Properties

Label 2040.2.h.i
Level $2040$
Weight $2$
Character orbit 2040.h
Analytic conductor $16.289$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2040,2,Mod(1801,2040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2040.1801");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2894820123\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + \beta_{2} q^{5} + (\beta_{3} + 2 \beta_{2}) q^{7} - q^{9} + ( - \beta_{3} - 2 \beta_{2}) q^{11} + (\beta_{4} + \beta_1 - 1) q^{13} + q^{15} + ( - \beta_{4} + \beta_{3} - \beta_{2} + 1) q^{17}+ \cdots + (\beta_{3} + 2 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{9} - 4 q^{13} + 6 q^{15} + 4 q^{17} - 4 q^{19} + 12 q^{21} - 6 q^{25} - 12 q^{33} - 12 q^{35} - 24 q^{47} - 10 q^{49} - 6 q^{51} + 20 q^{53} + 12 q^{55} + 8 q^{67} - 8 q^{69} + 52 q^{77} + 6 q^{81}+ \cdots - 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{4} + 2\nu^{3} - \nu^{2} + 2\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} - 3\nu^{3} + 4\nu^{2} - 2\nu + 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 2\nu^{4} + 3\nu^{3} - 6\nu^{2} + 10\nu - 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + \nu^{4} - \nu^{3} + 5\nu^{2} + 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4\nu^{5} - 3\nu^{4} + 8\nu^{3} - 11\nu^{2} + 8\nu - 20 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + 2\beta_{3} - \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + 2\beta_{4} - \beta_{3} + 3\beta_{2} - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{4} - 2\beta_{3} - 4\beta_{2} + 3\beta _1 + 5 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{5} + 2\beta_{4} + \beta_{3} - 11\beta_{2} - 4\beta _1 + 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 4\beta_{5} + 3\beta_{4} - 2\beta_{3} + 8\beta_{2} - 7\beta _1 + 7 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1021\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1801.1
−0.671462 1.24464i
1.40680 0.144584i
0.264658 + 1.38923i
0.264658 1.38923i
1.40680 + 0.144584i
−0.671462 + 1.24464i
0 1.00000i 0 1.00000i 0 0.489289i 0 −1.00000 0
1801.2 0 1.00000i 0 1.00000i 0 1.71083i 0 −1.00000 0
1801.3 0 1.00000i 0 1.00000i 0 4.77846i 0 −1.00000 0
1801.4 0 1.00000i 0 1.00000i 0 4.77846i 0 −1.00000 0
1801.5 0 1.00000i 0 1.00000i 0 1.71083i 0 −1.00000 0
1801.6 0 1.00000i 0 1.00000i 0 0.489289i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1801.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2040.2.h.i 6
3.b odd 2 1 6120.2.h.l 6
4.b odd 2 1 4080.2.h.r 6
17.b even 2 1 inner 2040.2.h.i 6
51.c odd 2 1 6120.2.h.l 6
68.d odd 2 1 4080.2.h.r 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2040.2.h.i 6 1.a even 1 1 trivial
2040.2.h.i 6 17.b even 2 1 inner
4080.2.h.r 6 4.b odd 2 1
4080.2.h.r 6 68.d odd 2 1
6120.2.h.l 6 3.b odd 2 1
6120.2.h.l 6 51.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2040, [\chi])\):

\( T_{7}^{6} + 26T_{7}^{4} + 73T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{6} + 26T_{11}^{4} + 73T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{13}^{3} + 2T_{13}^{2} - 28T_{13} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{6} + 26 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{6} + 26 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( (T^{3} + 2 T^{2} - 28 T + 8)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} - 4 T^{5} + \cdots + 4913 \) Copy content Toggle raw display
$19$ \( (T^{3} + 2 T^{2} - 31 T + 44)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 64 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$29$ \( T^{6} + 62 T^{4} + \cdots + 1444 \) Copy content Toggle raw display
$31$ \( T^{6} + 36 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$37$ \( T^{6} + 62 T^{4} + \cdots + 1444 \) Copy content Toggle raw display
$41$ \( T^{6} + 206 T^{4} + \cdots + 178084 \) Copy content Toggle raw display
$43$ \( (T^{3} - 112 T + 128)^{2} \) Copy content Toggle raw display
$47$ \( (T^{3} + 12 T^{2} + \cdots - 946)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} - 10 T^{2} + 17 T - 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} - 136 T - 608)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 192 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
$67$ \( (T^{3} - 4 T^{2} + \cdots + 496)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 240 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$73$ \( T^{6} + 366 T^{4} + \cdots + 481636 \) Copy content Toggle raw display
$79$ \( T^{6} + 332 T^{4} + \cdots + 341056 \) Copy content Toggle raw display
$83$ \( (T^{3} + 22 T^{2} + \cdots - 256)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} + 2 T^{2} - 16 T - 16)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 332 T^{4} + \cdots + 107584 \) Copy content Toggle raw display
show more
show less