Properties

Label 2031.2.a.g.1.16
Level $2031$
Weight $2$
Character 2031.1
Self dual yes
Analytic conductor $16.218$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,2,Mod(1,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2031.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2176166505\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 7 x^{17} + 99 x^{15} - 148 x^{14} - 514 x^{13} + 1204 x^{12} + 1143 x^{11} - 4191 x^{10} + \cdots + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(-1.46392\) of defining polynomial
Character \(\chi\) \(=\) 2031.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.46392 q^{2} +1.00000 q^{3} +0.143048 q^{4} +0.387918 q^{5} +1.46392 q^{6} -2.28879 q^{7} -2.71842 q^{8} +1.00000 q^{9} +0.567880 q^{10} -1.78909 q^{11} +0.143048 q^{12} +0.983519 q^{13} -3.35060 q^{14} +0.387918 q^{15} -4.26563 q^{16} -1.60300 q^{17} +1.46392 q^{18} -4.74512 q^{19} +0.0554910 q^{20} -2.28879 q^{21} -2.61907 q^{22} -3.45899 q^{23} -2.71842 q^{24} -4.84952 q^{25} +1.43979 q^{26} +1.00000 q^{27} -0.327407 q^{28} -9.04599 q^{29} +0.567880 q^{30} +2.62121 q^{31} -0.807685 q^{32} -1.78909 q^{33} -2.34665 q^{34} -0.887865 q^{35} +0.143048 q^{36} -0.148493 q^{37} -6.94645 q^{38} +0.983519 q^{39} -1.05453 q^{40} +5.04274 q^{41} -3.35060 q^{42} +6.65939 q^{43} -0.255925 q^{44} +0.387918 q^{45} -5.06368 q^{46} +7.92475 q^{47} -4.26563 q^{48} -1.76143 q^{49} -7.09929 q^{50} -1.60300 q^{51} +0.140690 q^{52} -1.72374 q^{53} +1.46392 q^{54} -0.694020 q^{55} +6.22190 q^{56} -4.74512 q^{57} -13.2426 q^{58} -0.0905729 q^{59} +0.0554910 q^{60} +7.66859 q^{61} +3.83723 q^{62} -2.28879 q^{63} +7.34888 q^{64} +0.381525 q^{65} -2.61907 q^{66} -9.42400 q^{67} -0.229306 q^{68} -3.45899 q^{69} -1.29976 q^{70} -12.4803 q^{71} -2.71842 q^{72} -4.58440 q^{73} -0.217382 q^{74} -4.84952 q^{75} -0.678780 q^{76} +4.09485 q^{77} +1.43979 q^{78} -3.84230 q^{79} -1.65472 q^{80} +1.00000 q^{81} +7.38214 q^{82} -9.85407 q^{83} -0.327407 q^{84} -0.621833 q^{85} +9.74879 q^{86} -9.04599 q^{87} +4.86349 q^{88} +5.42797 q^{89} +0.567880 q^{90} -2.25107 q^{91} -0.494802 q^{92} +2.62121 q^{93} +11.6012 q^{94} -1.84072 q^{95} -0.807685 q^{96} +0.0506965 q^{97} -2.57858 q^{98} -1.78909 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 7 q^{2} + 18 q^{3} + 13 q^{4} - 13 q^{5} - 7 q^{6} - 3 q^{7} - 18 q^{8} + 18 q^{9} - 6 q^{10} - 26 q^{11} + 13 q^{12} - 11 q^{13} - 11 q^{14} - 13 q^{15} - q^{16} - 34 q^{17} - 7 q^{18} - 2 q^{19}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.46392 1.03514 0.517572 0.855640i \(-0.326836\pi\)
0.517572 + 0.855640i \(0.326836\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.143048 0.0715240
\(5\) 0.387918 0.173482 0.0867412 0.996231i \(-0.472355\pi\)
0.0867412 + 0.996231i \(0.472355\pi\)
\(6\) 1.46392 0.597641
\(7\) −2.28879 −0.865082 −0.432541 0.901614i \(-0.642383\pi\)
−0.432541 + 0.901614i \(0.642383\pi\)
\(8\) −2.71842 −0.961107
\(9\) 1.00000 0.333333
\(10\) 0.567880 0.179579
\(11\) −1.78909 −0.539430 −0.269715 0.962940i \(-0.586930\pi\)
−0.269715 + 0.962940i \(0.586930\pi\)
\(12\) 0.143048 0.0412944
\(13\) 0.983519 0.272779 0.136389 0.990655i \(-0.456450\pi\)
0.136389 + 0.990655i \(0.456450\pi\)
\(14\) −3.35060 −0.895485
\(15\) 0.387918 0.100160
\(16\) −4.26563 −1.06641
\(17\) −1.60300 −0.388784 −0.194392 0.980924i \(-0.562273\pi\)
−0.194392 + 0.980924i \(0.562273\pi\)
\(18\) 1.46392 0.345048
\(19\) −4.74512 −1.08860 −0.544302 0.838889i \(-0.683206\pi\)
−0.544302 + 0.838889i \(0.683206\pi\)
\(20\) 0.0554910 0.0124082
\(21\) −2.28879 −0.499455
\(22\) −2.61907 −0.558388
\(23\) −3.45899 −0.721250 −0.360625 0.932711i \(-0.617437\pi\)
−0.360625 + 0.932711i \(0.617437\pi\)
\(24\) −2.71842 −0.554895
\(25\) −4.84952 −0.969904
\(26\) 1.43979 0.282366
\(27\) 1.00000 0.192450
\(28\) −0.327407 −0.0618742
\(29\) −9.04599 −1.67980 −0.839899 0.542743i \(-0.817386\pi\)
−0.839899 + 0.542743i \(0.817386\pi\)
\(30\) 0.567880 0.103680
\(31\) 2.62121 0.470783 0.235391 0.971901i \(-0.424363\pi\)
0.235391 + 0.971901i \(0.424363\pi\)
\(32\) −0.807685 −0.142780
\(33\) −1.78909 −0.311440
\(34\) −2.34665 −0.402448
\(35\) −0.887865 −0.150077
\(36\) 0.143048 0.0238413
\(37\) −0.148493 −0.0244122 −0.0122061 0.999926i \(-0.503885\pi\)
−0.0122061 + 0.999926i \(0.503885\pi\)
\(38\) −6.94645 −1.12686
\(39\) 0.983519 0.157489
\(40\) −1.05453 −0.166735
\(41\) 5.04274 0.787543 0.393772 0.919208i \(-0.371170\pi\)
0.393772 + 0.919208i \(0.371170\pi\)
\(42\) −3.35060 −0.517009
\(43\) 6.65939 1.01555 0.507774 0.861490i \(-0.330468\pi\)
0.507774 + 0.861490i \(0.330468\pi\)
\(44\) −0.255925 −0.0385822
\(45\) 0.387918 0.0578275
\(46\) −5.06368 −0.746598
\(47\) 7.92475 1.15594 0.577972 0.816057i \(-0.303844\pi\)
0.577972 + 0.816057i \(0.303844\pi\)
\(48\) −4.26563 −0.615691
\(49\) −1.76143 −0.251633
\(50\) −7.09929 −1.00399
\(51\) −1.60300 −0.224465
\(52\) 0.140690 0.0195102
\(53\) −1.72374 −0.236774 −0.118387 0.992968i \(-0.537772\pi\)
−0.118387 + 0.992968i \(0.537772\pi\)
\(54\) 1.46392 0.199214
\(55\) −0.694020 −0.0935817
\(56\) 6.22190 0.831436
\(57\) −4.74512 −0.628506
\(58\) −13.2426 −1.73883
\(59\) −0.0905729 −0.0117916 −0.00589579 0.999983i \(-0.501877\pi\)
−0.00589579 + 0.999983i \(0.501877\pi\)
\(60\) 0.0554910 0.00716385
\(61\) 7.66859 0.981863 0.490931 0.871198i \(-0.336657\pi\)
0.490931 + 0.871198i \(0.336657\pi\)
\(62\) 3.83723 0.487328
\(63\) −2.28879 −0.288361
\(64\) 7.34888 0.918611
\(65\) 0.381525 0.0473224
\(66\) −2.61907 −0.322386
\(67\) −9.42400 −1.15132 −0.575662 0.817688i \(-0.695256\pi\)
−0.575662 + 0.817688i \(0.695256\pi\)
\(68\) −0.229306 −0.0278074
\(69\) −3.45899 −0.416414
\(70\) −1.29976 −0.155351
\(71\) −12.4803 −1.48114 −0.740572 0.671977i \(-0.765445\pi\)
−0.740572 + 0.671977i \(0.765445\pi\)
\(72\) −2.71842 −0.320369
\(73\) −4.58440 −0.536563 −0.268282 0.963341i \(-0.586456\pi\)
−0.268282 + 0.963341i \(0.586456\pi\)
\(74\) −0.217382 −0.0252701
\(75\) −4.84952 −0.559974
\(76\) −0.678780 −0.0778614
\(77\) 4.09485 0.466651
\(78\) 1.43979 0.163024
\(79\) −3.84230 −0.432293 −0.216146 0.976361i \(-0.569349\pi\)
−0.216146 + 0.976361i \(0.569349\pi\)
\(80\) −1.65472 −0.185003
\(81\) 1.00000 0.111111
\(82\) 7.38214 0.815221
\(83\) −9.85407 −1.08162 −0.540812 0.841143i \(-0.681883\pi\)
−0.540812 + 0.841143i \(0.681883\pi\)
\(84\) −0.327407 −0.0357231
\(85\) −0.621833 −0.0674472
\(86\) 9.74879 1.05124
\(87\) −9.04599 −0.969831
\(88\) 4.86349 0.518450
\(89\) 5.42797 0.575364 0.287682 0.957726i \(-0.407115\pi\)
0.287682 + 0.957726i \(0.407115\pi\)
\(90\) 0.567880 0.0598598
\(91\) −2.25107 −0.235976
\(92\) −0.494802 −0.0515867
\(93\) 2.62121 0.271807
\(94\) 11.6012 1.19657
\(95\) −1.84072 −0.188854
\(96\) −0.807685 −0.0824340
\(97\) 0.0506965 0.00514745 0.00257372 0.999997i \(-0.499181\pi\)
0.00257372 + 0.999997i \(0.499181\pi\)
\(98\) −2.57858 −0.260476
\(99\) −1.78909 −0.179810
\(100\) −0.693714 −0.0693714
\(101\) −8.03677 −0.799689 −0.399844 0.916583i \(-0.630936\pi\)
−0.399844 + 0.916583i \(0.630936\pi\)
\(102\) −2.34665 −0.232353
\(103\) 9.35634 0.921907 0.460954 0.887424i \(-0.347507\pi\)
0.460954 + 0.887424i \(0.347507\pi\)
\(104\) −2.67362 −0.262170
\(105\) −0.887865 −0.0866467
\(106\) −2.52341 −0.245096
\(107\) 9.29217 0.898308 0.449154 0.893454i \(-0.351725\pi\)
0.449154 + 0.893454i \(0.351725\pi\)
\(108\) 0.143048 0.0137648
\(109\) −17.3534 −1.66216 −0.831079 0.556154i \(-0.812277\pi\)
−0.831079 + 0.556154i \(0.812277\pi\)
\(110\) −1.01599 −0.0968705
\(111\) −0.148493 −0.0140944
\(112\) 9.76315 0.922531
\(113\) −10.7244 −1.00886 −0.504432 0.863452i \(-0.668298\pi\)
−0.504432 + 0.863452i \(0.668298\pi\)
\(114\) −6.94645 −0.650595
\(115\) −1.34181 −0.125124
\(116\) −1.29401 −0.120146
\(117\) 0.983519 0.0909263
\(118\) −0.132591 −0.0122060
\(119\) 3.66893 0.336330
\(120\) −1.05453 −0.0962646
\(121\) −7.79917 −0.709015
\(122\) 11.2262 1.01637
\(123\) 5.04274 0.454688
\(124\) 0.374959 0.0336723
\(125\) −3.82081 −0.341744
\(126\) −3.35060 −0.298495
\(127\) 0.558833 0.0495884 0.0247942 0.999693i \(-0.492107\pi\)
0.0247942 + 0.999693i \(0.492107\pi\)
\(128\) 12.3735 1.09367
\(129\) 6.65939 0.586327
\(130\) 0.558520 0.0489855
\(131\) 21.6051 1.88764 0.943822 0.330453i \(-0.107202\pi\)
0.943822 + 0.330453i \(0.107202\pi\)
\(132\) −0.255925 −0.0222755
\(133\) 10.8606 0.941733
\(134\) −13.7959 −1.19179
\(135\) 0.387918 0.0333867
\(136\) 4.35762 0.373663
\(137\) 9.15886 0.782494 0.391247 0.920286i \(-0.372044\pi\)
0.391247 + 0.920286i \(0.372044\pi\)
\(138\) −5.06368 −0.431049
\(139\) 9.19295 0.779736 0.389868 0.920871i \(-0.372521\pi\)
0.389868 + 0.920871i \(0.372521\pi\)
\(140\) −0.127007 −0.0107341
\(141\) 7.92475 0.667384
\(142\) −18.2702 −1.53320
\(143\) −1.75960 −0.147145
\(144\) −4.26563 −0.355469
\(145\) −3.50910 −0.291415
\(146\) −6.71117 −0.555421
\(147\) −1.76143 −0.145280
\(148\) −0.0212417 −0.00174606
\(149\) 15.8387 1.29756 0.648778 0.760978i \(-0.275280\pi\)
0.648778 + 0.760978i \(0.275280\pi\)
\(150\) −7.09929 −0.579654
\(151\) 9.02723 0.734625 0.367313 0.930098i \(-0.380278\pi\)
0.367313 + 0.930098i \(0.380278\pi\)
\(152\) 12.8992 1.04627
\(153\) −1.60300 −0.129595
\(154\) 5.99451 0.483052
\(155\) 1.01681 0.0816725
\(156\) 0.140690 0.0112642
\(157\) −4.12933 −0.329557 −0.164778 0.986331i \(-0.552691\pi\)
−0.164778 + 0.986331i \(0.552691\pi\)
\(158\) −5.62480 −0.447485
\(159\) −1.72374 −0.136702
\(160\) −0.313316 −0.0247698
\(161\) 7.91692 0.623941
\(162\) 1.46392 0.115016
\(163\) −8.78697 −0.688249 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(164\) 0.721354 0.0563283
\(165\) −0.694020 −0.0540294
\(166\) −14.4255 −1.11964
\(167\) 5.89653 0.456287 0.228144 0.973627i \(-0.426734\pi\)
0.228144 + 0.973627i \(0.426734\pi\)
\(168\) 6.22190 0.480030
\(169\) −12.0327 −0.925592
\(170\) −0.910310 −0.0698176
\(171\) −4.74512 −0.362868
\(172\) 0.952613 0.0726361
\(173\) −23.0978 −1.75609 −0.878045 0.478577i \(-0.841153\pi\)
−0.878045 + 0.478577i \(0.841153\pi\)
\(174\) −13.2426 −1.00392
\(175\) 11.0995 0.839047
\(176\) 7.63159 0.575253
\(177\) −0.0905729 −0.00680788
\(178\) 7.94609 0.595585
\(179\) 21.6632 1.61918 0.809591 0.586995i \(-0.199689\pi\)
0.809591 + 0.586995i \(0.199689\pi\)
\(180\) 0.0554910 0.00413605
\(181\) 23.3481 1.73545 0.867726 0.497044i \(-0.165581\pi\)
0.867726 + 0.497044i \(0.165581\pi\)
\(182\) −3.29538 −0.244270
\(183\) 7.66859 0.566879
\(184\) 9.40300 0.693198
\(185\) −0.0576033 −0.00423508
\(186\) 3.83723 0.281359
\(187\) 2.86790 0.209722
\(188\) 1.13362 0.0826777
\(189\) −2.28879 −0.166485
\(190\) −2.69466 −0.195491
\(191\) −24.6992 −1.78717 −0.893587 0.448890i \(-0.851819\pi\)
−0.893587 + 0.448890i \(0.851819\pi\)
\(192\) 7.34888 0.530360
\(193\) −11.8669 −0.854197 −0.427098 0.904205i \(-0.640464\pi\)
−0.427098 + 0.904205i \(0.640464\pi\)
\(194\) 0.0742154 0.00532835
\(195\) 0.381525 0.0273216
\(196\) −0.251969 −0.0179978
\(197\) −2.04200 −0.145486 −0.0727432 0.997351i \(-0.523175\pi\)
−0.0727432 + 0.997351i \(0.523175\pi\)
\(198\) −2.61907 −0.186129
\(199\) 21.1109 1.49651 0.748256 0.663410i \(-0.230891\pi\)
0.748256 + 0.663410i \(0.230891\pi\)
\(200\) 13.1830 0.932181
\(201\) −9.42400 −0.664718
\(202\) −11.7652 −0.827793
\(203\) 20.7044 1.45316
\(204\) −0.229306 −0.0160546
\(205\) 1.95617 0.136625
\(206\) 13.6969 0.954307
\(207\) −3.45899 −0.240417
\(208\) −4.19533 −0.290894
\(209\) 8.48943 0.587226
\(210\) −1.29976 −0.0896919
\(211\) 18.5988 1.28040 0.640198 0.768210i \(-0.278852\pi\)
0.640198 + 0.768210i \(0.278852\pi\)
\(212\) −0.246578 −0.0169351
\(213\) −12.4803 −0.855139
\(214\) 13.6030 0.929879
\(215\) 2.58330 0.176180
\(216\) −2.71842 −0.184965
\(217\) −5.99940 −0.407266
\(218\) −25.4040 −1.72057
\(219\) −4.58440 −0.309785
\(220\) −0.0992782 −0.00669334
\(221\) −1.57658 −0.106052
\(222\) −0.217382 −0.0145897
\(223\) −0.939854 −0.0629372 −0.0314686 0.999505i \(-0.510018\pi\)
−0.0314686 + 0.999505i \(0.510018\pi\)
\(224\) 1.84862 0.123516
\(225\) −4.84952 −0.323301
\(226\) −15.6996 −1.04432
\(227\) −8.16364 −0.541840 −0.270920 0.962602i \(-0.587328\pi\)
−0.270920 + 0.962602i \(0.587328\pi\)
\(228\) −0.678780 −0.0449533
\(229\) −11.5793 −0.765179 −0.382589 0.923918i \(-0.624968\pi\)
−0.382589 + 0.923918i \(0.624968\pi\)
\(230\) −1.96429 −0.129522
\(231\) 4.09485 0.269421
\(232\) 24.5908 1.61446
\(233\) −7.90222 −0.517692 −0.258846 0.965919i \(-0.583342\pi\)
−0.258846 + 0.965919i \(0.583342\pi\)
\(234\) 1.43979 0.0941219
\(235\) 3.07416 0.200536
\(236\) −0.0129563 −0.000843382 0
\(237\) −3.84230 −0.249584
\(238\) 5.37100 0.348150
\(239\) 16.0618 1.03895 0.519476 0.854485i \(-0.326127\pi\)
0.519476 + 0.854485i \(0.326127\pi\)
\(240\) −1.65472 −0.106812
\(241\) 9.31539 0.600057 0.300029 0.953930i \(-0.403004\pi\)
0.300029 + 0.953930i \(0.403004\pi\)
\(242\) −11.4173 −0.733933
\(243\) 1.00000 0.0641500
\(244\) 1.09698 0.0702268
\(245\) −0.683291 −0.0436539
\(246\) 7.38214 0.470668
\(247\) −4.66691 −0.296948
\(248\) −7.12555 −0.452473
\(249\) −9.85407 −0.624476
\(250\) −5.59334 −0.353754
\(251\) −20.5549 −1.29742 −0.648708 0.761038i \(-0.724690\pi\)
−0.648708 + 0.761038i \(0.724690\pi\)
\(252\) −0.327407 −0.0206247
\(253\) 6.18844 0.389064
\(254\) 0.818084 0.0513312
\(255\) −0.621833 −0.0389407
\(256\) 3.41601 0.213501
\(257\) −28.7839 −1.79549 −0.897747 0.440512i \(-0.854797\pi\)
−0.897747 + 0.440512i \(0.854797\pi\)
\(258\) 9.74879 0.606933
\(259\) 0.339871 0.0211185
\(260\) 0.0545764 0.00338468
\(261\) −9.04599 −0.559932
\(262\) 31.6280 1.95398
\(263\) −14.3614 −0.885565 −0.442782 0.896629i \(-0.646009\pi\)
−0.442782 + 0.896629i \(0.646009\pi\)
\(264\) 4.86349 0.299327
\(265\) −0.668672 −0.0410762
\(266\) 15.8990 0.974829
\(267\) 5.42797 0.332187
\(268\) −1.34808 −0.0823474
\(269\) 0.286312 0.0174568 0.00872839 0.999962i \(-0.497222\pi\)
0.00872839 + 0.999962i \(0.497222\pi\)
\(270\) 0.567880 0.0345601
\(271\) 23.1392 1.40561 0.702804 0.711384i \(-0.251931\pi\)
0.702804 + 0.711384i \(0.251931\pi\)
\(272\) 6.83780 0.414603
\(273\) −2.25107 −0.136241
\(274\) 13.4078 0.809994
\(275\) 8.67621 0.523195
\(276\) −0.494802 −0.0297836
\(277\) −12.8797 −0.773865 −0.386932 0.922108i \(-0.626465\pi\)
−0.386932 + 0.922108i \(0.626465\pi\)
\(278\) 13.4577 0.807139
\(279\) 2.62121 0.156928
\(280\) 2.41359 0.144240
\(281\) −16.5883 −0.989578 −0.494789 0.869013i \(-0.664755\pi\)
−0.494789 + 0.869013i \(0.664755\pi\)
\(282\) 11.6012 0.690839
\(283\) −0.328687 −0.0195384 −0.00976922 0.999952i \(-0.503110\pi\)
−0.00976922 + 0.999952i \(0.503110\pi\)
\(284\) −1.78529 −0.105937
\(285\) −1.84072 −0.109035
\(286\) −2.57591 −0.152317
\(287\) −11.5418 −0.681290
\(288\) −0.807685 −0.0475933
\(289\) −14.4304 −0.848847
\(290\) −5.13703 −0.301657
\(291\) 0.0506965 0.00297188
\(292\) −0.655789 −0.0383772
\(293\) 10.3647 0.605510 0.302755 0.953068i \(-0.402094\pi\)
0.302755 + 0.953068i \(0.402094\pi\)
\(294\) −2.57858 −0.150386
\(295\) −0.0351349 −0.00204563
\(296\) 0.403667 0.0234627
\(297\) −1.78909 −0.103813
\(298\) 23.1865 1.34316
\(299\) −3.40199 −0.196742
\(300\) −0.693714 −0.0400516
\(301\) −15.2420 −0.878533
\(302\) 13.2151 0.760443
\(303\) −8.03677 −0.461700
\(304\) 20.2409 1.16090
\(305\) 2.97479 0.170336
\(306\) −2.34665 −0.134149
\(307\) −5.02595 −0.286846 −0.143423 0.989661i \(-0.545811\pi\)
−0.143423 + 0.989661i \(0.545811\pi\)
\(308\) 0.585760 0.0333768
\(309\) 9.35634 0.532264
\(310\) 1.48853 0.0845429
\(311\) 3.63333 0.206027 0.103014 0.994680i \(-0.467151\pi\)
0.103014 + 0.994680i \(0.467151\pi\)
\(312\) −2.67362 −0.151364
\(313\) 23.0916 1.30521 0.652606 0.757697i \(-0.273676\pi\)
0.652606 + 0.757697i \(0.273676\pi\)
\(314\) −6.04499 −0.341139
\(315\) −0.887865 −0.0500255
\(316\) −0.549634 −0.0309193
\(317\) −4.51754 −0.253730 −0.126865 0.991920i \(-0.540492\pi\)
−0.126865 + 0.991920i \(0.540492\pi\)
\(318\) −2.52341 −0.141506
\(319\) 16.1841 0.906133
\(320\) 2.85077 0.159363
\(321\) 9.29217 0.518638
\(322\) 11.5897 0.645869
\(323\) 7.60642 0.423232
\(324\) 0.143048 0.00794711
\(325\) −4.76959 −0.264569
\(326\) −12.8634 −0.712437
\(327\) −17.3534 −0.959648
\(328\) −13.7083 −0.756913
\(329\) −18.1381 −0.999986
\(330\) −1.01599 −0.0559282
\(331\) 6.57073 0.361160 0.180580 0.983560i \(-0.442203\pi\)
0.180580 + 0.983560i \(0.442203\pi\)
\(332\) −1.40961 −0.0773622
\(333\) −0.148493 −0.00813739
\(334\) 8.63202 0.472323
\(335\) −3.65574 −0.199735
\(336\) 9.76315 0.532623
\(337\) 21.6310 1.17831 0.589157 0.808019i \(-0.299460\pi\)
0.589157 + 0.808019i \(0.299460\pi\)
\(338\) −17.6148 −0.958121
\(339\) −10.7244 −0.582468
\(340\) −0.0889519 −0.00482410
\(341\) −4.68957 −0.253954
\(342\) −6.94645 −0.375621
\(343\) 20.0531 1.08277
\(344\) −18.1030 −0.976050
\(345\) −1.34181 −0.0722405
\(346\) −33.8132 −1.81781
\(347\) −1.99669 −0.107188 −0.0535941 0.998563i \(-0.517068\pi\)
−0.0535941 + 0.998563i \(0.517068\pi\)
\(348\) −1.29401 −0.0693662
\(349\) −17.5651 −0.940240 −0.470120 0.882602i \(-0.655789\pi\)
−0.470120 + 0.882602i \(0.655789\pi\)
\(350\) 16.2488 0.868534
\(351\) 0.983519 0.0524963
\(352\) 1.44502 0.0770198
\(353\) 20.0470 1.06700 0.533498 0.845802i \(-0.320877\pi\)
0.533498 + 0.845802i \(0.320877\pi\)
\(354\) −0.132591 −0.00704713
\(355\) −4.84136 −0.256952
\(356\) 0.776461 0.0411523
\(357\) 3.66893 0.194180
\(358\) 31.7131 1.67609
\(359\) −33.8830 −1.78828 −0.894138 0.447791i \(-0.852211\pi\)
−0.894138 + 0.447791i \(0.852211\pi\)
\(360\) −1.05453 −0.0555784
\(361\) 3.51614 0.185060
\(362\) 34.1797 1.79644
\(363\) −7.79917 −0.409350
\(364\) −0.322011 −0.0168780
\(365\) −1.77837 −0.0930843
\(366\) 11.2262 0.586801
\(367\) −1.55099 −0.0809610 −0.0404805 0.999180i \(-0.512889\pi\)
−0.0404805 + 0.999180i \(0.512889\pi\)
\(368\) 14.7548 0.769147
\(369\) 5.04274 0.262514
\(370\) −0.0843264 −0.00438392
\(371\) 3.94529 0.204829
\(372\) 0.374959 0.0194407
\(373\) 5.59834 0.289871 0.144936 0.989441i \(-0.453702\pi\)
0.144936 + 0.989441i \(0.453702\pi\)
\(374\) 4.19837 0.217092
\(375\) −3.82081 −0.197306
\(376\) −21.5428 −1.11099
\(377\) −8.89690 −0.458213
\(378\) −3.35060 −0.172336
\(379\) −3.49594 −0.179574 −0.0897872 0.995961i \(-0.528619\pi\)
−0.0897872 + 0.995961i \(0.528619\pi\)
\(380\) −0.263311 −0.0135076
\(381\) 0.558833 0.0286299
\(382\) −36.1576 −1.84998
\(383\) 23.6240 1.20713 0.603565 0.797314i \(-0.293747\pi\)
0.603565 + 0.797314i \(0.293747\pi\)
\(384\) 12.3735 0.631433
\(385\) 1.58847 0.0809558
\(386\) −17.3721 −0.884217
\(387\) 6.65939 0.338516
\(388\) 0.00725203 0.000368166 0
\(389\) 15.2090 0.771126 0.385563 0.922681i \(-0.374007\pi\)
0.385563 + 0.922681i \(0.374007\pi\)
\(390\) 0.558520 0.0282818
\(391\) 5.54476 0.280411
\(392\) 4.78831 0.241846
\(393\) 21.6051 1.08983
\(394\) −2.98931 −0.150599
\(395\) −1.49050 −0.0749952
\(396\) −0.255925 −0.0128607
\(397\) 12.0872 0.606637 0.303318 0.952889i \(-0.401905\pi\)
0.303318 + 0.952889i \(0.401905\pi\)
\(398\) 30.9046 1.54911
\(399\) 10.8606 0.543710
\(400\) 20.6863 1.03431
\(401\) 6.11032 0.305135 0.152567 0.988293i \(-0.451246\pi\)
0.152567 + 0.988293i \(0.451246\pi\)
\(402\) −13.7959 −0.688079
\(403\) 2.57801 0.128420
\(404\) −1.14964 −0.0571969
\(405\) 0.387918 0.0192758
\(406\) 30.3095 1.50423
\(407\) 0.265668 0.0131687
\(408\) 4.35762 0.215734
\(409\) 13.3281 0.659033 0.329516 0.944150i \(-0.393114\pi\)
0.329516 + 0.944150i \(0.393114\pi\)
\(410\) 2.86367 0.141427
\(411\) 9.15886 0.451773
\(412\) 1.33841 0.0659385
\(413\) 0.207303 0.0102007
\(414\) −5.06368 −0.248866
\(415\) −3.82258 −0.187643
\(416\) −0.794373 −0.0389474
\(417\) 9.19295 0.450181
\(418\) 12.4278 0.607864
\(419\) −18.0114 −0.879917 −0.439958 0.898018i \(-0.645007\pi\)
−0.439958 + 0.898018i \(0.645007\pi\)
\(420\) −0.127007 −0.00619732
\(421\) 14.0404 0.684290 0.342145 0.939647i \(-0.388847\pi\)
0.342145 + 0.939647i \(0.388847\pi\)
\(422\) 27.2271 1.32539
\(423\) 7.92475 0.385315
\(424\) 4.68586 0.227565
\(425\) 7.77377 0.377083
\(426\) −18.2702 −0.885192
\(427\) −17.5518 −0.849392
\(428\) 1.32923 0.0642506
\(429\) −1.75960 −0.0849543
\(430\) 3.78174 0.182371
\(431\) −38.7591 −1.86696 −0.933479 0.358632i \(-0.883243\pi\)
−0.933479 + 0.358632i \(0.883243\pi\)
\(432\) −4.26563 −0.205230
\(433\) −29.1583 −1.40126 −0.700629 0.713526i \(-0.747097\pi\)
−0.700629 + 0.713526i \(0.747097\pi\)
\(434\) −8.78261 −0.421579
\(435\) −3.50910 −0.168249
\(436\) −2.48238 −0.118884
\(437\) 16.4133 0.785156
\(438\) −6.71117 −0.320672
\(439\) −9.37853 −0.447613 −0.223807 0.974634i \(-0.571848\pi\)
−0.223807 + 0.974634i \(0.571848\pi\)
\(440\) 1.88664 0.0899420
\(441\) −1.76143 −0.0838776
\(442\) −2.30798 −0.109779
\(443\) −10.6502 −0.506009 −0.253004 0.967465i \(-0.581419\pi\)
−0.253004 + 0.967465i \(0.581419\pi\)
\(444\) −0.0212417 −0.00100809
\(445\) 2.10561 0.0998155
\(446\) −1.37587 −0.0651491
\(447\) 15.8387 0.749145
\(448\) −16.8201 −0.794674
\(449\) −22.5384 −1.06365 −0.531826 0.846853i \(-0.678494\pi\)
−0.531826 + 0.846853i \(0.678494\pi\)
\(450\) −7.09929 −0.334664
\(451\) −9.02190 −0.424825
\(452\) −1.53410 −0.0721580
\(453\) 9.02723 0.424136
\(454\) −11.9509 −0.560882
\(455\) −0.873232 −0.0409377
\(456\) 12.8992 0.604062
\(457\) 34.9180 1.63340 0.816698 0.577066i \(-0.195802\pi\)
0.816698 + 0.577066i \(0.195802\pi\)
\(458\) −16.9511 −0.792071
\(459\) −1.60300 −0.0748215
\(460\) −0.191943 −0.00894939
\(461\) 28.2073 1.31374 0.656872 0.754002i \(-0.271879\pi\)
0.656872 + 0.754002i \(0.271879\pi\)
\(462\) 5.99451 0.278890
\(463\) −17.6647 −0.820946 −0.410473 0.911873i \(-0.634636\pi\)
−0.410473 + 0.911873i \(0.634636\pi\)
\(464\) 38.5869 1.79135
\(465\) 1.01681 0.0471537
\(466\) −11.5682 −0.535886
\(467\) −18.6212 −0.861688 −0.430844 0.902426i \(-0.641784\pi\)
−0.430844 + 0.902426i \(0.641784\pi\)
\(468\) 0.140690 0.00650342
\(469\) 21.5696 0.995990
\(470\) 4.50031 0.207584
\(471\) −4.12933 −0.190270
\(472\) 0.246215 0.0113330
\(473\) −11.9142 −0.547817
\(474\) −5.62480 −0.258356
\(475\) 23.0115 1.05584
\(476\) 0.524833 0.0240557
\(477\) −1.72374 −0.0789248
\(478\) 23.5131 1.07547
\(479\) 2.54315 0.116200 0.0580998 0.998311i \(-0.481496\pi\)
0.0580998 + 0.998311i \(0.481496\pi\)
\(480\) −0.313316 −0.0143009
\(481\) −0.146046 −0.00665913
\(482\) 13.6369 0.621146
\(483\) 7.91692 0.360232
\(484\) −1.11566 −0.0507116
\(485\) 0.0196661 0.000892992 0
\(486\) 1.46392 0.0664045
\(487\) −1.14047 −0.0516797 −0.0258398 0.999666i \(-0.508226\pi\)
−0.0258398 + 0.999666i \(0.508226\pi\)
\(488\) −20.8465 −0.943675
\(489\) −8.78697 −0.397360
\(490\) −1.00028 −0.0451881
\(491\) −27.6703 −1.24874 −0.624372 0.781127i \(-0.714645\pi\)
−0.624372 + 0.781127i \(0.714645\pi\)
\(492\) 0.721354 0.0325211
\(493\) 14.5007 0.653079
\(494\) −6.83196 −0.307385
\(495\) −0.694020 −0.0311939
\(496\) −11.1811 −0.502047
\(497\) 28.5649 1.28131
\(498\) −14.4255 −0.646423
\(499\) −10.2687 −0.459689 −0.229844 0.973227i \(-0.573822\pi\)
−0.229844 + 0.973227i \(0.573822\pi\)
\(500\) −0.546559 −0.0244429
\(501\) 5.89653 0.263438
\(502\) −30.0907 −1.34301
\(503\) −1.81344 −0.0808574 −0.0404287 0.999182i \(-0.512872\pi\)
−0.0404287 + 0.999182i \(0.512872\pi\)
\(504\) 6.22190 0.277145
\(505\) −3.11761 −0.138732
\(506\) 9.05936 0.402738
\(507\) −12.0327 −0.534391
\(508\) 0.0799400 0.00354676
\(509\) −22.5991 −1.00169 −0.500844 0.865538i \(-0.666977\pi\)
−0.500844 + 0.865538i \(0.666977\pi\)
\(510\) −0.910310 −0.0403092
\(511\) 10.4927 0.464171
\(512\) −19.7463 −0.872671
\(513\) −4.74512 −0.209502
\(514\) −42.1373 −1.85859
\(515\) 3.62950 0.159935
\(516\) 0.952613 0.0419365
\(517\) −14.1781 −0.623551
\(518\) 0.497542 0.0218607
\(519\) −23.0978 −1.01388
\(520\) −1.03715 −0.0454818
\(521\) −7.28990 −0.319377 −0.159688 0.987167i \(-0.551049\pi\)
−0.159688 + 0.987167i \(0.551049\pi\)
\(522\) −13.2426 −0.579611
\(523\) 24.5365 1.07291 0.536453 0.843930i \(-0.319764\pi\)
0.536453 + 0.843930i \(0.319764\pi\)
\(524\) 3.09056 0.135012
\(525\) 11.0995 0.484424
\(526\) −21.0239 −0.916688
\(527\) −4.20179 −0.183033
\(528\) 7.63159 0.332122
\(529\) −11.0354 −0.479798
\(530\) −0.978879 −0.0425198
\(531\) −0.0905729 −0.00393053
\(532\) 1.55359 0.0673565
\(533\) 4.95963 0.214825
\(534\) 7.94609 0.343861
\(535\) 3.60460 0.155841
\(536\) 25.6184 1.10655
\(537\) 21.6632 0.934835
\(538\) 0.419137 0.0180703
\(539\) 3.15135 0.135738
\(540\) 0.0554910 0.00238795
\(541\) −27.8290 −1.19646 −0.598231 0.801324i \(-0.704130\pi\)
−0.598231 + 0.801324i \(0.704130\pi\)
\(542\) 33.8738 1.45501
\(543\) 23.3481 1.00196
\(544\) 1.29472 0.0555106
\(545\) −6.73172 −0.288355
\(546\) −3.29538 −0.141029
\(547\) 33.7277 1.44209 0.721046 0.692887i \(-0.243662\pi\)
0.721046 + 0.692887i \(0.243662\pi\)
\(548\) 1.31016 0.0559671
\(549\) 7.66859 0.327288
\(550\) 12.7012 0.541583
\(551\) 42.9243 1.82864
\(552\) 9.40300 0.400218
\(553\) 8.79423 0.373969
\(554\) −18.8548 −0.801062
\(555\) −0.0576033 −0.00244513
\(556\) 1.31503 0.0557698
\(557\) −31.3138 −1.32681 −0.663404 0.748261i \(-0.730889\pi\)
−0.663404 + 0.748261i \(0.730889\pi\)
\(558\) 3.83723 0.162443
\(559\) 6.54964 0.277020
\(560\) 3.78731 0.160043
\(561\) 2.86790 0.121083
\(562\) −24.2839 −1.02436
\(563\) −32.2048 −1.35727 −0.678635 0.734475i \(-0.737428\pi\)
−0.678635 + 0.734475i \(0.737428\pi\)
\(564\) 1.13362 0.0477340
\(565\) −4.16018 −0.175020
\(566\) −0.481171 −0.0202251
\(567\) −2.28879 −0.0961202
\(568\) 33.9268 1.42354
\(569\) −45.0406 −1.88820 −0.944100 0.329658i \(-0.893066\pi\)
−0.944100 + 0.329658i \(0.893066\pi\)
\(570\) −2.69466 −0.112867
\(571\) −27.9975 −1.17166 −0.585829 0.810435i \(-0.699231\pi\)
−0.585829 + 0.810435i \(0.699231\pi\)
\(572\) −0.251707 −0.0105244
\(573\) −24.6992 −1.03183
\(574\) −16.8962 −0.705233
\(575\) 16.7745 0.699543
\(576\) 7.34888 0.306204
\(577\) −11.4961 −0.478591 −0.239295 0.970947i \(-0.576916\pi\)
−0.239295 + 0.970947i \(0.576916\pi\)
\(578\) −21.1249 −0.878679
\(579\) −11.8669 −0.493171
\(580\) −0.501971 −0.0208432
\(581\) 22.5539 0.935694
\(582\) 0.0742154 0.00307633
\(583\) 3.08393 0.127723
\(584\) 12.4623 0.515695
\(585\) 0.381525 0.0157741
\(586\) 15.1730 0.626790
\(587\) −30.6640 −1.26564 −0.632819 0.774300i \(-0.718102\pi\)
−0.632819 + 0.774300i \(0.718102\pi\)
\(588\) −0.251969 −0.0103910
\(589\) −12.4379 −0.512496
\(590\) −0.0514345 −0.00211753
\(591\) −2.04200 −0.0839966
\(592\) 0.633418 0.0260333
\(593\) −41.7369 −1.71393 −0.856965 0.515374i \(-0.827653\pi\)
−0.856965 + 0.515374i \(0.827653\pi\)
\(594\) −2.61907 −0.107462
\(595\) 1.42325 0.0583474
\(596\) 2.26569 0.0928065
\(597\) 21.1109 0.864012
\(598\) −4.98022 −0.203656
\(599\) −22.8597 −0.934021 −0.467010 0.884252i \(-0.654669\pi\)
−0.467010 + 0.884252i \(0.654669\pi\)
\(600\) 13.1830 0.538195
\(601\) −16.8840 −0.688711 −0.344356 0.938839i \(-0.611903\pi\)
−0.344356 + 0.938839i \(0.611903\pi\)
\(602\) −22.3130 −0.909408
\(603\) −9.42400 −0.383775
\(604\) 1.29133 0.0525433
\(605\) −3.02544 −0.123002
\(606\) −11.7652 −0.477927
\(607\) 2.63279 0.106862 0.0534309 0.998572i \(-0.482984\pi\)
0.0534309 + 0.998572i \(0.482984\pi\)
\(608\) 3.83256 0.155431
\(609\) 20.7044 0.838984
\(610\) 4.35484 0.176322
\(611\) 7.79414 0.315317
\(612\) −0.229306 −0.00926913
\(613\) 32.8318 1.32606 0.663032 0.748591i \(-0.269269\pi\)
0.663032 + 0.748591i \(0.269269\pi\)
\(614\) −7.35756 −0.296927
\(615\) 1.95617 0.0788804
\(616\) −11.1315 −0.448502
\(617\) 9.15201 0.368446 0.184223 0.982884i \(-0.441023\pi\)
0.184223 + 0.982884i \(0.441023\pi\)
\(618\) 13.6969 0.550970
\(619\) 11.0552 0.444345 0.222172 0.975007i \(-0.428685\pi\)
0.222172 + 0.975007i \(0.428685\pi\)
\(620\) 0.145453 0.00584155
\(621\) −3.45899 −0.138805
\(622\) 5.31889 0.213268
\(623\) −12.4235 −0.497737
\(624\) −4.19533 −0.167948
\(625\) 22.7654 0.910617
\(626\) 33.8041 1.35108
\(627\) 8.48943 0.339035
\(628\) −0.590693 −0.0235712
\(629\) 0.238035 0.00949106
\(630\) −1.29976 −0.0517836
\(631\) 31.4339 1.25136 0.625681 0.780079i \(-0.284821\pi\)
0.625681 + 0.780079i \(0.284821\pi\)
\(632\) 10.4450 0.415479
\(633\) 18.5988 0.739237
\(634\) −6.61329 −0.262647
\(635\) 0.216782 0.00860272
\(636\) −0.246578 −0.00977746
\(637\) −1.73240 −0.0686401
\(638\) 23.6921 0.937979
\(639\) −12.4803 −0.493715
\(640\) 4.79991 0.189733
\(641\) −35.0632 −1.38491 −0.692457 0.721459i \(-0.743472\pi\)
−0.692457 + 0.721459i \(0.743472\pi\)
\(642\) 13.6030 0.536866
\(643\) −28.5069 −1.12420 −0.562101 0.827069i \(-0.690007\pi\)
−0.562101 + 0.827069i \(0.690007\pi\)
\(644\) 1.13250 0.0446267
\(645\) 2.58330 0.101717
\(646\) 11.1351 0.438107
\(647\) 5.49463 0.216016 0.108008 0.994150i \(-0.465553\pi\)
0.108008 + 0.994150i \(0.465553\pi\)
\(648\) −2.71842 −0.106790
\(649\) 0.162043 0.00636074
\(650\) −6.98228 −0.273868
\(651\) −5.99940 −0.235135
\(652\) −1.25696 −0.0492263
\(653\) −37.8811 −1.48240 −0.741202 0.671283i \(-0.765744\pi\)
−0.741202 + 0.671283i \(0.765744\pi\)
\(654\) −25.4040 −0.993374
\(655\) 8.38101 0.327473
\(656\) −21.5105 −0.839843
\(657\) −4.58440 −0.178854
\(658\) −26.5527 −1.03513
\(659\) 32.9824 1.28481 0.642406 0.766364i \(-0.277936\pi\)
0.642406 + 0.766364i \(0.277936\pi\)
\(660\) −0.0992782 −0.00386440
\(661\) 3.70894 0.144261 0.0721306 0.997395i \(-0.477020\pi\)
0.0721306 + 0.997395i \(0.477020\pi\)
\(662\) 9.61899 0.373853
\(663\) −1.57658 −0.0612292
\(664\) 26.7875 1.03956
\(665\) 4.21302 0.163374
\(666\) −0.217382 −0.00842337
\(667\) 31.2900 1.21155
\(668\) 0.843487 0.0326355
\(669\) −0.939854 −0.0363368
\(670\) −5.35170 −0.206754
\(671\) −13.7198 −0.529646
\(672\) 1.84862 0.0713122
\(673\) −13.4252 −0.517502 −0.258751 0.965944i \(-0.583311\pi\)
−0.258751 + 0.965944i \(0.583311\pi\)
\(674\) 31.6659 1.21972
\(675\) −4.84952 −0.186658
\(676\) −1.72125 −0.0662020
\(677\) 1.00000 0.0384331
\(678\) −15.6996 −0.602938
\(679\) −0.116034 −0.00445297
\(680\) 1.69040 0.0648240
\(681\) −8.16364 −0.312831
\(682\) −6.86513 −0.262880
\(683\) 11.9448 0.457054 0.228527 0.973538i \(-0.426609\pi\)
0.228527 + 0.973538i \(0.426609\pi\)
\(684\) −0.678780 −0.0259538
\(685\) 3.55289 0.135749
\(686\) 29.3560 1.12082
\(687\) −11.5793 −0.441776
\(688\) −28.4065 −1.08299
\(689\) −1.69533 −0.0645871
\(690\) −1.96429 −0.0747794
\(691\) 41.1418 1.56511 0.782554 0.622583i \(-0.213917\pi\)
0.782554 + 0.622583i \(0.213917\pi\)
\(692\) −3.30409 −0.125603
\(693\) 4.09485 0.155550
\(694\) −2.92299 −0.110955
\(695\) 3.56611 0.135270
\(696\) 24.5908 0.932112
\(697\) −8.08350 −0.306184
\(698\) −25.7139 −0.973285
\(699\) −7.90222 −0.298889
\(700\) 1.58777 0.0600120
\(701\) −34.8834 −1.31753 −0.658765 0.752349i \(-0.728921\pi\)
−0.658765 + 0.752349i \(0.728921\pi\)
\(702\) 1.43979 0.0543413
\(703\) 0.704619 0.0265752
\(704\) −13.1478 −0.495526
\(705\) 3.07416 0.115779
\(706\) 29.3471 1.10449
\(707\) 18.3945 0.691796
\(708\) −0.0129563 −0.000486927 0
\(709\) −9.10734 −0.342033 −0.171017 0.985268i \(-0.554705\pi\)
−0.171017 + 0.985268i \(0.554705\pi\)
\(710\) −7.08733 −0.265983
\(711\) −3.84230 −0.144098
\(712\) −14.7555 −0.552986
\(713\) −9.06674 −0.339552
\(714\) 5.37100 0.201005
\(715\) −0.682582 −0.0255271
\(716\) 3.09887 0.115810
\(717\) 16.0618 0.599840
\(718\) −49.6018 −1.85112
\(719\) 8.80298 0.328296 0.164148 0.986436i \(-0.447513\pi\)
0.164148 + 0.986436i \(0.447513\pi\)
\(720\) −1.65472 −0.0616677
\(721\) −21.4147 −0.797526
\(722\) 5.14733 0.191564
\(723\) 9.31539 0.346443
\(724\) 3.33990 0.124126
\(725\) 43.8687 1.62924
\(726\) −11.4173 −0.423736
\(727\) 41.2941 1.53151 0.765757 0.643130i \(-0.222364\pi\)
0.765757 + 0.643130i \(0.222364\pi\)
\(728\) 6.11935 0.226798
\(729\) 1.00000 0.0370370
\(730\) −2.60339 −0.0963557
\(731\) −10.6750 −0.394829
\(732\) 1.09698 0.0405454
\(733\) 19.0753 0.704564 0.352282 0.935894i \(-0.385406\pi\)
0.352282 + 0.935894i \(0.385406\pi\)
\(734\) −2.27052 −0.0838063
\(735\) −0.683291 −0.0252036
\(736\) 2.79378 0.102980
\(737\) 16.8604 0.621059
\(738\) 7.38214 0.271740
\(739\) 34.9890 1.28709 0.643546 0.765407i \(-0.277463\pi\)
0.643546 + 0.765407i \(0.277463\pi\)
\(740\) −0.00824004 −0.000302910 0
\(741\) −4.66691 −0.171443
\(742\) 5.77557 0.212028
\(743\) −9.84477 −0.361170 −0.180585 0.983559i \(-0.557799\pi\)
−0.180585 + 0.983559i \(0.557799\pi\)
\(744\) −7.12555 −0.261235
\(745\) 6.14412 0.225103
\(746\) 8.19550 0.300059
\(747\) −9.85407 −0.360542
\(748\) 0.410248 0.0150002
\(749\) −21.2679 −0.777110
\(750\) −5.59334 −0.204240
\(751\) 2.32732 0.0849250 0.0424625 0.999098i \(-0.486480\pi\)
0.0424625 + 0.999098i \(0.486480\pi\)
\(752\) −33.8041 −1.23271
\(753\) −20.5549 −0.749063
\(754\) −13.0243 −0.474317
\(755\) 3.50183 0.127445
\(756\) −0.327407 −0.0119077
\(757\) −17.2815 −0.628108 −0.314054 0.949405i \(-0.601687\pi\)
−0.314054 + 0.949405i \(0.601687\pi\)
\(758\) −5.11776 −0.185885
\(759\) 6.18844 0.224626
\(760\) 5.00385 0.181509
\(761\) 15.8739 0.575428 0.287714 0.957716i \(-0.407105\pi\)
0.287714 + 0.957716i \(0.407105\pi\)
\(762\) 0.818084 0.0296361
\(763\) 39.7184 1.43790
\(764\) −3.53318 −0.127826
\(765\) −0.621833 −0.0224824
\(766\) 34.5835 1.24955
\(767\) −0.0890801 −0.00321650
\(768\) 3.41601 0.123265
\(769\) 15.3085 0.552040 0.276020 0.961152i \(-0.410984\pi\)
0.276020 + 0.961152i \(0.410984\pi\)
\(770\) 2.32538 0.0838010
\(771\) −28.7839 −1.03663
\(772\) −1.69753 −0.0610956
\(773\) 15.3167 0.550905 0.275453 0.961315i \(-0.411172\pi\)
0.275453 + 0.961315i \(0.411172\pi\)
\(774\) 9.74879 0.350413
\(775\) −12.7116 −0.456614
\(776\) −0.137814 −0.00494725
\(777\) 0.339871 0.0121928
\(778\) 22.2647 0.798227
\(779\) −23.9284 −0.857323
\(780\) 0.0545764 0.00195415
\(781\) 22.3284 0.798974
\(782\) 8.11706 0.290266
\(783\) −9.04599 −0.323277
\(784\) 7.51361 0.268343
\(785\) −1.60184 −0.0571723
\(786\) 31.6280 1.12813
\(787\) −55.7092 −1.98582 −0.992909 0.118875i \(-0.962071\pi\)
−0.992909 + 0.118875i \(0.962071\pi\)
\(788\) −0.292104 −0.0104058
\(789\) −14.3614 −0.511281
\(790\) −2.18197 −0.0776308
\(791\) 24.5459 0.872750
\(792\) 4.86349 0.172817
\(793\) 7.54220 0.267832
\(794\) 17.6946 0.627957
\(795\) −0.668672 −0.0237153
\(796\) 3.01987 0.107037
\(797\) 2.22098 0.0786710 0.0393355 0.999226i \(-0.487476\pi\)
0.0393355 + 0.999226i \(0.487476\pi\)
\(798\) 15.8990 0.562818
\(799\) −12.7034 −0.449413
\(800\) 3.91688 0.138483
\(801\) 5.42797 0.191788
\(802\) 8.94500 0.315859
\(803\) 8.20189 0.289438
\(804\) −1.34808 −0.0475433
\(805\) 3.07112 0.108243
\(806\) 3.77398 0.132933
\(807\) 0.286312 0.0100787
\(808\) 21.8473 0.768586
\(809\) 4.24804 0.149353 0.0746765 0.997208i \(-0.476208\pi\)
0.0746765 + 0.997208i \(0.476208\pi\)
\(810\) 0.567880 0.0199533
\(811\) −33.5125 −1.17678 −0.588392 0.808576i \(-0.700239\pi\)
−0.588392 + 0.808576i \(0.700239\pi\)
\(812\) 2.96172 0.103936
\(813\) 23.1392 0.811528
\(814\) 0.388915 0.0136315
\(815\) −3.40863 −0.119399
\(816\) 6.83780 0.239371
\(817\) −31.5996 −1.10553
\(818\) 19.5112 0.682194
\(819\) −2.25107 −0.0786587
\(820\) 0.279826 0.00977196
\(821\) 18.8922 0.659341 0.329670 0.944096i \(-0.393062\pi\)
0.329670 + 0.944096i \(0.393062\pi\)
\(822\) 13.4078 0.467650
\(823\) −0.253189 −0.00882561 −0.00441280 0.999990i \(-0.501405\pi\)
−0.00441280 + 0.999990i \(0.501405\pi\)
\(824\) −25.4345 −0.886051
\(825\) 8.67621 0.302067
\(826\) 0.303473 0.0105592
\(827\) −26.9985 −0.938830 −0.469415 0.882978i \(-0.655535\pi\)
−0.469415 + 0.882978i \(0.655535\pi\)
\(828\) −0.494802 −0.0171956
\(829\) −57.0561 −1.98164 −0.990821 0.135183i \(-0.956838\pi\)
−0.990821 + 0.135183i \(0.956838\pi\)
\(830\) −5.59593 −0.194237
\(831\) −12.8797 −0.446791
\(832\) 7.22776 0.250578
\(833\) 2.82357 0.0978308
\(834\) 13.4577 0.466002
\(835\) 2.28737 0.0791578
\(836\) 1.21440 0.0420008
\(837\) 2.62121 0.0906022
\(838\) −26.3672 −0.910841
\(839\) −38.4221 −1.32648 −0.663240 0.748407i \(-0.730819\pi\)
−0.663240 + 0.748407i \(0.730819\pi\)
\(840\) 2.41359 0.0832768
\(841\) 52.8299 1.82172
\(842\) 20.5540 0.708338
\(843\) −16.5883 −0.571333
\(844\) 2.66052 0.0915790
\(845\) −4.66770 −0.160574
\(846\) 11.6012 0.398856
\(847\) 17.8507 0.613356
\(848\) 7.35286 0.252498
\(849\) −0.328687 −0.0112805
\(850\) 11.3801 0.390336
\(851\) 0.513638 0.0176073
\(852\) −1.78529 −0.0611630
\(853\) −10.3269 −0.353587 −0.176793 0.984248i \(-0.556572\pi\)
−0.176793 + 0.984248i \(0.556572\pi\)
\(854\) −25.6944 −0.879243
\(855\) −1.84072 −0.0629513
\(856\) −25.2600 −0.863370
\(857\) 11.3429 0.387467 0.193734 0.981054i \(-0.437940\pi\)
0.193734 + 0.981054i \(0.437940\pi\)
\(858\) −2.57591 −0.0879400
\(859\) −8.77050 −0.299245 −0.149623 0.988743i \(-0.547806\pi\)
−0.149623 + 0.988743i \(0.547806\pi\)
\(860\) 0.369536 0.0126011
\(861\) −11.5418 −0.393343
\(862\) −56.7400 −1.93257
\(863\) −32.5706 −1.10872 −0.554359 0.832278i \(-0.687036\pi\)
−0.554359 + 0.832278i \(0.687036\pi\)
\(864\) −0.807685 −0.0274780
\(865\) −8.96005 −0.304651
\(866\) −42.6853 −1.45050
\(867\) −14.4304 −0.490082
\(868\) −0.858202 −0.0291293
\(869\) 6.87421 0.233192
\(870\) −5.13703 −0.174162
\(871\) −9.26868 −0.314057
\(872\) 47.1740 1.59751
\(873\) 0.0506965 0.00171582
\(874\) 24.0277 0.812750
\(875\) 8.74504 0.295636
\(876\) −0.655789 −0.0221571
\(877\) 52.5225 1.77356 0.886780 0.462192i \(-0.152937\pi\)
0.886780 + 0.462192i \(0.152937\pi\)
\(878\) −13.7294 −0.463344
\(879\) 10.3647 0.349591
\(880\) 2.96044 0.0997963
\(881\) 39.2658 1.32290 0.661450 0.749989i \(-0.269941\pi\)
0.661450 + 0.749989i \(0.269941\pi\)
\(882\) −2.57858 −0.0868254
\(883\) −23.1714 −0.779780 −0.389890 0.920862i \(-0.627487\pi\)
−0.389890 + 0.920862i \(0.627487\pi\)
\(884\) −0.225526 −0.00758528
\(885\) −0.0351349 −0.00118105
\(886\) −15.5911 −0.523792
\(887\) 32.1376 1.07907 0.539537 0.841962i \(-0.318599\pi\)
0.539537 + 0.841962i \(0.318599\pi\)
\(888\) 0.403667 0.0135462
\(889\) −1.27905 −0.0428980
\(890\) 3.08244 0.103323
\(891\) −1.78909 −0.0599367
\(892\) −0.134444 −0.00450152
\(893\) −37.6039 −1.25837
\(894\) 23.1865 0.775473
\(895\) 8.40354 0.280900
\(896\) −28.3204 −0.946118
\(897\) −3.40199 −0.113589
\(898\) −32.9943 −1.10103
\(899\) −23.7114 −0.790820
\(900\) −0.693714 −0.0231238
\(901\) 2.76316 0.0920541
\(902\) −13.2073 −0.439755
\(903\) −15.2420 −0.507221
\(904\) 29.1533 0.969626
\(905\) 9.05716 0.301070
\(906\) 13.2151 0.439042
\(907\) 14.0634 0.466967 0.233483 0.972361i \(-0.424988\pi\)
0.233483 + 0.972361i \(0.424988\pi\)
\(908\) −1.16779 −0.0387545
\(909\) −8.03677 −0.266563
\(910\) −1.27834 −0.0423765
\(911\) −5.55457 −0.184031 −0.0920155 0.995758i \(-0.529331\pi\)
−0.0920155 + 0.995758i \(0.529331\pi\)
\(912\) 20.2409 0.670244
\(913\) 17.6298 0.583461
\(914\) 51.1170 1.69080
\(915\) 2.97479 0.0983435
\(916\) −1.65639 −0.0547287
\(917\) −49.4495 −1.63297
\(918\) −2.34665 −0.0774511
\(919\) 21.0669 0.694933 0.347466 0.937692i \(-0.387042\pi\)
0.347466 + 0.937692i \(0.387042\pi\)
\(920\) 3.64760 0.120258
\(921\) −5.02595 −0.165611
\(922\) 41.2931 1.35992
\(923\) −12.2747 −0.404025
\(924\) 0.585760 0.0192701
\(925\) 0.720122 0.0236775
\(926\) −25.8596 −0.849798
\(927\) 9.35634 0.307302
\(928\) 7.30631 0.239841
\(929\) −9.97010 −0.327108 −0.163554 0.986534i \(-0.552296\pi\)
−0.163554 + 0.986534i \(0.552296\pi\)
\(930\) 1.48853 0.0488109
\(931\) 8.35819 0.273929
\(932\) −1.13040 −0.0370274
\(933\) 3.63333 0.118950
\(934\) −27.2599 −0.891972
\(935\) 1.11251 0.0363831
\(936\) −2.67362 −0.0873899
\(937\) 24.7208 0.807594 0.403797 0.914849i \(-0.367690\pi\)
0.403797 + 0.914849i \(0.367690\pi\)
\(938\) 31.5760 1.03099
\(939\) 23.0916 0.753565
\(940\) 0.439752 0.0143431
\(941\) 40.7105 1.32712 0.663562 0.748122i \(-0.269044\pi\)
0.663562 + 0.748122i \(0.269044\pi\)
\(942\) −6.04499 −0.196957
\(943\) −17.4428 −0.568016
\(944\) 0.386351 0.0125746
\(945\) −0.887865 −0.0288822
\(946\) −17.4414 −0.567070
\(947\) 18.8055 0.611096 0.305548 0.952177i \(-0.401160\pi\)
0.305548 + 0.952177i \(0.401160\pi\)
\(948\) −0.549634 −0.0178513
\(949\) −4.50884 −0.146363
\(950\) 33.6869 1.09295
\(951\) −4.51754 −0.146491
\(952\) −9.97369 −0.323249
\(953\) −14.7613 −0.478166 −0.239083 0.970999i \(-0.576847\pi\)
−0.239083 + 0.970999i \(0.576847\pi\)
\(954\) −2.52341 −0.0816986
\(955\) −9.58129 −0.310043
\(956\) 2.29761 0.0743101
\(957\) 16.1841 0.523156
\(958\) 3.72296 0.120283
\(959\) −20.9627 −0.676922
\(960\) 2.85077 0.0920081
\(961\) −24.1293 −0.778364
\(962\) −0.213799 −0.00689316
\(963\) 9.29217 0.299436
\(964\) 1.33255 0.0429185
\(965\) −4.60338 −0.148188
\(966\) 11.5897 0.372893
\(967\) 34.4322 1.10727 0.553633 0.832761i \(-0.313241\pi\)
0.553633 + 0.832761i \(0.313241\pi\)
\(968\) 21.2014 0.681439
\(969\) 7.60642 0.244353
\(970\) 0.0287895 0.000924375 0
\(971\) 28.1893 0.904639 0.452319 0.891856i \(-0.350597\pi\)
0.452319 + 0.891856i \(0.350597\pi\)
\(972\) 0.143048 0.00458827
\(973\) −21.0407 −0.674535
\(974\) −1.66955 −0.0534959
\(975\) −4.76959 −0.152749
\(976\) −32.7114 −1.04707
\(977\) −31.4468 −1.00607 −0.503036 0.864265i \(-0.667784\pi\)
−0.503036 + 0.864265i \(0.667784\pi\)
\(978\) −12.8634 −0.411326
\(979\) −9.71112 −0.310369
\(980\) −0.0977434 −0.00312230
\(981\) −17.3534 −0.554053
\(982\) −40.5070 −1.29263
\(983\) −6.88201 −0.219502 −0.109751 0.993959i \(-0.535005\pi\)
−0.109751 + 0.993959i \(0.535005\pi\)
\(984\) −13.7083 −0.437004
\(985\) −0.792129 −0.0252393
\(986\) 21.2278 0.676031
\(987\) −18.1381 −0.577342
\(988\) −0.667593 −0.0212389
\(989\) −23.0348 −0.732464
\(990\) −1.01599 −0.0322902
\(991\) 21.3698 0.678833 0.339416 0.940636i \(-0.389770\pi\)
0.339416 + 0.940636i \(0.389770\pi\)
\(992\) −2.11711 −0.0672183
\(993\) 6.57073 0.208516
\(994\) 41.8166 1.32634
\(995\) 8.18931 0.259619
\(996\) −1.40961 −0.0446651
\(997\) 15.2851 0.484083 0.242041 0.970266i \(-0.422183\pi\)
0.242041 + 0.970266i \(0.422183\pi\)
\(998\) −15.0325 −0.475844
\(999\) −0.148493 −0.00469812
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2031.2.a.g.1.16 18
3.2 odd 2 6093.2.a.l.1.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.2.a.g.1.16 18 1.1 even 1 trivial
6093.2.a.l.1.3 18 3.2 odd 2