Properties

Label 2040.2.h.h
Level 20402040
Weight 22
Character orbit 2040.h
Analytic conductor 16.28916.289
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2040,2,Mod(1801,2040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2040.1801");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2040=233517 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2040.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.289482012316.2894820123
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,17)\Q(i, \sqrt{17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9x2+16 x^{4} + 9x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q3+β2q5+(β2+β1)q7q9+(3β2+β1)q11+2q13+q15+(2β31)q17+(β34)q19+(β32)q21++(3β2β1)q99+O(q100) q - \beta_{2} q^{3} + \beta_{2} q^{5} + ( - \beta_{2} + \beta_1) q^{7} - q^{9} + ( - 3 \beta_{2} + \beta_1) q^{11} + 2 q^{13} + q^{15} + (2 \beta_{3} - 1) q^{17} + (\beta_{3} - 4) q^{19} + (\beta_{3} - 2) q^{21}+ \cdots + (3 \beta_{2} - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q9+8q13+4q1514q196q214q2514q33+6q35+16q4314q47+2q49+26q53+14q55+8q59+4q67+12q6938q77+4q81++12q93+O(q100) 4 q - 4 q^{9} + 8 q^{13} + 4 q^{15} - 14 q^{19} - 6 q^{21} - 4 q^{25} - 14 q^{33} + 6 q^{35} + 16 q^{43} - 14 q^{47} + 2 q^{49} + 26 q^{53} + 14 q^{55} + 8 q^{59} + 4 q^{67} + 12 q^{69} - 38 q^{77} + 4 q^{81}+ \cdots + 12 q^{93}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9x2+16 x^{4} + 9x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+5ν)/4 ( \nu^{3} + 5\nu ) / 4 Copy content Toggle raw display
β3\beta_{3}== ν2+5 \nu^{2} + 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β35 \beta_{3} - 5 Copy content Toggle raw display
ν3\nu^{3}== 4β25β1 4\beta_{2} - 5\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2040Z)×\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times.

nn 241241 511511 817817 10211021 13611361
χ(n)\chi(n) 1-1 11 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1801.1
2.56155i
1.56155i
1.56155i
2.56155i
0 1.00000i 0 1.00000i 0 3.56155i 0 −1.00000 0
1801.2 0 1.00000i 0 1.00000i 0 0.561553i 0 −1.00000 0
1801.3 0 1.00000i 0 1.00000i 0 0.561553i 0 −1.00000 0
1801.4 0 1.00000i 0 1.00000i 0 3.56155i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2040.2.h.h 4
3.b odd 2 1 6120.2.h.k 4
4.b odd 2 1 4080.2.h.m 4
17.b even 2 1 inner 2040.2.h.h 4
51.c odd 2 1 6120.2.h.k 4
68.d odd 2 1 4080.2.h.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2040.2.h.h 4 1.a even 1 1 trivial
2040.2.h.h 4 17.b even 2 1 inner
4080.2.h.m 4 4.b odd 2 1
4080.2.h.m 4 68.d odd 2 1
6120.2.h.k 4 3.b odd 2 1
6120.2.h.k 4 51.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2040,[χ])S_{2}^{\mathrm{new}}(2040, [\chi]):

T74+13T72+4 T_{7}^{4} + 13T_{7}^{2} + 4 Copy content Toggle raw display
T114+33T112+64 T_{11}^{4} + 33T_{11}^{2} + 64 Copy content Toggle raw display
T132 T_{13} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 T4+13T2+4 T^{4} + 13T^{2} + 4 Copy content Toggle raw display
1111 T4+33T2+64 T^{4} + 33T^{2} + 64 Copy content Toggle raw display
1313 (T2)4 (T - 2)^{4} Copy content Toggle raw display
1717 (T217)2 (T^{2} - 17)^{2} Copy content Toggle raw display
1919 (T2+7T+8)2 (T^{2} + 7 T + 8)^{2} Copy content Toggle raw display
2323 T4+52T2+64 T^{4} + 52T^{2} + 64 Copy content Toggle raw display
2929 T4+77T2+1444 T^{4} + 77T^{2} + 1444 Copy content Toggle raw display
3131 T4+52T2+64 T^{4} + 52T^{2} + 64 Copy content Toggle raw display
3737 T4+21T2+4 T^{4} + 21T^{2} + 4 Copy content Toggle raw display
4141 T4+89T2+1024 T^{4} + 89T^{2} + 1024 Copy content Toggle raw display
4343 (T4)4 (T - 4)^{4} Copy content Toggle raw display
4747 (T2+7T+8)2 (T^{2} + 7 T + 8)^{2} Copy content Toggle raw display
5353 (T213T+38)2 (T^{2} - 13 T + 38)^{2} Copy content Toggle raw display
5959 (T24T64)2 (T^{2} - 4 T - 64)^{2} Copy content Toggle raw display
6161 T4+308T2+23104 T^{4} + 308 T^{2} + 23104 Copy content Toggle raw display
6767 (T22T16)2 (T^{2} - 2 T - 16)^{2} Copy content Toggle raw display
7171 T4+84T2+64 T^{4} + 84T^{2} + 64 Copy content Toggle raw display
7373 T4+33T2+64 T^{4} + 33T^{2} + 64 Copy content Toggle raw display
7979 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
8383 (T+8)4 (T + 8)^{4} Copy content Toggle raw display
8989 (T26T8)2 (T^{2} - 6 T - 8)^{2} Copy content Toggle raw display
9797 T4+52T2+64 T^{4} + 52T^{2} + 64 Copy content Toggle raw display
show more
show less