Properties

Label 2040.2.a.i.1.1
Level $2040$
Weight $2$
Character 2040.1
Self dual yes
Analytic conductor $16.289$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2040,2,Mod(1,2040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2894820123\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} +5.00000 q^{11} -2.00000 q^{13} -1.00000 q^{15} -1.00000 q^{17} -5.00000 q^{19} -3.00000 q^{21} -6.00000 q^{23} +1.00000 q^{25} +1.00000 q^{27} -3.00000 q^{29} +2.00000 q^{31} +5.00000 q^{33} +3.00000 q^{35} -7.00000 q^{37} -2.00000 q^{39} +1.00000 q^{41} -4.00000 q^{43} -1.00000 q^{45} +3.00000 q^{47} +2.00000 q^{49} -1.00000 q^{51} -9.00000 q^{53} -5.00000 q^{55} -5.00000 q^{57} +4.00000 q^{59} +14.0000 q^{61} -3.00000 q^{63} +2.00000 q^{65} +8.00000 q^{67} -6.00000 q^{69} -4.00000 q^{71} -9.00000 q^{73} +1.00000 q^{75} -15.0000 q^{77} -14.0000 q^{79} +1.00000 q^{81} -4.00000 q^{83} +1.00000 q^{85} -3.00000 q^{87} -12.0000 q^{89} +6.00000 q^{91} +2.00000 q^{93} +5.00000 q^{95} -10.0000 q^{97} +5.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 5.00000 0.870388
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.674200
\(56\) 0 0
\(57\) −5.00000 −0.662266
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) −3.00000 −0.377964
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) −9.00000 −1.05337 −0.526685 0.850060i \(-0.676565\pi\)
−0.526685 + 0.850060i \(0.676565\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −15.0000 −1.70941
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) −3.00000 −0.321634
\(88\) 0 0
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) 5.00000 0.512989
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 5.00000 0.502519
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) 0 0
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −7.00000 −0.664411
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 1.00000 0.0901670
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 18.0000 1.59724 0.798621 0.601834i \(-0.205563\pi\)
0.798621 + 0.601834i \(0.205563\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 15.0000 1.30066
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 9.00000 0.768922 0.384461 0.923141i \(-0.374387\pi\)
0.384461 + 0.923141i \(0.374387\pi\)
\(138\) 0 0
\(139\) 22.0000 1.86602 0.933008 0.359856i \(-0.117174\pi\)
0.933008 + 0.359856i \(0.117174\pi\)
\(140\) 0 0
\(141\) 3.00000 0.252646
\(142\) 0 0
\(143\) −10.0000 −0.836242
\(144\) 0 0
\(145\) 3.00000 0.249136
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 3.00000 0.244137 0.122068 0.992522i \(-0.461047\pi\)
0.122068 + 0.992522i \(0.461047\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) 24.0000 1.91541 0.957704 0.287754i \(-0.0929087\pi\)
0.957704 + 0.287754i \(0.0929087\pi\)
\(158\) 0 0
\(159\) −9.00000 −0.713746
\(160\) 0 0
\(161\) 18.0000 1.41860
\(162\) 0 0
\(163\) 3.00000 0.234978 0.117489 0.993074i \(-0.462515\pi\)
0.117489 + 0.993074i \(0.462515\pi\)
\(164\) 0 0
\(165\) −5.00000 −0.389249
\(166\) 0 0
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −5.00000 −0.382360
\(172\) 0 0
\(173\) −8.00000 −0.608229 −0.304114 0.952636i \(-0.598361\pi\)
−0.304114 + 0.952636i \(0.598361\pi\)
\(174\) 0 0
\(175\) −3.00000 −0.226779
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 0 0
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) 0 0
\(185\) 7.00000 0.514650
\(186\) 0 0
\(187\) −5.00000 −0.365636
\(188\) 0 0
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) 0 0
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 9.00000 0.631676
\(204\) 0 0
\(205\) −1.00000 −0.0698430
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −25.0000 −1.72929
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) −4.00000 −0.274075
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 0 0
\(219\) −9.00000 −0.608164
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 0 0
\(229\) −21.0000 −1.38772 −0.693860 0.720110i \(-0.744091\pi\)
−0.693860 + 0.720110i \(0.744091\pi\)
\(230\) 0 0
\(231\) −15.0000 −0.986928
\(232\) 0 0
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) −3.00000 −0.195698
\(236\) 0 0
\(237\) −14.0000 −0.909398
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 10.0000 0.636285
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 0 0
\(255\) 1.00000 0.0626224
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 21.0000 1.30488
\(260\) 0 0
\(261\) −3.00000 −0.185695
\(262\) 0 0
\(263\) 21.0000 1.29492 0.647458 0.762101i \(-0.275832\pi\)
0.647458 + 0.762101i \(0.275832\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) 23.0000 1.40233 0.701167 0.712997i \(-0.252663\pi\)
0.701167 + 0.712997i \(0.252663\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 6.00000 0.363137
\(274\) 0 0
\(275\) 5.00000 0.301511
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) −32.0000 −1.90896 −0.954480 0.298275i \(-0.903589\pi\)
−0.954480 + 0.298275i \(0.903589\pi\)
\(282\) 0 0
\(283\) 29.0000 1.72387 0.861936 0.507018i \(-0.169252\pi\)
0.861936 + 0.507018i \(0.169252\pi\)
\(284\) 0 0
\(285\) 5.00000 0.296174
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) −29.0000 −1.69420 −0.847099 0.531435i \(-0.821653\pi\)
−0.847099 + 0.531435i \(0.821653\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) 0 0
\(297\) 5.00000 0.290129
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) −18.0000 −1.03407
\(304\) 0 0
\(305\) −14.0000 −0.801638
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) −16.0000 −0.910208
\(310\) 0 0
\(311\) 21.0000 1.19080 0.595400 0.803429i \(-0.296993\pi\)
0.595400 + 0.803429i \(0.296993\pi\)
\(312\) 0 0
\(313\) 23.0000 1.30004 0.650018 0.759918i \(-0.274761\pi\)
0.650018 + 0.759918i \(0.274761\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) −22.0000 −1.23564 −0.617822 0.786318i \(-0.711985\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 0 0
\(319\) −15.0000 −0.839839
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) 0 0
\(323\) 5.00000 0.278207
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) 2.00000 0.110600
\(328\) 0 0
\(329\) −9.00000 −0.496186
\(330\) 0 0
\(331\) 7.00000 0.384755 0.192377 0.981321i \(-0.438380\pi\)
0.192377 + 0.981321i \(0.438380\pi\)
\(332\) 0 0
\(333\) −7.00000 −0.383598
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 0 0
\(339\) −14.0000 −0.760376
\(340\) 0 0
\(341\) 10.0000 0.541530
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 6.00000 0.323029
\(346\) 0 0
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 0 0
\(349\) −13.0000 −0.695874 −0.347937 0.937518i \(-0.613118\pi\)
−0.347937 + 0.937518i \(0.613118\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) −15.0000 −0.798369 −0.399185 0.916871i \(-0.630707\pi\)
−0.399185 + 0.916871i \(0.630707\pi\)
\(354\) 0 0
\(355\) 4.00000 0.212298
\(356\) 0 0
\(357\) 3.00000 0.158777
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 14.0000 0.734809
\(364\) 0 0
\(365\) 9.00000 0.471082
\(366\) 0 0
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) 0 0
\(369\) 1.00000 0.0520579
\(370\) 0 0
\(371\) 27.0000 1.40177
\(372\) 0 0
\(373\) 12.0000 0.621336 0.310668 0.950518i \(-0.399447\pi\)
0.310668 + 0.950518i \(0.399447\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 6.00000 0.309016
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 18.0000 0.922168
\(382\) 0 0
\(383\) 1.00000 0.0510976 0.0255488 0.999674i \(-0.491867\pi\)
0.0255488 + 0.999674i \(0.491867\pi\)
\(384\) 0 0
\(385\) 15.0000 0.764471
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14.0000 0.704416
\(396\) 0 0
\(397\) 21.0000 1.05396 0.526980 0.849878i \(-0.323324\pi\)
0.526980 + 0.849878i \(0.323324\pi\)
\(398\) 0 0
\(399\) 15.0000 0.750939
\(400\) 0 0
\(401\) 7.00000 0.349563 0.174782 0.984607i \(-0.444078\pi\)
0.174782 + 0.984607i \(0.444078\pi\)
\(402\) 0 0
\(403\) −4.00000 −0.199254
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −35.0000 −1.73489
\(408\) 0 0
\(409\) 1.00000 0.0494468 0.0247234 0.999694i \(-0.492129\pi\)
0.0247234 + 0.999694i \(0.492129\pi\)
\(410\) 0 0
\(411\) 9.00000 0.443937
\(412\) 0 0
\(413\) −12.0000 −0.590481
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) 22.0000 1.07734
\(418\) 0 0
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) 9.00000 0.438633 0.219317 0.975654i \(-0.429617\pi\)
0.219317 + 0.975654i \(0.429617\pi\)
\(422\) 0 0
\(423\) 3.00000 0.145865
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) −42.0000 −2.03252
\(428\) 0 0
\(429\) −10.0000 −0.482805
\(430\) 0 0
\(431\) 27.0000 1.30054 0.650272 0.759701i \(-0.274655\pi\)
0.650272 + 0.759701i \(0.274655\pi\)
\(432\) 0 0
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 0 0
\(435\) 3.00000 0.143839
\(436\) 0 0
\(437\) 30.0000 1.43509
\(438\) 0 0
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 0 0
\(447\) −18.0000 −0.851371
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) 5.00000 0.235441
\(452\) 0 0
\(453\) 3.00000 0.140952
\(454\) 0 0
\(455\) −6.00000 −0.281284
\(456\) 0 0
\(457\) −4.00000 −0.187112 −0.0935561 0.995614i \(-0.529823\pi\)
−0.0935561 + 0.995614i \(0.529823\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 24.0000 1.11779 0.558896 0.829238i \(-0.311225\pi\)
0.558896 + 0.829238i \(0.311225\pi\)
\(462\) 0 0
\(463\) 18.0000 0.836531 0.418265 0.908325i \(-0.362638\pi\)
0.418265 + 0.908325i \(0.362638\pi\)
\(464\) 0 0
\(465\) −2.00000 −0.0927478
\(466\) 0 0
\(467\) −19.0000 −0.879215 −0.439608 0.898190i \(-0.644882\pi\)
−0.439608 + 0.898190i \(0.644882\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) 0 0
\(471\) 24.0000 1.10586
\(472\) 0 0
\(473\) −20.0000 −0.919601
\(474\) 0 0
\(475\) −5.00000 −0.229416
\(476\) 0 0
\(477\) −9.00000 −0.412082
\(478\) 0 0
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 14.0000 0.638345
\(482\) 0 0
\(483\) 18.0000 0.819028
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 0 0
\(489\) 3.00000 0.135665
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 0 0
\(493\) 3.00000 0.135113
\(494\) 0 0
\(495\) −5.00000 −0.224733
\(496\) 0 0
\(497\) 12.0000 0.538274
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 27.0000 1.19441
\(512\) 0 0
\(513\) −5.00000 −0.220755
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) 15.0000 0.659699
\(518\) 0 0
\(519\) −8.00000 −0.351161
\(520\) 0 0
\(521\) 31.0000 1.35813 0.679067 0.734076i \(-0.262384\pi\)
0.679067 + 0.734076i \(0.262384\pi\)
\(522\) 0 0
\(523\) −14.0000 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(524\) 0 0
\(525\) −3.00000 −0.130931
\(526\) 0 0
\(527\) −2.00000 −0.0871214
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) −2.00000 −0.0866296
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) 10.0000 0.431532
\(538\) 0 0
\(539\) 10.0000 0.430730
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 0 0
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) −23.0000 −0.983409 −0.491704 0.870762i \(-0.663626\pi\)
−0.491704 + 0.870762i \(0.663626\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 15.0000 0.639021
\(552\) 0 0
\(553\) 42.0000 1.78602
\(554\) 0 0
\(555\) 7.00000 0.297133
\(556\) 0 0
\(557\) −22.0000 −0.932170 −0.466085 0.884740i \(-0.654336\pi\)
−0.466085 + 0.884740i \(0.654336\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) 0 0
\(563\) −45.0000 −1.89652 −0.948262 0.317489i \(-0.897160\pi\)
−0.948262 + 0.317489i \(0.897160\pi\)
\(564\) 0 0
\(565\) 14.0000 0.588984
\(566\) 0 0
\(567\) −3.00000 −0.125988
\(568\) 0 0
\(569\) −36.0000 −1.50920 −0.754599 0.656186i \(-0.772169\pi\)
−0.754599 + 0.656186i \(0.772169\pi\)
\(570\) 0 0
\(571\) −26.0000 −1.08807 −0.544033 0.839064i \(-0.683103\pi\)
−0.544033 + 0.839064i \(0.683103\pi\)
\(572\) 0 0
\(573\) 8.00000 0.334205
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) −12.0000 −0.499567 −0.249783 0.968302i \(-0.580359\pi\)
−0.249783 + 0.968302i \(0.580359\pi\)
\(578\) 0 0
\(579\) 22.0000 0.914289
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −45.0000 −1.86371
\(584\) 0 0
\(585\) 2.00000 0.0826898
\(586\) 0 0
\(587\) −23.0000 −0.949312 −0.474656 0.880172i \(-0.657427\pi\)
−0.474656 + 0.880172i \(0.657427\pi\)
\(588\) 0 0
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) 12.0000 0.493614
\(592\) 0 0
\(593\) 9.00000 0.369586 0.184793 0.982777i \(-0.440839\pi\)
0.184793 + 0.982777i \(0.440839\pi\)
\(594\) 0 0
\(595\) −3.00000 −0.122988
\(596\) 0 0
\(597\) 10.0000 0.409273
\(598\) 0 0
\(599\) −42.0000 −1.71607 −0.858037 0.513588i \(-0.828316\pi\)
−0.858037 + 0.513588i \(0.828316\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) −14.0000 −0.569181
\(606\) 0 0
\(607\) −35.0000 −1.42061 −0.710303 0.703896i \(-0.751442\pi\)
−0.710303 + 0.703896i \(0.751442\pi\)
\(608\) 0 0
\(609\) 9.00000 0.364698
\(610\) 0 0
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) 8.00000 0.323117 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(614\) 0 0
\(615\) −1.00000 −0.0403239
\(616\) 0 0
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) 0 0
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) 36.0000 1.44231
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −25.0000 −0.998404
\(628\) 0 0
\(629\) 7.00000 0.279108
\(630\) 0 0
\(631\) −29.0000 −1.15447 −0.577236 0.816577i \(-0.695869\pi\)
−0.577236 + 0.816577i \(0.695869\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −18.0000 −0.714308
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) −4.00000 −0.158238
\(640\) 0 0
\(641\) 15.0000 0.592464 0.296232 0.955116i \(-0.404270\pi\)
0.296232 + 0.955116i \(0.404270\pi\)
\(642\) 0 0
\(643\) −7.00000 −0.276053 −0.138027 0.990429i \(-0.544076\pi\)
−0.138027 + 0.990429i \(0.544076\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 0 0
\(651\) −6.00000 −0.235159
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −9.00000 −0.351123
\(658\) 0 0
\(659\) −34.0000 −1.32445 −0.662226 0.749304i \(-0.730388\pi\)
−0.662226 + 0.749304i \(0.730388\pi\)
\(660\) 0 0
\(661\) −1.00000 −0.0388955 −0.0194477 0.999811i \(-0.506191\pi\)
−0.0194477 + 0.999811i \(0.506191\pi\)
\(662\) 0 0
\(663\) 2.00000 0.0776736
\(664\) 0 0
\(665\) −15.0000 −0.581675
\(666\) 0 0
\(667\) 18.0000 0.696963
\(668\) 0 0
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) 70.0000 2.70232
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −34.0000 −1.30673 −0.653363 0.757045i \(-0.726642\pi\)
−0.653363 + 0.757045i \(0.726642\pi\)
\(678\) 0 0
\(679\) 30.0000 1.15129
\(680\) 0 0
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) −9.00000 −0.343872
\(686\) 0 0
\(687\) −21.0000 −0.801200
\(688\) 0 0
\(689\) 18.0000 0.685745
\(690\) 0 0
\(691\) 24.0000 0.913003 0.456502 0.889723i \(-0.349102\pi\)
0.456502 + 0.889723i \(0.349102\pi\)
\(692\) 0 0
\(693\) −15.0000 −0.569803
\(694\) 0 0
\(695\) −22.0000 −0.834508
\(696\) 0 0
\(697\) −1.00000 −0.0378777
\(698\) 0 0
\(699\) 10.0000 0.378235
\(700\) 0 0
\(701\) −44.0000 −1.66186 −0.830929 0.556379i \(-0.812190\pi\)
−0.830929 + 0.556379i \(0.812190\pi\)
\(702\) 0 0
\(703\) 35.0000 1.32005
\(704\) 0 0
\(705\) −3.00000 −0.112987
\(706\) 0 0
\(707\) 54.0000 2.03088
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) −14.0000 −0.525041
\(712\) 0 0
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 10.0000 0.373979
\(716\) 0 0
\(717\) 6.00000 0.224074
\(718\) 0 0
\(719\) 27.0000 1.00693 0.503465 0.864016i \(-0.332058\pi\)
0.503465 + 0.864016i \(0.332058\pi\)
\(720\) 0 0
\(721\) 48.0000 1.78761
\(722\) 0 0
\(723\) −6.00000 −0.223142
\(724\) 0 0
\(725\) −3.00000 −0.111417
\(726\) 0 0
\(727\) −50.0000 −1.85440 −0.927199 0.374570i \(-0.877790\pi\)
−0.927199 + 0.374570i \(0.877790\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 4.00000 0.147945
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) −2.00000 −0.0737711
\(736\) 0 0
\(737\) 40.0000 1.47342
\(738\) 0 0
\(739\) 28.0000 1.03000 0.514998 0.857191i \(-0.327793\pi\)
0.514998 + 0.857191i \(0.327793\pi\)
\(740\) 0 0
\(741\) 10.0000 0.367359
\(742\) 0 0
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 0 0
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) −50.0000 −1.82453 −0.912263 0.409605i \(-0.865667\pi\)
−0.912263 + 0.409605i \(0.865667\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) −3.00000 −0.109181
\(756\) 0 0
\(757\) 8.00000 0.290765 0.145382 0.989376i \(-0.453559\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(758\) 0 0
\(759\) −30.0000 −1.08893
\(760\) 0 0
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) −6.00000 −0.217215
\(764\) 0 0
\(765\) 1.00000 0.0361551
\(766\) 0 0
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) 9.00000 0.323708 0.161854 0.986815i \(-0.448253\pi\)
0.161854 + 0.986815i \(0.448253\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) 21.0000 0.753371
\(778\) 0 0
\(779\) −5.00000 −0.179144
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 0 0
\(783\) −3.00000 −0.107211
\(784\) 0 0
\(785\) −24.0000 −0.856597
\(786\) 0 0
\(787\) −27.0000 −0.962446 −0.481223 0.876598i \(-0.659807\pi\)
−0.481223 + 0.876598i \(0.659807\pi\)
\(788\) 0 0
\(789\) 21.0000 0.747620
\(790\) 0 0
\(791\) 42.0000 1.49335
\(792\) 0 0
\(793\) −28.0000 −0.994309
\(794\) 0 0
\(795\) 9.00000 0.319197
\(796\) 0 0
\(797\) 41.0000 1.45229 0.726147 0.687539i \(-0.241309\pi\)
0.726147 + 0.687539i \(0.241309\pi\)
\(798\) 0 0
\(799\) −3.00000 −0.106132
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) 0 0
\(803\) −45.0000 −1.58802
\(804\) 0 0
\(805\) −18.0000 −0.634417
\(806\) 0 0
\(807\) 23.0000 0.809638
\(808\) 0 0
\(809\) −38.0000 −1.33601 −0.668004 0.744157i \(-0.732851\pi\)
−0.668004 + 0.744157i \(0.732851\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 0 0
\(813\) 8.00000 0.280572
\(814\) 0 0
\(815\) −3.00000 −0.105085
\(816\) 0 0
\(817\) 20.0000 0.699711
\(818\) 0 0
\(819\) 6.00000 0.209657
\(820\) 0 0
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) 7.00000 0.244005 0.122002 0.992530i \(-0.461068\pi\)
0.122002 + 0.992530i \(0.461068\pi\)
\(824\) 0 0
\(825\) 5.00000 0.174078
\(826\) 0 0
\(827\) 56.0000 1.94731 0.973655 0.228024i \(-0.0732266\pi\)
0.973655 + 0.228024i \(0.0732266\pi\)
\(828\) 0 0
\(829\) −27.0000 −0.937749 −0.468874 0.883265i \(-0.655340\pi\)
−0.468874 + 0.883265i \(0.655340\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) 0 0
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) −2.00000 −0.0692129
\(836\) 0 0
\(837\) 2.00000 0.0691301
\(838\) 0 0
\(839\) −1.00000 −0.0345238 −0.0172619 0.999851i \(-0.505495\pi\)
−0.0172619 + 0.999851i \(0.505495\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) −32.0000 −1.10214
\(844\) 0 0
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) −42.0000 −1.44314
\(848\) 0 0
\(849\) 29.0000 0.995277
\(850\) 0 0
\(851\) 42.0000 1.43974
\(852\) 0 0
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) 0 0
\(855\) 5.00000 0.170996
\(856\) 0 0
\(857\) −28.0000 −0.956462 −0.478231 0.878234i \(-0.658722\pi\)
−0.478231 + 0.878234i \(0.658722\pi\)
\(858\) 0 0
\(859\) −35.0000 −1.19418 −0.597092 0.802173i \(-0.703677\pi\)
−0.597092 + 0.802173i \(0.703677\pi\)
\(860\) 0 0
\(861\) −3.00000 −0.102240
\(862\) 0 0
\(863\) −3.00000 −0.102121 −0.0510606 0.998696i \(-0.516260\pi\)
−0.0510606 + 0.998696i \(0.516260\pi\)
\(864\) 0 0
\(865\) 8.00000 0.272008
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) −70.0000 −2.37459
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 0 0
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) −23.0000 −0.776655 −0.388327 0.921521i \(-0.626947\pi\)
−0.388327 + 0.921521i \(0.626947\pi\)
\(878\) 0 0
\(879\) −29.0000 −0.978146
\(880\) 0 0
\(881\) 45.0000 1.51609 0.758044 0.652203i \(-0.226155\pi\)
0.758044 + 0.652203i \(0.226155\pi\)
\(882\) 0 0
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 0 0
\(885\) −4.00000 −0.134459
\(886\) 0 0
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) −54.0000 −1.81110
\(890\) 0 0
\(891\) 5.00000 0.167506
\(892\) 0 0
\(893\) −15.0000 −0.501956
\(894\) 0 0
\(895\) −10.0000 −0.334263
\(896\) 0 0
\(897\) 12.0000 0.400668
\(898\) 0 0
\(899\) −6.00000 −0.200111
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) 12.0000 0.399335
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) −27.0000 −0.896520 −0.448260 0.893903i \(-0.647956\pi\)
−0.448260 + 0.893903i \(0.647956\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 9.00000 0.298183 0.149092 0.988823i \(-0.452365\pi\)
0.149092 + 0.988823i \(0.452365\pi\)
\(912\) 0 0
\(913\) −20.0000 −0.661903
\(914\) 0 0
\(915\) −14.0000 −0.462826
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 59.0000 1.94623 0.973115 0.230319i \(-0.0739769\pi\)
0.973115 + 0.230319i \(0.0739769\pi\)
\(920\) 0 0
\(921\) −8.00000 −0.263609
\(922\) 0 0
\(923\) 8.00000 0.263323
\(924\) 0 0
\(925\) −7.00000 −0.230159
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) 5.00000 0.164045 0.0820223 0.996630i \(-0.473862\pi\)
0.0820223 + 0.996630i \(0.473862\pi\)
\(930\) 0 0
\(931\) −10.0000 −0.327737
\(932\) 0 0
\(933\) 21.0000 0.687509
\(934\) 0 0
\(935\) 5.00000 0.163517
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 23.0000 0.750577
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) −6.00000 −0.195387
\(944\) 0 0
\(945\) 3.00000 0.0975900
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) 18.0000 0.584305
\(950\) 0 0
\(951\) −22.0000 −0.713399
\(952\) 0 0
\(953\) −15.0000 −0.485898 −0.242949 0.970039i \(-0.578115\pi\)
−0.242949 + 0.970039i \(0.578115\pi\)
\(954\) 0 0
\(955\) −8.00000 −0.258874
\(956\) 0 0
\(957\) −15.0000 −0.484881
\(958\) 0 0
\(959\) −27.0000 −0.871875
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −8.00000 −0.257796
\(964\) 0 0
\(965\) −22.0000 −0.708205
\(966\) 0 0
\(967\) 12.0000 0.385894 0.192947 0.981209i \(-0.438195\pi\)
0.192947 + 0.981209i \(0.438195\pi\)
\(968\) 0 0
\(969\) 5.00000 0.160623
\(970\) 0 0
\(971\) −56.0000 −1.79713 −0.898563 0.438845i \(-0.855388\pi\)
−0.898563 + 0.438845i \(0.855388\pi\)
\(972\) 0 0
\(973\) −66.0000 −2.11586
\(974\) 0 0
\(975\) −2.00000 −0.0640513
\(976\) 0 0
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) −60.0000 −1.91761
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) −26.0000 −0.829271 −0.414636 0.909988i \(-0.636091\pi\)
−0.414636 + 0.909988i \(0.636091\pi\)
\(984\) 0 0
\(985\) −12.0000 −0.382352
\(986\) 0 0
\(987\) −9.00000 −0.286473
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 0 0
\(993\) 7.00000 0.222138
\(994\) 0 0
\(995\) −10.0000 −0.317021
\(996\) 0 0
\(997\) 31.0000 0.981780 0.490890 0.871222i \(-0.336672\pi\)
0.490890 + 0.871222i \(0.336672\pi\)
\(998\) 0 0
\(999\) −7.00000 −0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2040.2.a.i.1.1 1
3.2 odd 2 6120.2.a.p.1.1 1
4.3 odd 2 4080.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.a.i.1.1 1 1.1 even 1 trivial
4080.2.a.h.1.1 1 4.3 odd 2
6120.2.a.p.1.1 1 3.2 odd 2