0.0167418 + 0.999860i \(0.505329\pi\)
\(240\) 9.92006 0.640337
\(241\) −28.9814 −1.86686 −0.933428 0.358764i \(-0.883198\pi\)
−0.933428 + 0.358764i \(0.883198\pi\)
\(242\) 2.79500 0.179669
\(243\) −1.00000 −0.0641500
\(244\) −19.4314 −1.24397
\(245\) 24.7777 1.58299
\(246\) −2.08413 −0.132879
\(247\) −19.2839 −1.22700
\(248\) 2.30593 0.146427
\(249\) −3.90566 −0.247511
\(250\) −4.11643 −0.260346
\(251\) −25.3020 −1.59705 −0.798524 0.601963i \(-0.794385\pi\)
−0.798524 + 0.601963i \(0.794385\pi\)
\(252\) −0.144735 −0.00911747
\(253\) 16.8741 1.06087
\(254\) −2.54751 −0.159845
\(255\) −4.56115 −0.285630
\(256\) 1.87918 0.117448
\(257\) −14.3829 −0.897179 −0.448589 0.893738i \(-0.648073\pi\)
−0.448589 + 0.893738i \(0.648073\pi\)
\(258\) 3.56638 0.222033
\(259\) −0.217850 −0.0135366
\(260\) 25.4986 1.58136
\(261\) −1.26877 −0.0785351
\(262\) −0.878252 −0.0542586
\(263\) 11.9178 0.734883 0.367442 0.930047i \(-0.380234\pi\)
0.367442 + 0.930047i \(0.380234\pi\)
\(264\) 7.14723 0.439882
\(265\) 17.5333 1.07706
\(266\) −0.176514 −0.0108228
\(267\) −0.470731 −0.0288083
\(268\) −12.0869 −0.738323
\(269\) −8.57041 −0.522547 −0.261274 0.965265i \(-0.584142\pi\)
−0.261274 + 0.965265i \(0.584142\pi\)
\(270\) 1.61260 0.0981397
\(271\) −23.5256 −1.42908 −0.714540 0.699595i \(-0.753364\pi\)
−0.714540 + 0.699595i \(0.753364\pi\)
\(272\) −3.60456 −0.218559
\(273\) −0.324073 −0.0196138
\(274\) 8.07064 0.487565
\(275\) 31.2691 1.88560
\(276\) 7.30713 0.439837
\(277\) 25.0321 1.50403 0.752016 0.659145i \(-0.229082\pi\)
0.752016 + 0.659145i \(0.229082\pi\)
\(278\) 1.55965 0.0935416
\(279\) −1.33574 −0.0799689
\(280\) 0.493771 0.0295084
\(281\) 27.0697 1.61484 0.807421 0.589976i \(-0.200863\pi\)
0.807421 + 0.589976i \(0.200863\pi\)
\(282\) −3.86692 −0.230272
\(283\) 7.42654 0.441462 0.220731 0.975335i \(-0.429156\pi\)
0.220731 + 0.975335i \(0.429156\pi\)
\(284\) 19.2187 1.14042
\(285\) −17.0198 −1.00817
\(286\) 7.56453 0.447300
\(287\) 0.369658 0.0218202
\(288\) 4.72705 0.278544
\(289\) −15.3427 −0.902509
\(290\) 2.04603 0.120147
\(291\) 11.7474 0.688645
\(292\) 25.4711 1.49058
\(293\) −20.7262 −1.21084 −0.605418 0.795908i \(-0.706994\pi\)
−0.605418 + 0.795908i \(0.706994\pi\)
\(294\) 3.18311 0.185643
\(295\) −4.47143 −0.260337
\(296\) 4.65850 0.270770
\(297\) −4.14014 −0.240235
\(298\) −0.970634 −0.0562273
\(299\) 16.3612 0.946192
\(300\) 13.5407 0.781771
\(301\) −0.632562 −0.0364602
\(302\) −5.50910 −0.317013
\(303\) 5.07845 0.291749
\(304\) −13.4503 −0.771429
\(305\) −38.4001 −2.19878
\(306\) −0.585956 −0.0334969
\(307\) 2.95040 0.168388 0.0841942 0.996449i \(-0.473168\pi\)
0.0841942 + 0.996449i \(0.473168\pi\)
\(308\) −0.599225 −0.0341440
\(309\) 15.8224 0.900103
\(310\) 2.15402 0.122340
\(311\) 9.73374 0.551950 0.275975 0.961165i \(-0.410999\pi\)
0.275975 + 0.961165i \(0.410999\pi\)
\(312\) 6.92996 0.392332
\(313\) −7.87200 −0.444952 −0.222476 0.974938i \(-0.571414\pi\)
−0.222476 + 0.974938i \(0.571414\pi\)
\(314\) −0.475968 −0.0268604
\(315\) −0.286024 −0.0161156
\(316\) 17.1589 0.965263
\(317\) −4.28906 −0.240898 −0.120449 0.992720i \(-0.538433\pi\)
−0.120449 + 0.992720i \(0.538433\pi\)
\(318\) 2.25245 0.126311
\(319\) −5.25290 −0.294106
\(320\) 12.2173 0.682966
\(321\) 5.55150 0.309855
\(322\) 0.149761 0.00834588
\(323\) 6.18433 0.344106
\(324\) −1.79283 −0.0996019
\(325\) 30.3186 1.68177
\(326\) 8.14351 0.451028
\(327\) 2.06538 0.114216
\(328\) −7.90474 −0.436466
\(329\) 0.685869 0.0378132
\(330\) 6.67639 0.367523
\(331\) 5.23840 0.287928 0.143964 0.989583i \(-0.454015\pi\)
0.143964 + 0.989583i \(0.454015\pi\)
\(332\) −7.00221 −0.384296
\(333\) −2.69851 −0.147877
\(334\) −9.97844 −0.545996
\(335\) −23.8859 −1.30503
\(336\) −0.226038 −0.0123314
\(337\) 11.6542 0.634842 0.317421 0.948285i \(-0.397183\pi\)
0.317421 + 0.948285i \(0.397183\pi\)
\(338\) 1.41757 0.0771059
\(339\) 2.85424 0.155021
\(340\) −8.17739 −0.443481
\(341\) −5.53017 −0.299475
\(342\) −2.18648 −0.118231
\(343\) −1.12969 −0.0609977
\(344\) 13.5267 0.729309
\(345\) 14.4402 0.777437
\(346\) −3.98338 −0.214148
\(347\) −4.51287 −0.242264 −0.121132 0.992636i \(-0.538652\pi\)
−0.121132 + 0.992636i \(0.538652\pi\)
\(348\) −2.27470 −0.121937
\(349\) −18.7079 −1.00141 −0.500706 0.865617i \(-0.666926\pi\)
−0.500706 + 0.865617i \(0.666926\pi\)
\(350\) 0.277520 0.0148340
\(351\) −4.01429 −0.214267
\(352\) 19.5706 1.04312
\(353\) 0.0490583 0.00261111 0.00130555 0.999999i \(-0.499584\pi\)
0.00130555 + 0.999999i \(0.499584\pi\)
\(354\) −0.574430 −0.0305306
\(355\) 37.9797 2.01575
\(356\) −0.843942 −0.0447289
\(357\) 0.103930 0.00550056
\(358\) 8.09473 0.427820
\(359\) −6.18415 −0.326387 −0.163193 0.986594i \(-0.552179\pi\)
−0.163193 + 0.986594i \(0.552179\pi\)
\(360\) 6.11633 0.322359
\(361\) 4.07665 0.214560
\(362\) 10.0149 0.526372
\(363\) −6.14076 −0.322307
\(364\) −0.581009 −0.0304532
\(365\) 50.3356 2.63469
\(366\) −4.93314 −0.257859
\(367\) −7.29147 −0.380612 −0.190306 0.981725i \(-0.560948\pi\)
−0.190306 + 0.981725i \(0.560948\pi\)
\(368\) 11.4118 0.594879
\(369\) 4.57894 0.238370
\(370\) 4.35161 0.226230
\(371\) −0.399513 −0.0207417
\(372\) −2.39477 −0.124163
\(373\) −35.5605 −1.84125 −0.920626 0.390446i \(-0.872321\pi\)
−0.920626 + 0.390446i \(0.872321\pi\)
\(374\) −2.42594 −0.125442
\(375\) 9.04403 0.467032
\(376\) −14.6666 −0.756371
\(377\) −5.09322 −0.262314
\(378\) −0.0367446 −0.00188994
\(379\) −11.8236 −0.607339 −0.303670 0.952777i \(-0.598212\pi\)
−0.303670 + 0.952777i \(0.598212\pi\)
\(380\) −30.5137 −1.56532
\(381\) 5.59703 0.286745
\(382\) 5.61913 0.287500
\(383\) −27.0166 −1.38048 −0.690241 0.723580i \(-0.742495\pi\)
−0.690241 + 0.723580i \(0.742495\pi\)
\(384\) 11.0236 0.562546
\(385\) −1.18418 −0.0603514
\(386\) 7.52852 0.383192
\(387\) −7.83553 −0.398302
\(388\) 21.0611 1.06922
\(389\) −6.41962 −0.325488 −0.162744 0.986668i \(-0.552034\pi\)
−0.162744 + 0.986668i \(0.552034\pi\)
\(390\) 6.47344 0.327795
\(391\) −5.24702 −0.265353
\(392\) 12.0730 0.609780
\(393\) 1.92957 0.0973339
\(394\) 2.79388 0.140754
\(395\) 33.9092 1.70615
\(396\) −7.42259 −0.372999
\(397\) −5.67043 −0.284591 −0.142295 0.989824i \(-0.545448\pi\)
−0.142295 + 0.989824i \(0.545448\pi\)
\(398\) 2.81334 0.141020
\(399\) 0.387812 0.0194149
\(400\) 21.1469 1.05734
\(401\) −6.41640 −0.320420 −0.160210 0.987083i \(-0.551217\pi\)
−0.160210 + 0.987083i \(0.551217\pi\)
\(402\) −3.06854 −0.153045
\(403\) −5.36206 −0.267103
\(404\) 9.10482 0.452982
\(405\) −3.54297 −0.176052
\(406\) −0.0466206 −0.00231374
\(407\) −11.1722 −0.553785
\(408\) −2.22244 −0.110027
\(409\) −33.3092 −1.64703 −0.823516 0.567293i \(-0.807991\pi\)
−0.823516 + 0.567293i \(0.807991\pi\)
\(410\) −7.38400 −0.364670
\(411\) −17.7316 −0.874637
\(412\) 28.3669 1.39754
\(413\) 0.101886 0.00501346
\(414\) 1.85509 0.0911728
\(415\) −13.8377 −0.679264
\(416\) 18.9757 0.930361
\(417\) −3.42664 −0.167803
\(418\) −9.05233 −0.442764
\(419\) −33.5439 −1.63873 −0.819364 0.573274i \(-0.805673\pi\)
−0.819364 + 0.573274i \(0.805673\pi\)
\(420\) −0.512794 −0.0250218
\(421\) −24.5206 −1.19506 −0.597531 0.801846i \(-0.703851\pi\)
−0.597531 + 0.801846i \(0.703851\pi\)
\(422\) −7.11364 −0.346286
\(423\) 8.49584 0.413082
\(424\) 8.54317 0.414893
\(425\) −9.72315 −0.471642
\(426\) 4.87913 0.236394
\(427\) 0.874982 0.0423433
\(428\) 9.95293 0.481093
\(429\) −16.6197 −0.802407
\(430\) 12.6356 0.609342
\(431\) 36.2916 1.74811 0.874054 0.485830i \(-0.161482\pi\)
0.874054 + 0.485830i \(0.161482\pi\)
\(432\) −2.79992 −0.134711
\(433\) −37.7521 −1.81425 −0.907126 0.420860i \(-0.861728\pi\)
−0.907126 + 0.420860i \(0.861728\pi\)
\(434\) −0.0490813 −0.00235598
\(435\) −4.49523 −0.215530
\(436\) 3.70289 0.177336
\(437\) −19.5791 −0.936596
\(438\) 6.46645 0.308979
\(439\) −17.2107 −0.821421 −0.410710 0.911766i \(-0.634719\pi\)
−0.410710 + 0.911766i \(0.634719\pi\)
\(440\) 25.3225 1.20720
\(441\) −6.99348 −0.333023
\(442\) −2.35220 −0.111883
\(443\) 20.4563 0.971906 0.485953 0.873985i \(-0.338473\pi\)
0.485953 + 0.873985i \(0.338473\pi\)
\(444\) −4.83797 −0.229600
\(445\) −1.66779 −0.0790607
\(446\) −5.54221 −0.262431
\(447\) 2.13254 0.100866
\(448\) −0.278382 −0.0131523
\(449\) −31.2593 −1.47522 −0.737608 0.675230i \(-0.764045\pi\)
−0.737608 + 0.675230i \(0.764045\pi\)
\(450\) 3.43763 0.162051
\(451\) 18.9575 0.892672
\(452\) 5.11718 0.240692
\(453\) 12.1038 0.568687
\(454\) −5.86144 −0.275091
\(455\) −1.14818 −0.0538276
\(456\) −8.29295 −0.388353
\(457\) 5.18498 0.242543 0.121272 0.992619i \(-0.461303\pi\)
0.121272 + 0.992619i \(0.461303\pi\)
\(458\) −1.82261 −0.0851650
\(459\) 1.28738 0.0600897
\(460\) 25.8890 1.20708
\(461\) 0.0383161 0.00178456 0.000892280 1.00000i \(-0.499716\pi\)
0.000892280 1.00000i \(0.499716\pi\)
\(462\) −0.152128 −0.00707762
\(463\) −2.86636 −0.133211 −0.0666054 0.997779i \(-0.521217\pi\)
−0.0666054 + 0.997779i \(0.521217\pi\)
\(464\) −3.55247 −0.164919
\(465\) −4.73250 −0.219465
\(466\) 2.44699 0.113354
\(467\) 8.97636 0.415376 0.207688 0.978195i \(-0.433406\pi\)
0.207688 + 0.978195i \(0.433406\pi\)
\(468\) −7.19695 −0.332679
\(469\) 0.544262 0.0251317
\(470\) −13.7004 −0.631952
\(471\) 1.04573 0.0481846
\(472\) −2.17872 −0.100284
\(473\) −32.4402 −1.49160
\(474\) 4.35620 0.200087
\(475\) −36.2816 −1.66471
\(476\) 0.186329 0.00854039
\(477\) −4.94876 −0.226588
\(478\) −0.235608 −0.0107764
\(479\) −4.62286 −0.211224 −0.105612 0.994407i \(-0.533680\pi\)
−0.105612 + 0.994407i \(0.533680\pi\)
\(480\) 16.7478 0.764430
\(481\) −10.8326 −0.493923
\(482\) −13.1910 −0.600834
\(483\) −0.329034 −0.0149716
\(484\) −11.0094 −0.500426
\(485\) 41.6207 1.88990
\(486\) −0.455154 −0.0206462
\(487\) −20.4183 −0.925243 −0.462622 0.886556i \(-0.653091\pi\)
−0.462622 + 0.886556i \(0.653091\pi\)
\(488\) −18.7106 −0.846988
\(489\) −17.8918 −0.809093
\(490\) 11.2777 0.509474
\(491\) 11.4612 0.517237 0.258618 0.965980i \(-0.416733\pi\)
0.258618 + 0.965980i \(0.416733\pi\)
\(492\) 8.20928 0.370103
\(493\) 1.63339 0.0735643
\(494\) −8.77715 −0.394903
\(495\) −14.6684 −0.659296
\(496\) −3.73998 −0.167930
\(497\) −0.865402 −0.0388186
\(498\) −1.77768 −0.0796597
\(499\) −42.3681 −1.89666 −0.948329 0.317288i \(-0.897228\pi\)
−0.948329 + 0.317288i \(0.897228\pi\)
\(500\) 16.2144 0.725132
\(501\) 21.9232 0.979456
\(502\) −11.5163 −0.513998
\(503\) 37.6637 1.67934 0.839670 0.543097i \(-0.182748\pi\)
0.839670 + 0.543097i \(0.182748\pi\)
\(504\) −0.139366 −0.00620786
\(505\) 17.9928 0.800670
\(506\) 7.68034 0.341433
\(507\) −3.11449 −0.138319
\(508\) 10.0346 0.445211
\(509\) 12.2882 0.544664 0.272332 0.962203i \(-0.412205\pi\)
0.272332 + 0.962203i \(0.412205\pi\)
\(510\) −2.07603 −0.0919281
\(511\) −1.14694 −0.0507378
\(512\) 22.9025 1.01216
\(513\) 4.80382 0.212094
\(514\) −6.54643 −0.288750
\(515\) 56.0583 2.47022
\(516\) −14.0478 −0.618420
\(517\) 35.1740 1.54695
\(518\) −0.0991555 −0.00435664
\(519\) 8.75170 0.384157
\(520\) 24.5527 1.07671
\(521\) 9.24249 0.404921 0.202461 0.979290i \(-0.435106\pi\)
0.202461 + 0.979290i \(0.435106\pi\)
\(522\) −0.577488 −0.0252760
\(523\) −30.7283 −1.34366 −0.671828 0.740707i \(-0.734490\pi\)
−0.671828 + 0.740707i \(0.734490\pi\)
\(524\) 3.45940 0.151124
\(525\) −0.609726 −0.0266106
\(526\) 5.42444 0.236517
\(527\) 1.71961 0.0749073
\(528\) −11.5921 −0.504480
\(529\) −6.38834 −0.277754
\(530\) 7.98037 0.346645
\(531\) 1.26205 0.0547685
\(532\) 0.695282 0.0301443
\(533\) 18.3812 0.796177
\(534\) −0.214255 −0.00927173
\(535\) 19.6688 0.850358
\(536\) −11.6385 −0.502706
\(537\) −17.7846 −0.767461
\(538\) −3.90086 −0.168178
\(539\) −28.9540 −1.24714
\(540\) −6.35197 −0.273345
\(541\) 17.1608 0.737802 0.368901 0.929469i \(-0.379734\pi\)
0.368901 + 0.929469i \(0.379734\pi\)
\(542\) −10.7078 −0.459939
\(543\) −22.0033 −0.944253
\(544\) −6.08551 −0.260914
\(545\) 7.31760 0.313452
\(546\) −0.147503 −0.00631256
\(547\) 11.4319 0.488791 0.244396 0.969676i \(-0.421410\pi\)
0.244396 + 0.969676i \(0.421410\pi\)
\(548\) −31.7899 −1.35800
\(549\) 10.8384 0.462571
\(550\) 14.2323 0.606866
\(551\) 6.09496 0.259654
\(552\) 7.03606 0.299474
\(553\) −0.772651 −0.0328565
\(554\) 11.3935 0.484062
\(555\) −9.56074 −0.405831
\(556\) −6.14339 −0.260538
\(557\) 6.70736 0.284200 0.142100 0.989852i \(-0.454615\pi\)
0.142100 + 0.989852i \(0.454615\pi\)
\(558\) −0.607970 −0.0257374
\(559\) −31.4541 −1.33036
\(560\) −0.800846 −0.0338419
\(561\) 5.32993 0.225030
\(562\) 12.3209 0.519725
\(563\) 40.4548 1.70497 0.852484 0.522754i \(-0.175095\pi\)
0.852484 + 0.522754i \(0.175095\pi\)
\(564\) 15.2316 0.641368
\(565\) 10.1125 0.425436
\(566\) 3.38022 0.142081
\(567\) 0.0807299 0.00339034
\(568\) 18.5057 0.776483
\(569\) −12.4290 −0.521049 −0.260525 0.965467i \(-0.583896\pi\)
−0.260525 + 0.965467i \(0.583896\pi\)
\(570\) −7.74664 −0.324471
\(571\) 42.6962 1.78678 0.893390 0.449281i \(-0.148320\pi\)
0.893390 + 0.449281i \(0.148320\pi\)
\(572\) −29.7964 −1.24585
\(573\) −12.3455 −0.515743
\(574\) 0.168251 0.00702267
\(575\) 30.7827 1.28373
\(576\) −3.44831 −0.143680
\(577\) −8.42846 −0.350881 −0.175441 0.984490i \(-0.556135\pi\)
−0.175441 + 0.984490i \(0.556135\pi\)
\(578\) −6.98328 −0.290466
\(579\) −16.5406 −0.687403
\(580\) −8.05921 −0.334640
\(581\) 0.315304 0.0130810
\(582\) 5.34688 0.221635
\(583\) −20.4886 −0.848550
\(584\) 24.5262 1.01490
\(585\) −14.2225 −0.588028
\(586\) −9.43361 −0.389699
\(587\) −41.3993 −1.70873 −0.854367 0.519670i \(-0.826055\pi\)
−0.854367 + 0.519670i \(0.826055\pi\)
\(588\) −12.5382 −0.517065
\(589\) 6.41667 0.264394
\(590\) −2.03519 −0.0837875
\(591\) −6.13831 −0.252497
\(592\) −7.55561 −0.310534
\(593\) 28.3652 1.16482 0.582410 0.812895i \(-0.302110\pi\)
0.582410 + 0.812895i \(0.302110\pi\)
\(594\) −1.88440 −0.0773180
\(595\) 0.368221 0.0150956
\(596\) 3.82329 0.156608
\(597\) −6.18107 −0.252974
\(598\) 7.44687 0.304525
\(599\) 21.2329 0.867551 0.433776 0.901021i \(-0.357181\pi\)
0.433776 + 0.901021i \(0.357181\pi\)
\(600\) 13.0384 0.532289
\(601\) −47.5531 −1.93973 −0.969865 0.243642i \(-0.921658\pi\)
−0.969865 + 0.243642i \(0.921658\pi\)
\(602\) −0.287913 −0.0117345
\(603\) 6.74176 0.274546
\(604\) 21.7001 0.882966
\(605\) −21.7566 −0.884530
\(606\) 2.31148 0.0938974
\(607\) 15.8930 0.645075 0.322538 0.946557i \(-0.395464\pi\)
0.322538 + 0.946557i \(0.395464\pi\)
\(608\) −22.7079 −0.920926
\(609\) 0.102428 0.00415059
\(610\) −17.4780 −0.707663
\(611\) 34.1047 1.37973
\(612\) 2.30806 0.0932977
\(613\) 40.6005 1.63984 0.819920 0.572479i \(-0.194018\pi\)
0.819920 + 0.572479i \(0.194018\pi\)
\(614\) 1.34289 0.0541946
\(615\) 16.2231 0.654177
\(616\) −0.576995 −0.0232478
\(617\) −15.2091 −0.612294 −0.306147 0.951984i \(-0.599040\pi\)
−0.306147 + 0.951984i \(0.599040\pi\)
\(618\) 7.20162 0.289692
\(619\) −8.31316 −0.334134 −0.167067 0.985946i \(-0.553430\pi\)
−0.167067 + 0.985946i \(0.553430\pi\)
\(620\) −8.48460 −0.340750
\(621\) −4.07574 −0.163554
\(622\) 4.43036 0.177641
\(623\) 0.0380021 0.00152252
\(624\) −11.2397 −0.449948
\(625\) −5.72058 −0.228823
\(626\) −3.58298 −0.143205
\(627\) 19.8885 0.794269
\(628\) 1.87482 0.0748134
\(629\) 3.47400 0.138517
\(630\) −0.130185 −0.00518670
\(631\) 5.16487 0.205610 0.102805 0.994702i \(-0.467218\pi\)
0.102805 + 0.994702i \(0.467218\pi\)
\(632\) 16.5223 0.657224
\(633\) 15.6291 0.621199
\(634\) −1.95218 −0.0775312
\(635\) 19.8301 0.786935
\(636\) −8.87231 −0.351810
\(637\) −28.0738 −1.11233
\(638\) −2.39088 −0.0946559
\(639\) −10.7197 −0.424065
\(640\) 39.0564 1.54384
\(641\) −12.2716 −0.484701 −0.242350 0.970189i \(-0.577918\pi\)
−0.242350 + 0.970189i \(0.577918\pi\)
\(642\) 2.52679 0.0997245
\(643\) −0.734498 −0.0289658 −0.0144829 0.999895i \(-0.504610\pi\)
−0.0144829 + 0.999895i \(0.504610\pi\)
\(644\) −0.589904 −0.0232455
\(645\) −27.7611 −1.09309
\(646\) 2.81483 0.110748
\(647\) 13.0055 0.511301 0.255650 0.966769i \(-0.417710\pi\)
0.255650 + 0.966769i \(0.417710\pi\)
\(648\) −1.72633 −0.0678165
\(649\) 5.22508 0.205103
\(650\) 13.7996 0.541266
\(651\) 0.107834 0.00422637
\(652\) −32.0770 −1.25623
\(653\) 5.63620 0.220562 0.110281 0.993900i \(-0.464825\pi\)
0.110281 + 0.993900i \(0.464825\pi\)
\(654\) 0.940069 0.0367596
\(655\) 6.83641 0.267121
\(656\) 12.8207 0.500564
\(657\) −14.2072 −0.554274
\(658\) 0.312176 0.0121699
\(659\) 17.2279 0.671103 0.335552 0.942022i \(-0.391077\pi\)
0.335552 + 0.942022i \(0.391077\pi\)
\(660\) −26.2980 −1.02365
\(661\) −10.0767 −0.391937 −0.195969 0.980610i \(-0.562785\pi\)
−0.195969 + 0.980610i \(0.562785\pi\)
\(662\) 2.38428 0.0926677
\(663\) 5.16791 0.200705
\(664\) −6.74245 −0.261658
\(665\) 1.37401 0.0532817
\(666\) −1.22824 −0.0475932
\(667\) −5.17119 −0.200229
\(668\) 39.3046 1.52074
\(669\) 12.1765 0.470772
\(670\) −10.8718 −0.420013
\(671\) 44.8724 1.73228
\(672\) −0.381614 −0.0147211
\(673\) 17.1902 0.662633 0.331317 0.943520i \(-0.392507\pi\)
0.331317 + 0.943520i \(0.392507\pi\)
\(674\) 5.30444 0.204319
\(675\) −7.55267 −0.290702
\(676\) −5.58377 −0.214760
\(677\) −1.00000 −0.0384331
\(678\) 1.29912 0.0498924
\(679\) −0.948367 −0.0363950
\(680\) −7.87403 −0.301955
\(681\) 12.8779 0.493483
\(682\) −2.51708 −0.0963840
\(683\) −4.16118 −0.159223 −0.0796116 0.996826i \(-0.525368\pi\)
−0.0796116 + 0.996826i \(0.525368\pi\)
\(684\) 8.61245 0.329305
\(685\) −62.8227 −2.40033
\(686\) −0.514185 −0.0196317
\(687\) 4.00438 0.152777
\(688\) −21.9389 −0.836412
\(689\) −19.8657 −0.756825
\(690\) 6.57254 0.250212
\(691\) 48.6131 1.84933 0.924665 0.380783i \(-0.124345\pi\)
0.924665 + 0.380783i \(0.124345\pi\)
\(692\) 15.6904 0.596458
\(693\) 0.334233 0.0126965
\(694\) −2.05405 −0.0779708
\(695\) −12.1405 −0.460515
\(696\) −2.19032 −0.0830238
\(697\) −5.89484 −0.223283
\(698\) −8.51500 −0.322298
\(699\) −5.37617 −0.203345
\(700\) −1.09314 −0.0413167
\(701\) −0.107441 −0.00405798 −0.00202899 0.999998i \(-0.500646\pi\)
−0.00202899 + 0.999998i \(0.500646\pi\)
\(702\) −1.82712 −0.0689602
\(703\) 12.9631 0.488914
\(704\) −14.2765 −0.538066
\(705\) 30.1005 1.13365
\(706\) 0.0223291 0.000840366 0
\(707\) −0.409983 −0.0154190
\(708\) 2.26266 0.0850358
\(709\) −22.2907 −0.837145 −0.418573 0.908183i \(-0.637469\pi\)
−0.418573 + 0.908183i \(0.637469\pi\)
\(710\) 17.2866 0.648755
\(711\) −9.57082 −0.358934
\(712\) −0.812635 −0.0304548
\(713\) −5.44414 −0.203885
\(714\) 0.0473042 0.00177032
\(715\) −58.8832 −2.20211
\(716\) −31.8848 −1.19159
\(717\) 0.517643 0.0193317
\(718\) −2.81474 −0.105045
\(719\) 26.6745 0.994791 0.497395 0.867524i \(-0.334290\pi\)
0.497395 + 0.867524i \(0.334290\pi\)
\(720\) −9.92006 −0.369699
\(721\) −1.27734 −0.0475706
\(722\) 1.85550 0.0690547
\(723\) 28.9814 1.07783
\(724\) −39.4483 −1.46609
\(725\) −9.58263 −0.355890
\(726\) −2.79500 −0.103732
\(727\) 42.1822 1.56445 0.782225 0.622996i \(-0.214085\pi\)
0.782225 + 0.622996i \(0.214085\pi\)
\(728\) −0.559455 −0.0207348
\(729\) 1.00000 0.0370370
\(730\) 22.9105 0.847955
\(731\) 10.0873 0.373092
\(732\) 19.4314 0.718206
\(733\) 1.84120 0.0680061 0.0340031 0.999422i \(-0.489174\pi\)
0.0340031 + 0.999422i \(0.489174\pi\)
\(734\) −3.31875 −0.122497
\(735\) −24.7777 −0.913940
\(736\) 19.2662 0.710163
\(737\) 27.9118 1.02815
\(738\) 2.08413 0.0767177
\(739\) −15.4533 −0.568459 −0.284230 0.958756i \(-0.591738\pi\)
−0.284230 + 0.958756i \(0.591738\pi\)
\(740\) −17.1408 −0.630109
\(741\) 19.2839 0.708411
\(742\) −0.181840 −0.00667556
\(743\) −44.6296 −1.63730 −0.818650 0.574292i \(-0.805277\pi\)
−0.818650 + 0.574292i \(0.805277\pi\)
\(744\) −2.30593 −0.0845394
\(745\) 7.55553 0.276813
\(746\) −16.1855 −0.592594
\(747\) 3.90566 0.142901
\(748\) 9.55569 0.349390
\(749\) −0.448172 −0.0163759
\(750\) 4.11643 0.150311
\(751\) 48.7546 1.77908 0.889540 0.456857i \(-0.151025\pi\)
0.889540 + 0.456857i \(0.151025\pi\)
\(752\) 23.7877 0.867449
\(753\) 25.3020 0.922056
\(754\) −2.31820 −0.0844240
\(755\) 42.8835 1.56069
\(756\) 0.144735 0.00526397
\(757\) −19.0533 −0.692503 −0.346252 0.938142i \(-0.612546\pi\)
−0.346252 + 0.938142i \(0.612546\pi\)
\(758\) −5.38158 −0.195468
\(759\) −16.8741 −0.612492
\(760\) −29.3817 −1.06579
\(761\) −4.57278 −0.165763 −0.0828816 0.996559i \(-0.526412\pi\)
−0.0828816 + 0.996559i \(0.526412\pi\)
\(762\) 2.54751 0.0922867
\(763\) −0.166738 −0.00603633
\(764\) −22.1335 −0.800763
\(765\) 4.56115 0.164909
\(766\) −12.2967 −0.444298
\(767\) 5.06625 0.182932
\(768\) −1.87918 −0.0678089
\(769\) 43.4106 1.56543 0.782713 0.622382i \(-0.213835\pi\)
0.782713 + 0.622382i \(0.213835\pi\)
\(770\) −0.538985 −0.0194237
\(771\) 14.3829 0.517986
\(772\) −29.6545 −1.06729
\(773\) −9.24115 −0.332381 −0.166191 0.986094i \(-0.553147\pi\)
−0.166191 + 0.986094i \(0.553147\pi\)
\(774\) −3.56638 −0.128191
\(775\) −10.0884 −0.362387
\(776\) 20.2798 0.728004
\(777\) 0.217850 0.00781533
\(778\) −2.92192 −0.104756
\(779\) −21.9964 −0.788103
\(780\) −25.4986 −0.912997
\(781\) −44.3811 −1.58808
\(782\) −2.38821 −0.0854021
\(783\) 1.26877 0.0453423
\(784\) −19.5812 −0.699329
\(785\) 3.70499 0.132237
\(786\) 0.878252 0.0313262
\(787\) 28.9403 1.03161 0.515805 0.856706i \(-0.327493\pi\)
0.515805 + 0.856706i \(0.327493\pi\)
\(788\) −11.0050 −0.392036
\(789\) −11.9178 −0.424285
\(790\) 15.4339 0.549114
\(791\) −0.230423 −0.00819289
\(792\) −7.14723 −0.253966
\(793\) 43.5084 1.54503
\(794\) −2.58092 −0.0915934
\(795\) −17.5333 −0.621843
\(796\) −11.0816 −0.392778
\(797\) 24.7971 0.878358 0.439179 0.898400i \(-0.355269\pi\)
0.439179 + 0.898400i \(0.355269\pi\)
\(798\) 0.176514 0.00624854
\(799\) −10.9374 −0.386936
\(800\) 35.7018 1.26225
\(801\) 0.470731 0.0166325
\(802\) −2.92045 −0.103125
\(803\) −58.8197 −2.07570
\(804\) 12.0869 0.426271
\(805\) −1.16576 −0.0410876
\(806\) −2.44056 −0.0859652
\(807\) 8.57041 0.301693
\(808\) 8.76706 0.308424
\(809\) −3.33378 −0.117209 −0.0586047 0.998281i \(-0.518665\pi\)
−0.0586047 + 0.998281i \(0.518665\pi\)
\(810\) −1.61260 −0.0566610
\(811\) 17.9893 0.631691 0.315845 0.948811i \(-0.397712\pi\)
0.315845 + 0.948811i \(0.397712\pi\)
\(812\) 0.183636 0.00644438
\(813\) 23.5256 0.825079
\(814\) −5.08507 −0.178232
\(815\) −63.3900 −2.22046
\(816\) 3.60456 0.126185
\(817\) 37.6404 1.31687
\(818\) −15.1608 −0.530085
\(819\) 0.324073 0.0113240
\(820\) 29.0853 1.01570
\(821\) −39.5349 −1.37978 −0.689889 0.723916i \(-0.742341\pi\)
−0.689889 + 0.723916i \(0.742341\pi\)
\(822\) −8.07064 −0.281496
\(823\) 54.2506 1.89106 0.945529 0.325539i \(-0.105546\pi\)
0.945529 + 0.325539i \(0.105546\pi\)
\(824\) 27.3146 0.951548
\(825\) −31.2691 −1.08865
\(826\) 0.0463737 0.00161355
\(827\) 21.2331 0.738347 0.369174 0.929360i \(-0.379641\pi\)
0.369174 + 0.929360i \(0.379641\pi\)
\(828\) −7.30713 −0.253940
\(829\) −15.1398 −0.525828 −0.262914 0.964819i \(-0.584683\pi\)
−0.262914 + 0.964819i \(0.584683\pi\)
\(830\) −6.29827 −0.218616
\(831\) −25.0321 −0.868353
\(832\) −13.8425 −0.479903
\(833\) 9.00327 0.311945
\(834\) −1.55965 −0.0540062
\(835\) 77.6733 2.68799
\(836\) 35.6567 1.23321
\(837\) 1.33574 0.0461701
\(838\) −15.2677 −0.527413
\(839\) −8.13695 −0.280919 −0.140459 0.990086i \(-0.544858\pi\)
−0.140459 + 0.990086i \(0.544858\pi\)
\(840\) −0.493771 −0.0170367
\(841\) −27.3902 −0.944490
\(842\) −11.1607 −0.384622
\(843\) −27.0697 −0.932329
\(844\) 28.0203 0.964499
\(845\) −11.0346 −0.379600
\(846\) 3.86692 0.132947
\(847\) 0.495743 0.0170339
\(848\) −13.8562 −0.475822
\(849\) −7.42654 −0.254878
\(850\) −4.42553 −0.151795
\(851\) −10.9984 −0.377021
\(852\) −19.2187 −0.658421
\(853\) 28.0424 0.960154 0.480077 0.877226i \(-0.340609\pi\)
0.480077 + 0.877226i \(0.340609\pi\)
\(854\) 0.398252 0.0136279
\(855\) 17.0198 0.582065
\(856\) 9.58370 0.327564
\(857\) −31.4085 −1.07289 −0.536447 0.843934i \(-0.680234\pi\)
−0.536447 + 0.843934i \(0.680234\pi\)
\(858\) −7.56453 −0.258249
\(859\) 2.54996 0.0870034 0.0435017 0.999053i \(-0.486149\pi\)
0.0435017 + 0.999053i \(0.486149\pi\)
\(860\) −49.7710 −1.69718
\(861\) −0.369658 −0.0125979
\(862\) 16.5183 0.562616
\(863\) 49.1718 1.67383 0.836914 0.547334i \(-0.184357\pi\)
0.836914 + 0.547334i \(0.184357\pi\)
\(864\) −4.72705 −0.160817
\(865\) 31.0071 1.05427
\(866\) −17.1830 −0.583904
\(867\) 15.3427 0.521064
\(868\) 0.193329 0.00656203
\(869\) −39.6245 −1.34417
\(870\) −2.04603 −0.0693668
\(871\) 27.0634 0.917007
\(872\) 3.56553 0.120744
\(873\) −11.7474 −0.397589
\(874\) −8.91152 −0.301437
\(875\) −0.730123 −0.0246827
\(876\) −25.4711 −0.860589
\(877\) 27.8456 0.940279 0.470140 0.882592i \(-0.344204\pi\)
0.470140 + 0.882592i \(0.344204\pi\)
\(878\) −7.83351 −0.264368
\(879\) 20.7262 0.699077
\(880\) −41.0704 −1.38448
\(881\) −50.7571 −1.71005 −0.855024 0.518588i \(-0.826458\pi\)
−0.855024 + 0.518588i \(0.826458\pi\)
\(882\) −3.18311 −0.107181
\(883\) −9.45824 −0.318295 −0.159148 0.987255i \(-0.550875\pi\)
−0.159148 + 0.987255i \(0.550875\pi\)
\(884\) 9.26521 0.311623
\(885\) 4.47143 0.150305
\(886\) 9.31075 0.312801
\(887\) −43.3314 −1.45493 −0.727463 0.686147i \(-0.759301\pi\)
−0.727463 + 0.686147i \(0.759301\pi\)
\(888\) −4.65850 −0.156329
\(889\) −0.451848 −0.0151545
\(890\) −0.759101 −0.0254451
\(891\) 4.14014 0.138700
\(892\) 21.8305 0.730940
\(893\) −40.8125 −1.36574
\(894\) 0.970634 0.0324629
\(895\) −63.0103 −2.10620
\(896\) −0.889935 −0.0297307
\(897\) −16.3612 −0.546284
\(898\) −14.2278 −0.474787
\(899\) 1.69476 0.0565233
\(900\) −13.5407 −0.451356
\(901\) 6.37093 0.212247
\(902\) 8.62857 0.287300
\(903\) 0.632562 0.0210503
\(904\) 4.92735 0.163881
\(905\) −77.9572 −2.59139
\(906\) 5.50910 0.183028
\(907\) −23.0753 −0.766201 −0.383101 0.923707i \(-0.625144\pi\)
−0.383101 + 0.923707i \(0.625144\pi\)
\(908\) 23.0880 0.766201
\(909\) −5.07845 −0.168442
\(910\) −0.522600 −0.0173240
\(911\) −37.8182 −1.25297 −0.626486 0.779433i \(-0.715507\pi\)
−0.626486 + 0.779433i \(0.715507\pi\)
\(912\) 13.4503 0.445385
\(913\) 16.1700 0.535149
\(914\) 2.35997 0.0780608
\(915\) 38.4001 1.26947
\(916\) 7.17919 0.237207
\(917\) −0.155774 −0.00514411
\(918\) 0.585956 0.0193394
\(919\) 52.9813 1.74769 0.873846 0.486203i \(-0.161618\pi\)
0.873846 + 0.486203i \(0.161618\pi\)
\(920\) 24.9286 0.821870
\(921\) −2.95040 −0.0972191
\(922\) 0.0174397 0.000574348 0
\(923\) −43.0320 −1.41642
\(924\) 0.599225 0.0197130
\(925\) −20.3809 −0.670120
\(926\) −1.30464 −0.0428730
\(927\) −15.8224 −0.519675
\(928\) −5.99756 −0.196879
\(929\) −34.4383 −1.12988 −0.564941 0.825131i \(-0.691101\pi\)
−0.564941 + 0.825131i \(0.691101\pi\)
\(930\) −2.15402 −0.0706331
\(931\) 33.5954 1.10104
\(932\) −9.63858 −0.315722
\(933\) −9.73374 −0.318668
\(934\) 4.08563 0.133686
\(935\) 18.8838 0.617567
\(936\) −6.92996 −0.226513
\(937\) 4.97427 0.162502 0.0812511 0.996694i \(-0.474108\pi\)
0.0812511 + 0.996694i \(0.474108\pi\)
\(938\) 0.247723 0.00808845
\(939\) 7.87200 0.256893
\(940\) 53.9653 1.76015
\(941\) 36.6470 1.19466 0.597329 0.801996i \(-0.296229\pi\)
0.597329 + 0.801996i \(0.296229\pi\)
\(942\) 0.475968 0.0155079
\(943\) 18.6626 0.607737
\(944\) 3.53366 0.115011
\(945\) 0.286024 0.00930436
\(946\) −14.7653 −0.480061
\(947\) 8.10630 0.263419 0.131710 0.991288i \(-0.457953\pi\)
0.131710 + 0.991288i \(0.457953\pi\)
\(948\) −17.1589 −0.557295
\(949\) −57.0316 −1.85132
\(950\) −16.5137 −0.535776
\(951\) 4.28906 0.139082
\(952\) 0.179417 0.00581494
\(953\) −26.8792 −0.870702 −0.435351 0.900261i \(-0.643376\pi\)
−0.435351 + 0.900261i \(0.643376\pi\)
\(954\) −2.25245 −0.0729258
\(955\) −43.7399 −1.41539
\(956\) 0.928048 0.0300152
\(957\) 5.25290 0.169802
\(958\) −2.10412 −0.0679809
\(959\) 1.43147 0.0462247
\(960\) −12.2173 −0.394311
\(961\) −29.2158 −0.942445
\(962\) −4.93049 −0.158966
\(963\) −5.55150 −0.178895
\(964\) 51.9589 1.67348
\(965\) −58.6029 −1.88649
\(966\) −0.149761 −0.00481849
\(967\) −20.5250 −0.660039 −0.330020 0.943974i \(-0.607055\pi\)
−0.330020 + 0.943974i \(0.607055\pi\)
\(968\) −10.6010 −0.340728
\(969\) −6.18433 −0.198669
\(970\) 18.9439 0.608251
\(971\) −15.3718 −0.493304 −0.246652 0.969104i \(-0.579330\pi\)
−0.246652 + 0.969104i \(0.579330\pi\)
\(972\) 1.79283 0.0575052
\(973\) 0.276632 0.00886842
\(974\) −9.29350 −0.297783
\(975\) −30.3186 −0.970971
\(976\) 30.3467 0.971373
\(977\) 7.41018 0.237073 0.118536 0.992950i \(-0.462180\pi\)
0.118536 + 0.992950i \(0.462180\pi\)
\(978\) −8.14351 −0.260401
\(979\) 1.94889 0.0622869
\(980\) −44.4224 −1.41902
\(981\) −2.06538 −0.0659426
\(982\) 5.21662 0.166469
\(983\) 17.4618 0.556943 0.278472 0.960444i \(-0.410172\pi\)
0.278472 + 0.960444i \(0.410172\pi\)
\(984\) 7.90474 0.251994
\(985\) −21.7479 −0.692945
\(986\) 0.743446 0.0236762
\(987\) −0.685869 −0.0218314
\(988\) 34.5728 1.09991
\(989\) −31.9356 −1.01549
\(990\) −6.67639 −0.212190
\(991\) 9.83636 0.312462 0.156231 0.987721i \(-0.450066\pi\)
0.156231 + 0.987721i \(0.450066\pi\)
\(992\) −6.31413 −0.200474
\(993\) −5.23840 −0.166236
\(994\) −0.393891 −0.0124935
\(995\) −21.8994 −0.694257
\(996\) 7.00221 0.221873
\(997\) −43.1148 −1.36546 −0.682730 0.730671i \(-0.739207\pi\)
−0.682730 + 0.730671i \(0.739207\pi\)
\(998\) −19.2840 −0.610426
\(999\) 2.69851 0.0853770
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2031.2.a.e.1.5 7
3.2 odd 2 6093.2.a.i.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.2.a.e.1.5 7 1.1 even 1 trivial
6093.2.a.i.1.3 7 3.2 odd 2