Properties

Label 6093.2.a.l.1.3
Level $6093$
Weight $2$
Character 6093.1
Self dual yes
Analytic conductor $48.653$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6093,2,Mod(1,6093)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6093, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6093.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6093 = 3^{2} \cdot 677 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6093.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6528499516\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 7 x^{17} + 99 x^{15} - 148 x^{14} - 514 x^{13} + 1204 x^{12} + 1143 x^{11} - 4191 x^{10} + \cdots + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2031)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.46392\) of defining polynomial
Character \(\chi\) \(=\) 6093.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46392 q^{2} +0.143048 q^{4} -0.387918 q^{5} -2.28879 q^{7} +2.71842 q^{8} +0.567880 q^{10} +1.78909 q^{11} +0.983519 q^{13} +3.35060 q^{14} -4.26563 q^{16} +1.60300 q^{17} -4.74512 q^{19} -0.0554910 q^{20} -2.61907 q^{22} +3.45899 q^{23} -4.84952 q^{25} -1.43979 q^{26} -0.327407 q^{28} +9.04599 q^{29} +2.62121 q^{31} +0.807685 q^{32} -2.34665 q^{34} +0.887865 q^{35} -0.148493 q^{37} +6.94645 q^{38} -1.05453 q^{40} -5.04274 q^{41} +6.65939 q^{43} +0.255925 q^{44} -5.06368 q^{46} -7.92475 q^{47} -1.76143 q^{49} +7.09929 q^{50} +0.140690 q^{52} +1.72374 q^{53} -0.694020 q^{55} -6.22190 q^{56} -13.2426 q^{58} +0.0905729 q^{59} +7.66859 q^{61} -3.83723 q^{62} +7.34888 q^{64} -0.381525 q^{65} -9.42400 q^{67} +0.229306 q^{68} -1.29976 q^{70} +12.4803 q^{71} -4.58440 q^{73} +0.217382 q^{74} -0.678780 q^{76} -4.09485 q^{77} -3.84230 q^{79} +1.65472 q^{80} +7.38214 q^{82} +9.85407 q^{83} -0.621833 q^{85} -9.74879 q^{86} +4.86349 q^{88} -5.42797 q^{89} -2.25107 q^{91} +0.494802 q^{92} +11.6012 q^{94} +1.84072 q^{95} +0.0506965 q^{97} +2.57858 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 7 q^{2} + 13 q^{4} + 13 q^{5} - 3 q^{7} + 18 q^{8} - 6 q^{10} + 26 q^{11} - 11 q^{13} + 11 q^{14} - q^{16} + 34 q^{17} - 2 q^{19} + 10 q^{20} + 8 q^{22} + 35 q^{23} - 5 q^{25} + 17 q^{26} - 5 q^{28}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46392 −1.03514 −0.517572 0.855640i \(-0.673164\pi\)
−0.517572 + 0.855640i \(0.673164\pi\)
\(3\) 0 0
\(4\) 0.143048 0.0715240
\(5\) −0.387918 −0.173482 −0.0867412 0.996231i \(-0.527645\pi\)
−0.0867412 + 0.996231i \(0.527645\pi\)
\(6\) 0 0
\(7\) −2.28879 −0.865082 −0.432541 0.901614i \(-0.642383\pi\)
−0.432541 + 0.901614i \(0.642383\pi\)
\(8\) 2.71842 0.961107
\(9\) 0 0
\(10\) 0.567880 0.179579
\(11\) 1.78909 0.539430 0.269715 0.962940i \(-0.413070\pi\)
0.269715 + 0.962940i \(0.413070\pi\)
\(12\) 0 0
\(13\) 0.983519 0.272779 0.136389 0.990655i \(-0.456450\pi\)
0.136389 + 0.990655i \(0.456450\pi\)
\(14\) 3.35060 0.895485
\(15\) 0 0
\(16\) −4.26563 −1.06641
\(17\) 1.60300 0.388784 0.194392 0.980924i \(-0.437727\pi\)
0.194392 + 0.980924i \(0.437727\pi\)
\(18\) 0 0
\(19\) −4.74512 −1.08860 −0.544302 0.838889i \(-0.683206\pi\)
−0.544302 + 0.838889i \(0.683206\pi\)
\(20\) −0.0554910 −0.0124082
\(21\) 0 0
\(22\) −2.61907 −0.558388
\(23\) 3.45899 0.721250 0.360625 0.932711i \(-0.382563\pi\)
0.360625 + 0.932711i \(0.382563\pi\)
\(24\) 0 0
\(25\) −4.84952 −0.969904
\(26\) −1.43979 −0.282366
\(27\) 0 0
\(28\) −0.327407 −0.0618742
\(29\) 9.04599 1.67980 0.839899 0.542743i \(-0.182614\pi\)
0.839899 + 0.542743i \(0.182614\pi\)
\(30\) 0 0
\(31\) 2.62121 0.470783 0.235391 0.971901i \(-0.424363\pi\)
0.235391 + 0.971901i \(0.424363\pi\)
\(32\) 0.807685 0.142780
\(33\) 0 0
\(34\) −2.34665 −0.402448
\(35\) 0.887865 0.150077
\(36\) 0 0
\(37\) −0.148493 −0.0244122 −0.0122061 0.999926i \(-0.503885\pi\)
−0.0122061 + 0.999926i \(0.503885\pi\)
\(38\) 6.94645 1.12686
\(39\) 0 0
\(40\) −1.05453 −0.166735
\(41\) −5.04274 −0.787543 −0.393772 0.919208i \(-0.628830\pi\)
−0.393772 + 0.919208i \(0.628830\pi\)
\(42\) 0 0
\(43\) 6.65939 1.01555 0.507774 0.861490i \(-0.330468\pi\)
0.507774 + 0.861490i \(0.330468\pi\)
\(44\) 0.255925 0.0385822
\(45\) 0 0
\(46\) −5.06368 −0.746598
\(47\) −7.92475 −1.15594 −0.577972 0.816057i \(-0.696156\pi\)
−0.577972 + 0.816057i \(0.696156\pi\)
\(48\) 0 0
\(49\) −1.76143 −0.251633
\(50\) 7.09929 1.00399
\(51\) 0 0
\(52\) 0.140690 0.0195102
\(53\) 1.72374 0.236774 0.118387 0.992968i \(-0.462228\pi\)
0.118387 + 0.992968i \(0.462228\pi\)
\(54\) 0 0
\(55\) −0.694020 −0.0935817
\(56\) −6.22190 −0.831436
\(57\) 0 0
\(58\) −13.2426 −1.73883
\(59\) 0.0905729 0.0117916 0.00589579 0.999983i \(-0.498123\pi\)
0.00589579 + 0.999983i \(0.498123\pi\)
\(60\) 0 0
\(61\) 7.66859 0.981863 0.490931 0.871198i \(-0.336657\pi\)
0.490931 + 0.871198i \(0.336657\pi\)
\(62\) −3.83723 −0.487328
\(63\) 0 0
\(64\) 7.34888 0.918611
\(65\) −0.381525 −0.0473224
\(66\) 0 0
\(67\) −9.42400 −1.15132 −0.575662 0.817688i \(-0.695256\pi\)
−0.575662 + 0.817688i \(0.695256\pi\)
\(68\) 0.229306 0.0278074
\(69\) 0 0
\(70\) −1.29976 −0.155351
\(71\) 12.4803 1.48114 0.740572 0.671977i \(-0.234555\pi\)
0.740572 + 0.671977i \(0.234555\pi\)
\(72\) 0 0
\(73\) −4.58440 −0.536563 −0.268282 0.963341i \(-0.586456\pi\)
−0.268282 + 0.963341i \(0.586456\pi\)
\(74\) 0.217382 0.0252701
\(75\) 0 0
\(76\) −0.678780 −0.0778614
\(77\) −4.09485 −0.466651
\(78\) 0 0
\(79\) −3.84230 −0.432293 −0.216146 0.976361i \(-0.569349\pi\)
−0.216146 + 0.976361i \(0.569349\pi\)
\(80\) 1.65472 0.185003
\(81\) 0 0
\(82\) 7.38214 0.815221
\(83\) 9.85407 1.08162 0.540812 0.841143i \(-0.318117\pi\)
0.540812 + 0.841143i \(0.318117\pi\)
\(84\) 0 0
\(85\) −0.621833 −0.0674472
\(86\) −9.74879 −1.05124
\(87\) 0 0
\(88\) 4.86349 0.518450
\(89\) −5.42797 −0.575364 −0.287682 0.957726i \(-0.592885\pi\)
−0.287682 + 0.957726i \(0.592885\pi\)
\(90\) 0 0
\(91\) −2.25107 −0.235976
\(92\) 0.494802 0.0515867
\(93\) 0 0
\(94\) 11.6012 1.19657
\(95\) 1.84072 0.188854
\(96\) 0 0
\(97\) 0.0506965 0.00514745 0.00257372 0.999997i \(-0.499181\pi\)
0.00257372 + 0.999997i \(0.499181\pi\)
\(98\) 2.57858 0.260476
\(99\) 0 0
\(100\) −0.693714 −0.0693714
\(101\) 8.03677 0.799689 0.399844 0.916583i \(-0.369064\pi\)
0.399844 + 0.916583i \(0.369064\pi\)
\(102\) 0 0
\(103\) 9.35634 0.921907 0.460954 0.887424i \(-0.347507\pi\)
0.460954 + 0.887424i \(0.347507\pi\)
\(104\) 2.67362 0.262170
\(105\) 0 0
\(106\) −2.52341 −0.245096
\(107\) −9.29217 −0.898308 −0.449154 0.893454i \(-0.648275\pi\)
−0.449154 + 0.893454i \(0.648275\pi\)
\(108\) 0 0
\(109\) −17.3534 −1.66216 −0.831079 0.556154i \(-0.812277\pi\)
−0.831079 + 0.556154i \(0.812277\pi\)
\(110\) 1.01599 0.0968705
\(111\) 0 0
\(112\) 9.76315 0.922531
\(113\) 10.7244 1.00886 0.504432 0.863452i \(-0.331702\pi\)
0.504432 + 0.863452i \(0.331702\pi\)
\(114\) 0 0
\(115\) −1.34181 −0.125124
\(116\) 1.29401 0.120146
\(117\) 0 0
\(118\) −0.132591 −0.0122060
\(119\) −3.66893 −0.336330
\(120\) 0 0
\(121\) −7.79917 −0.709015
\(122\) −11.2262 −1.01637
\(123\) 0 0
\(124\) 0.374959 0.0336723
\(125\) 3.82081 0.341744
\(126\) 0 0
\(127\) 0.558833 0.0495884 0.0247942 0.999693i \(-0.492107\pi\)
0.0247942 + 0.999693i \(0.492107\pi\)
\(128\) −12.3735 −1.09367
\(129\) 0 0
\(130\) 0.558520 0.0489855
\(131\) −21.6051 −1.88764 −0.943822 0.330453i \(-0.892798\pi\)
−0.943822 + 0.330453i \(0.892798\pi\)
\(132\) 0 0
\(133\) 10.8606 0.941733
\(134\) 13.7959 1.19179
\(135\) 0 0
\(136\) 4.35762 0.373663
\(137\) −9.15886 −0.782494 −0.391247 0.920286i \(-0.627956\pi\)
−0.391247 + 0.920286i \(0.627956\pi\)
\(138\) 0 0
\(139\) 9.19295 0.779736 0.389868 0.920871i \(-0.372521\pi\)
0.389868 + 0.920871i \(0.372521\pi\)
\(140\) 0.127007 0.0107341
\(141\) 0 0
\(142\) −18.2702 −1.53320
\(143\) 1.75960 0.147145
\(144\) 0 0
\(145\) −3.50910 −0.291415
\(146\) 6.71117 0.555421
\(147\) 0 0
\(148\) −0.0212417 −0.00174606
\(149\) −15.8387 −1.29756 −0.648778 0.760978i \(-0.724720\pi\)
−0.648778 + 0.760978i \(0.724720\pi\)
\(150\) 0 0
\(151\) 9.02723 0.734625 0.367313 0.930098i \(-0.380278\pi\)
0.367313 + 0.930098i \(0.380278\pi\)
\(152\) −12.8992 −1.04627
\(153\) 0 0
\(154\) 5.99451 0.483052
\(155\) −1.01681 −0.0816725
\(156\) 0 0
\(157\) −4.12933 −0.329557 −0.164778 0.986331i \(-0.552691\pi\)
−0.164778 + 0.986331i \(0.552691\pi\)
\(158\) 5.62480 0.447485
\(159\) 0 0
\(160\) −0.313316 −0.0247698
\(161\) −7.91692 −0.623941
\(162\) 0 0
\(163\) −8.78697 −0.688249 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(164\) −0.721354 −0.0563283
\(165\) 0 0
\(166\) −14.4255 −1.11964
\(167\) −5.89653 −0.456287 −0.228144 0.973627i \(-0.573266\pi\)
−0.228144 + 0.973627i \(0.573266\pi\)
\(168\) 0 0
\(169\) −12.0327 −0.925592
\(170\) 0.910310 0.0698176
\(171\) 0 0
\(172\) 0.952613 0.0726361
\(173\) 23.0978 1.75609 0.878045 0.478577i \(-0.158847\pi\)
0.878045 + 0.478577i \(0.158847\pi\)
\(174\) 0 0
\(175\) 11.0995 0.839047
\(176\) −7.63159 −0.575253
\(177\) 0 0
\(178\) 7.94609 0.595585
\(179\) −21.6632 −1.61918 −0.809591 0.586995i \(-0.800311\pi\)
−0.809591 + 0.586995i \(0.800311\pi\)
\(180\) 0 0
\(181\) 23.3481 1.73545 0.867726 0.497044i \(-0.165581\pi\)
0.867726 + 0.497044i \(0.165581\pi\)
\(182\) 3.29538 0.244270
\(183\) 0 0
\(184\) 9.40300 0.693198
\(185\) 0.0576033 0.00423508
\(186\) 0 0
\(187\) 2.86790 0.209722
\(188\) −1.13362 −0.0826777
\(189\) 0 0
\(190\) −2.69466 −0.195491
\(191\) 24.6992 1.78717 0.893587 0.448890i \(-0.148181\pi\)
0.893587 + 0.448890i \(0.148181\pi\)
\(192\) 0 0
\(193\) −11.8669 −0.854197 −0.427098 0.904205i \(-0.640464\pi\)
−0.427098 + 0.904205i \(0.640464\pi\)
\(194\) −0.0742154 −0.00532835
\(195\) 0 0
\(196\) −0.251969 −0.0179978
\(197\) 2.04200 0.145486 0.0727432 0.997351i \(-0.476825\pi\)
0.0727432 + 0.997351i \(0.476825\pi\)
\(198\) 0 0
\(199\) 21.1109 1.49651 0.748256 0.663410i \(-0.230891\pi\)
0.748256 + 0.663410i \(0.230891\pi\)
\(200\) −13.1830 −0.932181
\(201\) 0 0
\(202\) −11.7652 −0.827793
\(203\) −20.7044 −1.45316
\(204\) 0 0
\(205\) 1.95617 0.136625
\(206\) −13.6969 −0.954307
\(207\) 0 0
\(208\) −4.19533 −0.290894
\(209\) −8.48943 −0.587226
\(210\) 0 0
\(211\) 18.5988 1.28040 0.640198 0.768210i \(-0.278852\pi\)
0.640198 + 0.768210i \(0.278852\pi\)
\(212\) 0.246578 0.0169351
\(213\) 0 0
\(214\) 13.6030 0.929879
\(215\) −2.58330 −0.176180
\(216\) 0 0
\(217\) −5.99940 −0.407266
\(218\) 25.4040 1.72057
\(219\) 0 0
\(220\) −0.0992782 −0.00669334
\(221\) 1.57658 0.106052
\(222\) 0 0
\(223\) −0.939854 −0.0629372 −0.0314686 0.999505i \(-0.510018\pi\)
−0.0314686 + 0.999505i \(0.510018\pi\)
\(224\) −1.84862 −0.123516
\(225\) 0 0
\(226\) −15.6996 −1.04432
\(227\) 8.16364 0.541840 0.270920 0.962602i \(-0.412672\pi\)
0.270920 + 0.962602i \(0.412672\pi\)
\(228\) 0 0
\(229\) −11.5793 −0.765179 −0.382589 0.923918i \(-0.624968\pi\)
−0.382589 + 0.923918i \(0.624968\pi\)
\(230\) 1.96429 0.129522
\(231\) 0 0
\(232\) 24.5908 1.61446
\(233\) 7.90222 0.517692 0.258846 0.965919i \(-0.416658\pi\)
0.258846 + 0.965919i \(0.416658\pi\)
\(234\) 0 0
\(235\) 3.07416 0.200536
\(236\) 0.0129563 0.000843382 0
\(237\) 0 0
\(238\) 5.37100 0.348150
\(239\) −16.0618 −1.03895 −0.519476 0.854485i \(-0.673873\pi\)
−0.519476 + 0.854485i \(0.673873\pi\)
\(240\) 0 0
\(241\) 9.31539 0.600057 0.300029 0.953930i \(-0.403004\pi\)
0.300029 + 0.953930i \(0.403004\pi\)
\(242\) 11.4173 0.733933
\(243\) 0 0
\(244\) 1.09698 0.0702268
\(245\) 0.683291 0.0436539
\(246\) 0 0
\(247\) −4.66691 −0.296948
\(248\) 7.12555 0.452473
\(249\) 0 0
\(250\) −5.59334 −0.353754
\(251\) 20.5549 1.29742 0.648708 0.761038i \(-0.275310\pi\)
0.648708 + 0.761038i \(0.275310\pi\)
\(252\) 0 0
\(253\) 6.18844 0.389064
\(254\) −0.818084 −0.0513312
\(255\) 0 0
\(256\) 3.41601 0.213501
\(257\) 28.7839 1.79549 0.897747 0.440512i \(-0.145203\pi\)
0.897747 + 0.440512i \(0.145203\pi\)
\(258\) 0 0
\(259\) 0.339871 0.0211185
\(260\) −0.0545764 −0.00338468
\(261\) 0 0
\(262\) 31.6280 1.95398
\(263\) 14.3614 0.885565 0.442782 0.896629i \(-0.353991\pi\)
0.442782 + 0.896629i \(0.353991\pi\)
\(264\) 0 0
\(265\) −0.668672 −0.0410762
\(266\) −15.8990 −0.974829
\(267\) 0 0
\(268\) −1.34808 −0.0823474
\(269\) −0.286312 −0.0174568 −0.00872839 0.999962i \(-0.502778\pi\)
−0.00872839 + 0.999962i \(0.502778\pi\)
\(270\) 0 0
\(271\) 23.1392 1.40561 0.702804 0.711384i \(-0.251931\pi\)
0.702804 + 0.711384i \(0.251931\pi\)
\(272\) −6.83780 −0.414603
\(273\) 0 0
\(274\) 13.4078 0.809994
\(275\) −8.67621 −0.523195
\(276\) 0 0
\(277\) −12.8797 −0.773865 −0.386932 0.922108i \(-0.626465\pi\)
−0.386932 + 0.922108i \(0.626465\pi\)
\(278\) −13.4577 −0.807139
\(279\) 0 0
\(280\) 2.41359 0.144240
\(281\) 16.5883 0.989578 0.494789 0.869013i \(-0.335245\pi\)
0.494789 + 0.869013i \(0.335245\pi\)
\(282\) 0 0
\(283\) −0.328687 −0.0195384 −0.00976922 0.999952i \(-0.503110\pi\)
−0.00976922 + 0.999952i \(0.503110\pi\)
\(284\) 1.78529 0.105937
\(285\) 0 0
\(286\) −2.57591 −0.152317
\(287\) 11.5418 0.681290
\(288\) 0 0
\(289\) −14.4304 −0.848847
\(290\) 5.13703 0.301657
\(291\) 0 0
\(292\) −0.655789 −0.0383772
\(293\) −10.3647 −0.605510 −0.302755 0.953068i \(-0.597906\pi\)
−0.302755 + 0.953068i \(0.597906\pi\)
\(294\) 0 0
\(295\) −0.0351349 −0.00204563
\(296\) −0.403667 −0.0234627
\(297\) 0 0
\(298\) 23.1865 1.34316
\(299\) 3.40199 0.196742
\(300\) 0 0
\(301\) −15.2420 −0.878533
\(302\) −13.2151 −0.760443
\(303\) 0 0
\(304\) 20.2409 1.16090
\(305\) −2.97479 −0.170336
\(306\) 0 0
\(307\) −5.02595 −0.286846 −0.143423 0.989661i \(-0.545811\pi\)
−0.143423 + 0.989661i \(0.545811\pi\)
\(308\) −0.585760 −0.0333768
\(309\) 0 0
\(310\) 1.48853 0.0845429
\(311\) −3.63333 −0.206027 −0.103014 0.994680i \(-0.532849\pi\)
−0.103014 + 0.994680i \(0.532849\pi\)
\(312\) 0 0
\(313\) 23.0916 1.30521 0.652606 0.757697i \(-0.273676\pi\)
0.652606 + 0.757697i \(0.273676\pi\)
\(314\) 6.04499 0.341139
\(315\) 0 0
\(316\) −0.549634 −0.0309193
\(317\) 4.51754 0.253730 0.126865 0.991920i \(-0.459508\pi\)
0.126865 + 0.991920i \(0.459508\pi\)
\(318\) 0 0
\(319\) 16.1841 0.906133
\(320\) −2.85077 −0.159363
\(321\) 0 0
\(322\) 11.5897 0.645869
\(323\) −7.60642 −0.423232
\(324\) 0 0
\(325\) −4.76959 −0.264569
\(326\) 12.8634 0.712437
\(327\) 0 0
\(328\) −13.7083 −0.756913
\(329\) 18.1381 0.999986
\(330\) 0 0
\(331\) 6.57073 0.361160 0.180580 0.983560i \(-0.442203\pi\)
0.180580 + 0.983560i \(0.442203\pi\)
\(332\) 1.40961 0.0773622
\(333\) 0 0
\(334\) 8.63202 0.472323
\(335\) 3.65574 0.199735
\(336\) 0 0
\(337\) 21.6310 1.17831 0.589157 0.808019i \(-0.299460\pi\)
0.589157 + 0.808019i \(0.299460\pi\)
\(338\) 17.6148 0.958121
\(339\) 0 0
\(340\) −0.0889519 −0.00482410
\(341\) 4.68957 0.253954
\(342\) 0 0
\(343\) 20.0531 1.08277
\(344\) 18.1030 0.976050
\(345\) 0 0
\(346\) −33.8132 −1.81781
\(347\) 1.99669 0.107188 0.0535941 0.998563i \(-0.482932\pi\)
0.0535941 + 0.998563i \(0.482932\pi\)
\(348\) 0 0
\(349\) −17.5651 −0.940240 −0.470120 0.882602i \(-0.655789\pi\)
−0.470120 + 0.882602i \(0.655789\pi\)
\(350\) −16.2488 −0.868534
\(351\) 0 0
\(352\) 1.44502 0.0770198
\(353\) −20.0470 −1.06700 −0.533498 0.845802i \(-0.679123\pi\)
−0.533498 + 0.845802i \(0.679123\pi\)
\(354\) 0 0
\(355\) −4.84136 −0.256952
\(356\) −0.776461 −0.0411523
\(357\) 0 0
\(358\) 31.7131 1.67609
\(359\) 33.8830 1.78828 0.894138 0.447791i \(-0.147789\pi\)
0.894138 + 0.447791i \(0.147789\pi\)
\(360\) 0 0
\(361\) 3.51614 0.185060
\(362\) −34.1797 −1.79644
\(363\) 0 0
\(364\) −0.322011 −0.0168780
\(365\) 1.77837 0.0930843
\(366\) 0 0
\(367\) −1.55099 −0.0809610 −0.0404805 0.999180i \(-0.512889\pi\)
−0.0404805 + 0.999180i \(0.512889\pi\)
\(368\) −14.7548 −0.769147
\(369\) 0 0
\(370\) −0.0843264 −0.00438392
\(371\) −3.94529 −0.204829
\(372\) 0 0
\(373\) 5.59834 0.289871 0.144936 0.989441i \(-0.453702\pi\)
0.144936 + 0.989441i \(0.453702\pi\)
\(374\) −4.19837 −0.217092
\(375\) 0 0
\(376\) −21.5428 −1.11099
\(377\) 8.89690 0.458213
\(378\) 0 0
\(379\) −3.49594 −0.179574 −0.0897872 0.995961i \(-0.528619\pi\)
−0.0897872 + 0.995961i \(0.528619\pi\)
\(380\) 0.263311 0.0135076
\(381\) 0 0
\(382\) −36.1576 −1.84998
\(383\) −23.6240 −1.20713 −0.603565 0.797314i \(-0.706253\pi\)
−0.603565 + 0.797314i \(0.706253\pi\)
\(384\) 0 0
\(385\) 1.58847 0.0809558
\(386\) 17.3721 0.884217
\(387\) 0 0
\(388\) 0.00725203 0.000368166 0
\(389\) −15.2090 −0.771126 −0.385563 0.922681i \(-0.625993\pi\)
−0.385563 + 0.922681i \(0.625993\pi\)
\(390\) 0 0
\(391\) 5.54476 0.280411
\(392\) −4.78831 −0.241846
\(393\) 0 0
\(394\) −2.98931 −0.150599
\(395\) 1.49050 0.0749952
\(396\) 0 0
\(397\) 12.0872 0.606637 0.303318 0.952889i \(-0.401905\pi\)
0.303318 + 0.952889i \(0.401905\pi\)
\(398\) −30.9046 −1.54911
\(399\) 0 0
\(400\) 20.6863 1.03431
\(401\) −6.11032 −0.305135 −0.152567 0.988293i \(-0.548754\pi\)
−0.152567 + 0.988293i \(0.548754\pi\)
\(402\) 0 0
\(403\) 2.57801 0.128420
\(404\) 1.14964 0.0571969
\(405\) 0 0
\(406\) 30.3095 1.50423
\(407\) −0.265668 −0.0131687
\(408\) 0 0
\(409\) 13.3281 0.659033 0.329516 0.944150i \(-0.393114\pi\)
0.329516 + 0.944150i \(0.393114\pi\)
\(410\) −2.86367 −0.141427
\(411\) 0 0
\(412\) 1.33841 0.0659385
\(413\) −0.207303 −0.0102007
\(414\) 0 0
\(415\) −3.82258 −0.187643
\(416\) 0.794373 0.0389474
\(417\) 0 0
\(418\) 12.4278 0.607864
\(419\) 18.0114 0.879917 0.439958 0.898018i \(-0.354993\pi\)
0.439958 + 0.898018i \(0.354993\pi\)
\(420\) 0 0
\(421\) 14.0404 0.684290 0.342145 0.939647i \(-0.388847\pi\)
0.342145 + 0.939647i \(0.388847\pi\)
\(422\) −27.2271 −1.32539
\(423\) 0 0
\(424\) 4.68586 0.227565
\(425\) −7.77377 −0.377083
\(426\) 0 0
\(427\) −17.5518 −0.849392
\(428\) −1.32923 −0.0642506
\(429\) 0 0
\(430\) 3.78174 0.182371
\(431\) 38.7591 1.86696 0.933479 0.358632i \(-0.116757\pi\)
0.933479 + 0.358632i \(0.116757\pi\)
\(432\) 0 0
\(433\) −29.1583 −1.40126 −0.700629 0.713526i \(-0.747097\pi\)
−0.700629 + 0.713526i \(0.747097\pi\)
\(434\) 8.78261 0.421579
\(435\) 0 0
\(436\) −2.48238 −0.118884
\(437\) −16.4133 −0.785156
\(438\) 0 0
\(439\) −9.37853 −0.447613 −0.223807 0.974634i \(-0.571848\pi\)
−0.223807 + 0.974634i \(0.571848\pi\)
\(440\) −1.88664 −0.0899420
\(441\) 0 0
\(442\) −2.30798 −0.109779
\(443\) 10.6502 0.506009 0.253004 0.967465i \(-0.418581\pi\)
0.253004 + 0.967465i \(0.418581\pi\)
\(444\) 0 0
\(445\) 2.10561 0.0998155
\(446\) 1.37587 0.0651491
\(447\) 0 0
\(448\) −16.8201 −0.794674
\(449\) 22.5384 1.06365 0.531826 0.846853i \(-0.321506\pi\)
0.531826 + 0.846853i \(0.321506\pi\)
\(450\) 0 0
\(451\) −9.02190 −0.424825
\(452\) 1.53410 0.0721580
\(453\) 0 0
\(454\) −11.9509 −0.560882
\(455\) 0.873232 0.0409377
\(456\) 0 0
\(457\) 34.9180 1.63340 0.816698 0.577066i \(-0.195802\pi\)
0.816698 + 0.577066i \(0.195802\pi\)
\(458\) 16.9511 0.792071
\(459\) 0 0
\(460\) −0.191943 −0.00894939
\(461\) −28.2073 −1.31374 −0.656872 0.754002i \(-0.728121\pi\)
−0.656872 + 0.754002i \(0.728121\pi\)
\(462\) 0 0
\(463\) −17.6647 −0.820946 −0.410473 0.911873i \(-0.634636\pi\)
−0.410473 + 0.911873i \(0.634636\pi\)
\(464\) −38.5869 −1.79135
\(465\) 0 0
\(466\) −11.5682 −0.535886
\(467\) 18.6212 0.861688 0.430844 0.902426i \(-0.358216\pi\)
0.430844 + 0.902426i \(0.358216\pi\)
\(468\) 0 0
\(469\) 21.5696 0.995990
\(470\) −4.50031 −0.207584
\(471\) 0 0
\(472\) 0.246215 0.0113330
\(473\) 11.9142 0.547817
\(474\) 0 0
\(475\) 23.0115 1.05584
\(476\) −0.524833 −0.0240557
\(477\) 0 0
\(478\) 23.5131 1.07547
\(479\) −2.54315 −0.116200 −0.0580998 0.998311i \(-0.518504\pi\)
−0.0580998 + 0.998311i \(0.518504\pi\)
\(480\) 0 0
\(481\) −0.146046 −0.00665913
\(482\) −13.6369 −0.621146
\(483\) 0 0
\(484\) −1.11566 −0.0507116
\(485\) −0.0196661 −0.000892992 0
\(486\) 0 0
\(487\) −1.14047 −0.0516797 −0.0258398 0.999666i \(-0.508226\pi\)
−0.0258398 + 0.999666i \(0.508226\pi\)
\(488\) 20.8465 0.943675
\(489\) 0 0
\(490\) −1.00028 −0.0451881
\(491\) 27.6703 1.24874 0.624372 0.781127i \(-0.285355\pi\)
0.624372 + 0.781127i \(0.285355\pi\)
\(492\) 0 0
\(493\) 14.5007 0.653079
\(494\) 6.83196 0.307385
\(495\) 0 0
\(496\) −11.1811 −0.502047
\(497\) −28.5649 −1.28131
\(498\) 0 0
\(499\) −10.2687 −0.459689 −0.229844 0.973227i \(-0.573822\pi\)
−0.229844 + 0.973227i \(0.573822\pi\)
\(500\) 0.546559 0.0244429
\(501\) 0 0
\(502\) −30.0907 −1.34301
\(503\) 1.81344 0.0808574 0.0404287 0.999182i \(-0.487128\pi\)
0.0404287 + 0.999182i \(0.487128\pi\)
\(504\) 0 0
\(505\) −3.11761 −0.138732
\(506\) −9.05936 −0.402738
\(507\) 0 0
\(508\) 0.0799400 0.00354676
\(509\) 22.5991 1.00169 0.500844 0.865538i \(-0.333023\pi\)
0.500844 + 0.865538i \(0.333023\pi\)
\(510\) 0 0
\(511\) 10.4927 0.464171
\(512\) 19.7463 0.872671
\(513\) 0 0
\(514\) −42.1373 −1.85859
\(515\) −3.62950 −0.159935
\(516\) 0 0
\(517\) −14.1781 −0.623551
\(518\) −0.497542 −0.0218607
\(519\) 0 0
\(520\) −1.03715 −0.0454818
\(521\) 7.28990 0.319377 0.159688 0.987167i \(-0.448951\pi\)
0.159688 + 0.987167i \(0.448951\pi\)
\(522\) 0 0
\(523\) 24.5365 1.07291 0.536453 0.843930i \(-0.319764\pi\)
0.536453 + 0.843930i \(0.319764\pi\)
\(524\) −3.09056 −0.135012
\(525\) 0 0
\(526\) −21.0239 −0.916688
\(527\) 4.20179 0.183033
\(528\) 0 0
\(529\) −11.0354 −0.479798
\(530\) 0.978879 0.0425198
\(531\) 0 0
\(532\) 1.55359 0.0673565
\(533\) −4.95963 −0.214825
\(534\) 0 0
\(535\) 3.60460 0.155841
\(536\) −25.6184 −1.10655
\(537\) 0 0
\(538\) 0.419137 0.0180703
\(539\) −3.15135 −0.135738
\(540\) 0 0
\(541\) −27.8290 −1.19646 −0.598231 0.801324i \(-0.704130\pi\)
−0.598231 + 0.801324i \(0.704130\pi\)
\(542\) −33.8738 −1.45501
\(543\) 0 0
\(544\) 1.29472 0.0555106
\(545\) 6.73172 0.288355
\(546\) 0 0
\(547\) 33.7277 1.44209 0.721046 0.692887i \(-0.243662\pi\)
0.721046 + 0.692887i \(0.243662\pi\)
\(548\) −1.31016 −0.0559671
\(549\) 0 0
\(550\) 12.7012 0.541583
\(551\) −42.9243 −1.82864
\(552\) 0 0
\(553\) 8.79423 0.373969
\(554\) 18.8548 0.801062
\(555\) 0 0
\(556\) 1.31503 0.0557698
\(557\) 31.3138 1.32681 0.663404 0.748261i \(-0.269111\pi\)
0.663404 + 0.748261i \(0.269111\pi\)
\(558\) 0 0
\(559\) 6.54964 0.277020
\(560\) −3.78731 −0.160043
\(561\) 0 0
\(562\) −24.2839 −1.02436
\(563\) 32.2048 1.35727 0.678635 0.734475i \(-0.262572\pi\)
0.678635 + 0.734475i \(0.262572\pi\)
\(564\) 0 0
\(565\) −4.16018 −0.175020
\(566\) 0.481171 0.0202251
\(567\) 0 0
\(568\) 33.9268 1.42354
\(569\) 45.0406 1.88820 0.944100 0.329658i \(-0.106934\pi\)
0.944100 + 0.329658i \(0.106934\pi\)
\(570\) 0 0
\(571\) −27.9975 −1.17166 −0.585829 0.810435i \(-0.699231\pi\)
−0.585829 + 0.810435i \(0.699231\pi\)
\(572\) 0.251707 0.0105244
\(573\) 0 0
\(574\) −16.8962 −0.705233
\(575\) −16.7745 −0.699543
\(576\) 0 0
\(577\) −11.4961 −0.478591 −0.239295 0.970947i \(-0.576916\pi\)
−0.239295 + 0.970947i \(0.576916\pi\)
\(578\) 21.1249 0.878679
\(579\) 0 0
\(580\) −0.501971 −0.0208432
\(581\) −22.5539 −0.935694
\(582\) 0 0
\(583\) 3.08393 0.127723
\(584\) −12.4623 −0.515695
\(585\) 0 0
\(586\) 15.1730 0.626790
\(587\) 30.6640 1.26564 0.632819 0.774300i \(-0.281898\pi\)
0.632819 + 0.774300i \(0.281898\pi\)
\(588\) 0 0
\(589\) −12.4379 −0.512496
\(590\) 0.0514345 0.00211753
\(591\) 0 0
\(592\) 0.633418 0.0260333
\(593\) 41.7369 1.71393 0.856965 0.515374i \(-0.172347\pi\)
0.856965 + 0.515374i \(0.172347\pi\)
\(594\) 0 0
\(595\) 1.42325 0.0583474
\(596\) −2.26569 −0.0928065
\(597\) 0 0
\(598\) −4.98022 −0.203656
\(599\) 22.8597 0.934021 0.467010 0.884252i \(-0.345331\pi\)
0.467010 + 0.884252i \(0.345331\pi\)
\(600\) 0 0
\(601\) −16.8840 −0.688711 −0.344356 0.938839i \(-0.611903\pi\)
−0.344356 + 0.938839i \(0.611903\pi\)
\(602\) 22.3130 0.909408
\(603\) 0 0
\(604\) 1.29133 0.0525433
\(605\) 3.02544 0.123002
\(606\) 0 0
\(607\) 2.63279 0.106862 0.0534309 0.998572i \(-0.482984\pi\)
0.0534309 + 0.998572i \(0.482984\pi\)
\(608\) −3.83256 −0.155431
\(609\) 0 0
\(610\) 4.35484 0.176322
\(611\) −7.79414 −0.315317
\(612\) 0 0
\(613\) 32.8318 1.32606 0.663032 0.748591i \(-0.269269\pi\)
0.663032 + 0.748591i \(0.269269\pi\)
\(614\) 7.35756 0.296927
\(615\) 0 0
\(616\) −11.1315 −0.448502
\(617\) −9.15201 −0.368446 −0.184223 0.982884i \(-0.558977\pi\)
−0.184223 + 0.982884i \(0.558977\pi\)
\(618\) 0 0
\(619\) 11.0552 0.444345 0.222172 0.975007i \(-0.428685\pi\)
0.222172 + 0.975007i \(0.428685\pi\)
\(620\) −0.145453 −0.00584155
\(621\) 0 0
\(622\) 5.31889 0.213268
\(623\) 12.4235 0.497737
\(624\) 0 0
\(625\) 22.7654 0.910617
\(626\) −33.8041 −1.35108
\(627\) 0 0
\(628\) −0.590693 −0.0235712
\(629\) −0.238035 −0.00949106
\(630\) 0 0
\(631\) 31.4339 1.25136 0.625681 0.780079i \(-0.284821\pi\)
0.625681 + 0.780079i \(0.284821\pi\)
\(632\) −10.4450 −0.415479
\(633\) 0 0
\(634\) −6.61329 −0.262647
\(635\) −0.216782 −0.00860272
\(636\) 0 0
\(637\) −1.73240 −0.0686401
\(638\) −23.6921 −0.937979
\(639\) 0 0
\(640\) 4.79991 0.189733
\(641\) 35.0632 1.38491 0.692457 0.721459i \(-0.256528\pi\)
0.692457 + 0.721459i \(0.256528\pi\)
\(642\) 0 0
\(643\) −28.5069 −1.12420 −0.562101 0.827069i \(-0.690007\pi\)
−0.562101 + 0.827069i \(0.690007\pi\)
\(644\) −1.13250 −0.0446267
\(645\) 0 0
\(646\) 11.1351 0.438107
\(647\) −5.49463 −0.216016 −0.108008 0.994150i \(-0.534447\pi\)
−0.108008 + 0.994150i \(0.534447\pi\)
\(648\) 0 0
\(649\) 0.162043 0.00636074
\(650\) 6.98228 0.273868
\(651\) 0 0
\(652\) −1.25696 −0.0492263
\(653\) 37.8811 1.48240 0.741202 0.671283i \(-0.234256\pi\)
0.741202 + 0.671283i \(0.234256\pi\)
\(654\) 0 0
\(655\) 8.38101 0.327473
\(656\) 21.5105 0.839843
\(657\) 0 0
\(658\) −26.5527 −1.03513
\(659\) −32.9824 −1.28481 −0.642406 0.766364i \(-0.722064\pi\)
−0.642406 + 0.766364i \(0.722064\pi\)
\(660\) 0 0
\(661\) 3.70894 0.144261 0.0721306 0.997395i \(-0.477020\pi\)
0.0721306 + 0.997395i \(0.477020\pi\)
\(662\) −9.61899 −0.373853
\(663\) 0 0
\(664\) 26.7875 1.03956
\(665\) −4.21302 −0.163374
\(666\) 0 0
\(667\) 31.2900 1.21155
\(668\) −0.843487 −0.0326355
\(669\) 0 0
\(670\) −5.35170 −0.206754
\(671\) 13.7198 0.529646
\(672\) 0 0
\(673\) −13.4252 −0.517502 −0.258751 0.965944i \(-0.583311\pi\)
−0.258751 + 0.965944i \(0.583311\pi\)
\(674\) −31.6659 −1.21972
\(675\) 0 0
\(676\) −1.72125 −0.0662020
\(677\) −1.00000 −0.0384331
\(678\) 0 0
\(679\) −0.116034 −0.00445297
\(680\) −1.69040 −0.0648240
\(681\) 0 0
\(682\) −6.86513 −0.262880
\(683\) −11.9448 −0.457054 −0.228527 0.973538i \(-0.573391\pi\)
−0.228527 + 0.973538i \(0.573391\pi\)
\(684\) 0 0
\(685\) 3.55289 0.135749
\(686\) −29.3560 −1.12082
\(687\) 0 0
\(688\) −28.4065 −1.08299
\(689\) 1.69533 0.0645871
\(690\) 0 0
\(691\) 41.1418 1.56511 0.782554 0.622583i \(-0.213917\pi\)
0.782554 + 0.622583i \(0.213917\pi\)
\(692\) 3.30409 0.125603
\(693\) 0 0
\(694\) −2.92299 −0.110955
\(695\) −3.56611 −0.135270
\(696\) 0 0
\(697\) −8.08350 −0.306184
\(698\) 25.7139 0.973285
\(699\) 0 0
\(700\) 1.58777 0.0600120
\(701\) 34.8834 1.31753 0.658765 0.752349i \(-0.271079\pi\)
0.658765 + 0.752349i \(0.271079\pi\)
\(702\) 0 0
\(703\) 0.704619 0.0265752
\(704\) 13.1478 0.495526
\(705\) 0 0
\(706\) 29.3471 1.10449
\(707\) −18.3945 −0.691796
\(708\) 0 0
\(709\) −9.10734 −0.342033 −0.171017 0.985268i \(-0.554705\pi\)
−0.171017 + 0.985268i \(0.554705\pi\)
\(710\) 7.08733 0.265983
\(711\) 0 0
\(712\) −14.7555 −0.552986
\(713\) 9.06674 0.339552
\(714\) 0 0
\(715\) −0.682582 −0.0255271
\(716\) −3.09887 −0.115810
\(717\) 0 0
\(718\) −49.6018 −1.85112
\(719\) −8.80298 −0.328296 −0.164148 0.986436i \(-0.552487\pi\)
−0.164148 + 0.986436i \(0.552487\pi\)
\(720\) 0 0
\(721\) −21.4147 −0.797526
\(722\) −5.14733 −0.191564
\(723\) 0 0
\(724\) 3.33990 0.124126
\(725\) −43.8687 −1.62924
\(726\) 0 0
\(727\) 41.2941 1.53151 0.765757 0.643130i \(-0.222364\pi\)
0.765757 + 0.643130i \(0.222364\pi\)
\(728\) −6.11935 −0.226798
\(729\) 0 0
\(730\) −2.60339 −0.0963557
\(731\) 10.6750 0.394829
\(732\) 0 0
\(733\) 19.0753 0.704564 0.352282 0.935894i \(-0.385406\pi\)
0.352282 + 0.935894i \(0.385406\pi\)
\(734\) 2.27052 0.0838063
\(735\) 0 0
\(736\) 2.79378 0.102980
\(737\) −16.8604 −0.621059
\(738\) 0 0
\(739\) 34.9890 1.28709 0.643546 0.765407i \(-0.277463\pi\)
0.643546 + 0.765407i \(0.277463\pi\)
\(740\) 0.00824004 0.000302910 0
\(741\) 0 0
\(742\) 5.77557 0.212028
\(743\) 9.84477 0.361170 0.180585 0.983559i \(-0.442201\pi\)
0.180585 + 0.983559i \(0.442201\pi\)
\(744\) 0 0
\(745\) 6.14412 0.225103
\(746\) −8.19550 −0.300059
\(747\) 0 0
\(748\) 0.410248 0.0150002
\(749\) 21.2679 0.777110
\(750\) 0 0
\(751\) 2.32732 0.0849250 0.0424625 0.999098i \(-0.486480\pi\)
0.0424625 + 0.999098i \(0.486480\pi\)
\(752\) 33.8041 1.23271
\(753\) 0 0
\(754\) −13.0243 −0.474317
\(755\) −3.50183 −0.127445
\(756\) 0 0
\(757\) −17.2815 −0.628108 −0.314054 0.949405i \(-0.601687\pi\)
−0.314054 + 0.949405i \(0.601687\pi\)
\(758\) 5.11776 0.185885
\(759\) 0 0
\(760\) 5.00385 0.181509
\(761\) −15.8739 −0.575428 −0.287714 0.957716i \(-0.592895\pi\)
−0.287714 + 0.957716i \(0.592895\pi\)
\(762\) 0 0
\(763\) 39.7184 1.43790
\(764\) 3.53318 0.127826
\(765\) 0 0
\(766\) 34.5835 1.24955
\(767\) 0.0890801 0.00321650
\(768\) 0 0
\(769\) 15.3085 0.552040 0.276020 0.961152i \(-0.410984\pi\)
0.276020 + 0.961152i \(0.410984\pi\)
\(770\) −2.32538 −0.0838010
\(771\) 0 0
\(772\) −1.69753 −0.0610956
\(773\) −15.3167 −0.550905 −0.275453 0.961315i \(-0.588828\pi\)
−0.275453 + 0.961315i \(0.588828\pi\)
\(774\) 0 0
\(775\) −12.7116 −0.456614
\(776\) 0.137814 0.00494725
\(777\) 0 0
\(778\) 22.2647 0.798227
\(779\) 23.9284 0.857323
\(780\) 0 0
\(781\) 22.3284 0.798974
\(782\) −8.11706 −0.290266
\(783\) 0 0
\(784\) 7.51361 0.268343
\(785\) 1.60184 0.0571723
\(786\) 0 0
\(787\) −55.7092 −1.98582 −0.992909 0.118875i \(-0.962071\pi\)
−0.992909 + 0.118875i \(0.962071\pi\)
\(788\) 0.292104 0.0104058
\(789\) 0 0
\(790\) −2.18197 −0.0776308
\(791\) −24.5459 −0.872750
\(792\) 0 0
\(793\) 7.54220 0.267832
\(794\) −17.6946 −0.627957
\(795\) 0 0
\(796\) 3.01987 0.107037
\(797\) −2.22098 −0.0786710 −0.0393355 0.999226i \(-0.512524\pi\)
−0.0393355 + 0.999226i \(0.512524\pi\)
\(798\) 0 0
\(799\) −12.7034 −0.449413
\(800\) −3.91688 −0.138483
\(801\) 0 0
\(802\) 8.94500 0.315859
\(803\) −8.20189 −0.289438
\(804\) 0 0
\(805\) 3.07112 0.108243
\(806\) −3.77398 −0.132933
\(807\) 0 0
\(808\) 21.8473 0.768586
\(809\) −4.24804 −0.149353 −0.0746765 0.997208i \(-0.523792\pi\)
−0.0746765 + 0.997208i \(0.523792\pi\)
\(810\) 0 0
\(811\) −33.5125 −1.17678 −0.588392 0.808576i \(-0.700239\pi\)
−0.588392 + 0.808576i \(0.700239\pi\)
\(812\) −2.96172 −0.103936
\(813\) 0 0
\(814\) 0.388915 0.0136315
\(815\) 3.40863 0.119399
\(816\) 0 0
\(817\) −31.5996 −1.10553
\(818\) −19.5112 −0.682194
\(819\) 0 0
\(820\) 0.279826 0.00977196
\(821\) −18.8922 −0.659341 −0.329670 0.944096i \(-0.606938\pi\)
−0.329670 + 0.944096i \(0.606938\pi\)
\(822\) 0 0
\(823\) −0.253189 −0.00882561 −0.00441280 0.999990i \(-0.501405\pi\)
−0.00441280 + 0.999990i \(0.501405\pi\)
\(824\) 25.4345 0.886051
\(825\) 0 0
\(826\) 0.303473 0.0105592
\(827\) 26.9985 0.938830 0.469415 0.882978i \(-0.344465\pi\)
0.469415 + 0.882978i \(0.344465\pi\)
\(828\) 0 0
\(829\) −57.0561 −1.98164 −0.990821 0.135183i \(-0.956838\pi\)
−0.990821 + 0.135183i \(0.956838\pi\)
\(830\) 5.59593 0.194237
\(831\) 0 0
\(832\) 7.22776 0.250578
\(833\) −2.82357 −0.0978308
\(834\) 0 0
\(835\) 2.28737 0.0791578
\(836\) −1.21440 −0.0420008
\(837\) 0 0
\(838\) −26.3672 −0.910841
\(839\) 38.4221 1.32648 0.663240 0.748407i \(-0.269181\pi\)
0.663240 + 0.748407i \(0.269181\pi\)
\(840\) 0 0
\(841\) 52.8299 1.82172
\(842\) −20.5540 −0.708338
\(843\) 0 0
\(844\) 2.66052 0.0915790
\(845\) 4.66770 0.160574
\(846\) 0 0
\(847\) 17.8507 0.613356
\(848\) −7.35286 −0.252498
\(849\) 0 0
\(850\) 11.3801 0.390336
\(851\) −0.513638 −0.0176073
\(852\) 0 0
\(853\) −10.3269 −0.353587 −0.176793 0.984248i \(-0.556572\pi\)
−0.176793 + 0.984248i \(0.556572\pi\)
\(854\) 25.6944 0.879243
\(855\) 0 0
\(856\) −25.2600 −0.863370
\(857\) −11.3429 −0.387467 −0.193734 0.981054i \(-0.562060\pi\)
−0.193734 + 0.981054i \(0.562060\pi\)
\(858\) 0 0
\(859\) −8.77050 −0.299245 −0.149623 0.988743i \(-0.547806\pi\)
−0.149623 + 0.988743i \(0.547806\pi\)
\(860\) −0.369536 −0.0126011
\(861\) 0 0
\(862\) −56.7400 −1.93257
\(863\) 32.5706 1.10872 0.554359 0.832278i \(-0.312964\pi\)
0.554359 + 0.832278i \(0.312964\pi\)
\(864\) 0 0
\(865\) −8.96005 −0.304651
\(866\) 42.6853 1.45050
\(867\) 0 0
\(868\) −0.858202 −0.0291293
\(869\) −6.87421 −0.233192
\(870\) 0 0
\(871\) −9.26868 −0.314057
\(872\) −47.1740 −1.59751
\(873\) 0 0
\(874\) 24.0277 0.812750
\(875\) −8.74504 −0.295636
\(876\) 0 0
\(877\) 52.5225 1.77356 0.886780 0.462192i \(-0.152937\pi\)
0.886780 + 0.462192i \(0.152937\pi\)
\(878\) 13.7294 0.463344
\(879\) 0 0
\(880\) 2.96044 0.0997963
\(881\) −39.2658 −1.32290 −0.661450 0.749989i \(-0.730059\pi\)
−0.661450 + 0.749989i \(0.730059\pi\)
\(882\) 0 0
\(883\) −23.1714 −0.779780 −0.389890 0.920862i \(-0.627487\pi\)
−0.389890 + 0.920862i \(0.627487\pi\)
\(884\) 0.225526 0.00758528
\(885\) 0 0
\(886\) −15.5911 −0.523792
\(887\) −32.1376 −1.07907 −0.539537 0.841962i \(-0.681401\pi\)
−0.539537 + 0.841962i \(0.681401\pi\)
\(888\) 0 0
\(889\) −1.27905 −0.0428980
\(890\) −3.08244 −0.103323
\(891\) 0 0
\(892\) −0.134444 −0.00450152
\(893\) 37.6039 1.25837
\(894\) 0 0
\(895\) 8.40354 0.280900
\(896\) 28.3204 0.946118
\(897\) 0 0
\(898\) −32.9943 −1.10103
\(899\) 23.7114 0.790820
\(900\) 0 0
\(901\) 2.76316 0.0920541
\(902\) 13.2073 0.439755
\(903\) 0 0
\(904\) 29.1533 0.969626
\(905\) −9.05716 −0.301070
\(906\) 0 0
\(907\) 14.0634 0.466967 0.233483 0.972361i \(-0.424988\pi\)
0.233483 + 0.972361i \(0.424988\pi\)
\(908\) 1.16779 0.0387545
\(909\) 0 0
\(910\) −1.27834 −0.0423765
\(911\) 5.55457 0.184031 0.0920155 0.995758i \(-0.470669\pi\)
0.0920155 + 0.995758i \(0.470669\pi\)
\(912\) 0 0
\(913\) 17.6298 0.583461
\(914\) −51.1170 −1.69080
\(915\) 0 0
\(916\) −1.65639 −0.0547287
\(917\) 49.4495 1.63297
\(918\) 0 0
\(919\) 21.0669 0.694933 0.347466 0.937692i \(-0.387042\pi\)
0.347466 + 0.937692i \(0.387042\pi\)
\(920\) −3.64760 −0.120258
\(921\) 0 0
\(922\) 41.2931 1.35992
\(923\) 12.2747 0.404025
\(924\) 0 0
\(925\) 0.720122 0.0236775
\(926\) 25.8596 0.849798
\(927\) 0 0
\(928\) 7.30631 0.239841
\(929\) 9.97010 0.327108 0.163554 0.986534i \(-0.447704\pi\)
0.163554 + 0.986534i \(0.447704\pi\)
\(930\) 0 0
\(931\) 8.35819 0.273929
\(932\) 1.13040 0.0370274
\(933\) 0 0
\(934\) −27.2599 −0.891972
\(935\) −1.11251 −0.0363831
\(936\) 0 0
\(937\) 24.7208 0.807594 0.403797 0.914849i \(-0.367690\pi\)
0.403797 + 0.914849i \(0.367690\pi\)
\(938\) −31.5760 −1.03099
\(939\) 0 0
\(940\) 0.439752 0.0143431
\(941\) −40.7105 −1.32712 −0.663562 0.748122i \(-0.730956\pi\)
−0.663562 + 0.748122i \(0.730956\pi\)
\(942\) 0 0
\(943\) −17.4428 −0.568016
\(944\) −0.386351 −0.0125746
\(945\) 0 0
\(946\) −17.4414 −0.567070
\(947\) −18.8055 −0.611096 −0.305548 0.952177i \(-0.598840\pi\)
−0.305548 + 0.952177i \(0.598840\pi\)
\(948\) 0 0
\(949\) −4.50884 −0.146363
\(950\) −33.6869 −1.09295
\(951\) 0 0
\(952\) −9.97369 −0.323249
\(953\) 14.7613 0.478166 0.239083 0.970999i \(-0.423153\pi\)
0.239083 + 0.970999i \(0.423153\pi\)
\(954\) 0 0
\(955\) −9.58129 −0.310043
\(956\) −2.29761 −0.0743101
\(957\) 0 0
\(958\) 3.72296 0.120283
\(959\) 20.9627 0.676922
\(960\) 0 0
\(961\) −24.1293 −0.778364
\(962\) 0.213799 0.00689316
\(963\) 0 0
\(964\) 1.33255 0.0429185
\(965\) 4.60338 0.148188
\(966\) 0 0
\(967\) 34.4322 1.10727 0.553633 0.832761i \(-0.313241\pi\)
0.553633 + 0.832761i \(0.313241\pi\)
\(968\) −21.2014 −0.681439
\(969\) 0 0
\(970\) 0.0287895 0.000924375 0
\(971\) −28.1893 −0.904639 −0.452319 0.891856i \(-0.649403\pi\)
−0.452319 + 0.891856i \(0.649403\pi\)
\(972\) 0 0
\(973\) −21.0407 −0.674535
\(974\) 1.66955 0.0534959
\(975\) 0 0
\(976\) −32.7114 −1.04707
\(977\) 31.4468 1.00607 0.503036 0.864265i \(-0.332216\pi\)
0.503036 + 0.864265i \(0.332216\pi\)
\(978\) 0 0
\(979\) −9.71112 −0.310369
\(980\) 0.0977434 0.00312230
\(981\) 0 0
\(982\) −40.5070 −1.29263
\(983\) 6.88201 0.219502 0.109751 0.993959i \(-0.464995\pi\)
0.109751 + 0.993959i \(0.464995\pi\)
\(984\) 0 0
\(985\) −0.792129 −0.0252393
\(986\) −21.2278 −0.676031
\(987\) 0 0
\(988\) −0.667593 −0.0212389
\(989\) 23.0348 0.732464
\(990\) 0 0
\(991\) 21.3698 0.678833 0.339416 0.940636i \(-0.389770\pi\)
0.339416 + 0.940636i \(0.389770\pi\)
\(992\) 2.11711 0.0672183
\(993\) 0 0
\(994\) 41.8166 1.32634
\(995\) −8.18931 −0.259619
\(996\) 0 0
\(997\) 15.2851 0.484083 0.242041 0.970266i \(-0.422183\pi\)
0.242041 + 0.970266i \(0.422183\pi\)
\(998\) 15.0325 0.475844
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6093.2.a.l.1.3 18
3.2 odd 2 2031.2.a.g.1.16 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.2.a.g.1.16 18 3.2 odd 2
6093.2.a.l.1.3 18 1.1 even 1 trivial