Properties

Label 207.2.i.d.190.2
Level $207$
Weight $2$
Character 207.190
Analytic conductor $1.653$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,2,Mod(55,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 207.i (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.65290332184\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 7 x^{19} + 24 x^{18} - 70 x^{17} + 209 x^{16} - 527 x^{15} + 1115 x^{14} - 2187 x^{13} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 190.2
Root \(0.545935 - 0.160301i\) of defining polynomial
Character \(\chi\) \(=\) 207.190
Dual form 207.2.i.d.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10489 - 2.41937i) q^{2} +(-3.32285 - 3.83478i) q^{4} +(2.44470 - 1.57111i) q^{5} +(-0.326826 + 2.27313i) q^{7} +(-7.84516 + 2.30355i) q^{8} +(-1.09998 - 7.65055i) q^{10} +(-0.0494206 - 0.108216i) q^{11} +(0.614381 + 4.27311i) q^{13} +(5.13843 + 3.30227i) q^{14} +(-1.65065 + 11.4805i) q^{16} +(1.68604 - 1.94579i) q^{17} +(-1.13103 - 1.30528i) q^{19} +(-14.1483 - 4.15430i) q^{20} -0.316419 q^{22} +(-4.00915 + 2.63187i) q^{23} +(1.43109 - 3.13366i) q^{25} +(11.0171 + 3.23490i) q^{26} +(9.80293 - 6.29996i) q^{28} +(0.933494 - 1.07731i) q^{29} +(5.49527 - 1.61356i) q^{31} +(12.1951 + 7.83731i) q^{32} +(-2.84470 - 6.22903i) q^{34} +(2.77235 + 6.07060i) q^{35} +(5.79948 + 3.72710i) q^{37} +(-4.40762 + 1.29419i) q^{38} +(-15.5599 + 17.9571i) q^{40} +(5.48180 - 3.52294i) q^{41} +(-8.28385 - 2.43236i) q^{43} +(-0.250767 + 0.549102i) q^{44} +(1.93781 + 12.6075i) q^{46} -5.91880 q^{47} +(1.65616 + 0.486293i) q^{49} +(-6.00028 - 6.92469i) q^{50} +(14.3449 - 16.5549i) q^{52} +(0.514895 - 3.58117i) q^{53} +(-0.290838 - 0.186910i) q^{55} +(-2.67225 - 18.5859i) q^{56} +(-1.57500 - 3.44878i) q^{58} +(-0.386194 - 2.68604i) q^{59} +(-12.0589 + 3.54081i) q^{61} +(2.16787 - 15.0779i) q^{62} +(12.9209 - 8.30375i) q^{64} +(8.21553 + 9.48123i) q^{65} +(-0.0349839 + 0.0766041i) q^{67} -13.0641 q^{68} +17.7502 q^{70} +(-6.43563 + 14.0921i) q^{71} +(0.455430 + 0.525595i) q^{73} +(15.4250 - 9.91306i) q^{74} +(-1.24721 + 8.67450i) q^{76} +(0.262140 - 0.0769714i) q^{77} +(1.05210 + 7.31752i) q^{79} +(14.0019 + 30.6598i) q^{80} +(-2.46651 - 17.1550i) q^{82} +(-2.33903 - 1.50321i) q^{83} +(1.06480 - 7.40583i) q^{85} +(-15.0375 + 17.3542i) q^{86} +(0.636992 + 0.735128i) q^{88} +(-12.7468 - 3.74281i) q^{89} -9.91413 q^{91} +(23.4144 + 6.62886i) q^{92} +(-6.53962 + 14.3198i) q^{94} +(-4.81578 - 1.41404i) q^{95} +(-7.16897 + 4.60722i) q^{97} +(3.00640 - 3.46957i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 6 q^{4} + 6 q^{5} - 6 q^{7} - 10 q^{8} - 18 q^{10} + 16 q^{11} + 14 q^{13} + 22 q^{14} - 8 q^{16} - 11 q^{17} - 11 q^{19} - 57 q^{20} + 26 q^{22} - 4 q^{25} + 14 q^{26} - 14 q^{28} - 12 q^{29}+ \cdots - 85 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/207\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(47\)
\(\chi(n)\) \(e\left(\frac{9}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10489 2.41937i 0.781275 1.71075i 0.0811848 0.996699i \(-0.474130\pi\)
0.700090 0.714054i \(-0.253143\pi\)
\(3\) 0 0
\(4\) −3.32285 3.83478i −1.66143 1.91739i
\(5\) 2.44470 1.57111i 1.09330 0.702624i 0.135711 0.990748i \(-0.456668\pi\)
0.957593 + 0.288125i \(0.0930317\pi\)
\(6\) 0 0
\(7\) −0.326826 + 2.27313i −0.123529 + 0.859161i 0.829979 + 0.557794i \(0.188352\pi\)
−0.953508 + 0.301367i \(0.902557\pi\)
\(8\) −7.84516 + 2.30355i −2.77368 + 0.814426i
\(9\) 0 0
\(10\) −1.09998 7.65055i −0.347845 2.41932i
\(11\) −0.0494206 0.108216i −0.0149009 0.0326283i 0.902035 0.431662i \(-0.142073\pi\)
−0.916936 + 0.399034i \(0.869346\pi\)
\(12\) 0 0
\(13\) 0.614381 + 4.27311i 0.170399 + 1.18515i 0.878044 + 0.478580i \(0.158849\pi\)
−0.707645 + 0.706568i \(0.750242\pi\)
\(14\) 5.13843 + 3.30227i 1.37330 + 0.882568i
\(15\) 0 0
\(16\) −1.65065 + 11.4805i −0.412663 + 2.87013i
\(17\) 1.68604 1.94579i 0.408924 0.471923i −0.513507 0.858085i \(-0.671654\pi\)
0.922431 + 0.386162i \(0.126200\pi\)
\(18\) 0 0
\(19\) −1.13103 1.30528i −0.259476 0.299452i 0.611031 0.791606i \(-0.290755\pi\)
−0.870508 + 0.492155i \(0.836209\pi\)
\(20\) −14.1483 4.15430i −3.16365 0.928931i
\(21\) 0 0
\(22\) −0.316419 −0.0674607
\(23\) −4.00915 + 2.63187i −0.835965 + 0.548783i
\(24\) 0 0
\(25\) 1.43109 3.13366i 0.286219 0.626731i
\(26\) 11.0171 + 3.23490i 2.16063 + 0.634417i
\(27\) 0 0
\(28\) 9.80293 6.29996i 1.85258 1.19058i
\(29\) 0.933494 1.07731i 0.173345 0.200051i −0.662428 0.749125i \(-0.730474\pi\)
0.835774 + 0.549074i \(0.185020\pi\)
\(30\) 0 0
\(31\) 5.49527 1.61356i 0.986980 0.289803i 0.251877 0.967759i \(-0.418952\pi\)
0.735103 + 0.677956i \(0.237134\pi\)
\(32\) 12.1951 + 7.83731i 2.15581 + 1.38545i
\(33\) 0 0
\(34\) −2.84470 6.22903i −0.487862 1.06827i
\(35\) 2.77235 + 6.07060i 0.468613 + 1.02612i
\(36\) 0 0
\(37\) 5.79948 + 3.72710i 0.953429 + 0.612731i 0.922172 0.386780i \(-0.126413\pi\)
0.0312566 + 0.999511i \(0.490049\pi\)
\(38\) −4.40762 + 1.29419i −0.715010 + 0.209946i
\(39\) 0 0
\(40\) −15.5599 + 17.9571i −2.46024 + 2.83927i
\(41\) 5.48180 3.52294i 0.856113 0.550190i −0.0373628 0.999302i \(-0.511896\pi\)
0.893476 + 0.449111i \(0.148259\pi\)
\(42\) 0 0
\(43\) −8.28385 2.43236i −1.26327 0.370931i −0.419562 0.907726i \(-0.637816\pi\)
−0.843712 + 0.536796i \(0.819635\pi\)
\(44\) −0.250767 + 0.549102i −0.0378045 + 0.0827803i
\(45\) 0 0
\(46\) 1.93781 + 12.6075i 0.285714 + 1.85888i
\(47\) −5.91880 −0.863345 −0.431673 0.902030i \(-0.642076\pi\)
−0.431673 + 0.902030i \(0.642076\pi\)
\(48\) 0 0
\(49\) 1.65616 + 0.486293i 0.236595 + 0.0694704i
\(50\) −6.00028 6.92469i −0.848567 0.979299i
\(51\) 0 0
\(52\) 14.3449 16.5549i 1.98929 2.29576i
\(53\) 0.514895 3.58117i 0.0707263 0.491912i −0.923413 0.383807i \(-0.874613\pi\)
0.994140 0.108105i \(-0.0344782\pi\)
\(54\) 0 0
\(55\) −0.290838 0.186910i −0.0392166 0.0252030i
\(56\) −2.67225 18.5859i −0.357094 2.48364i
\(57\) 0 0
\(58\) −1.57500 3.44878i −0.206808 0.452846i
\(59\) −0.386194 2.68604i −0.0502782 0.349692i −0.999395 0.0347692i \(-0.988930\pi\)
0.949117 0.314923i \(-0.101979\pi\)
\(60\) 0 0
\(61\) −12.0589 + 3.54081i −1.54398 + 0.453354i −0.939296 0.343109i \(-0.888520\pi\)
−0.604687 + 0.796463i \(0.706702\pi\)
\(62\) 2.16787 15.0779i 0.275320 1.91490i
\(63\) 0 0
\(64\) 12.9209 8.30375i 1.61511 1.03797i
\(65\) 8.21553 + 9.48123i 1.01901 + 1.17600i
\(66\) 0 0
\(67\) −0.0349839 + 0.0766041i −0.00427397 + 0.00935868i −0.911757 0.410730i \(-0.865274\pi\)
0.907483 + 0.420089i \(0.138001\pi\)
\(68\) −13.0641 −1.58426
\(69\) 0 0
\(70\) 17.7502 2.12155
\(71\) −6.43563 + 14.0921i −0.763769 + 1.67242i −0.0238577 + 0.999715i \(0.507595\pi\)
−0.739911 + 0.672705i \(0.765132\pi\)
\(72\) 0 0
\(73\) 0.455430 + 0.525595i 0.0533041 + 0.0615162i 0.781775 0.623560i \(-0.214314\pi\)
−0.728471 + 0.685076i \(0.759769\pi\)
\(74\) 15.4250 9.91306i 1.79312 1.15237i
\(75\) 0 0
\(76\) −1.24721 + 8.67450i −0.143064 + 0.995034i
\(77\) 0.262140 0.0769714i 0.0298737 0.00877170i
\(78\) 0 0
\(79\) 1.05210 + 7.31752i 0.118371 + 0.823285i 0.959350 + 0.282218i \(0.0910702\pi\)
−0.840980 + 0.541067i \(0.818021\pi\)
\(80\) 14.0019 + 30.6598i 1.56546 + 3.42787i
\(81\) 0 0
\(82\) −2.46651 17.1550i −0.272381 1.89445i
\(83\) −2.33903 1.50321i −0.256742 0.164998i 0.405938 0.913901i \(-0.366945\pi\)
−0.662680 + 0.748902i \(0.730581\pi\)
\(84\) 0 0
\(85\) 1.06480 7.40583i 0.115493 0.803275i
\(86\) −15.0375 + 17.3542i −1.62154 + 1.87135i
\(87\) 0 0
\(88\) 0.636992 + 0.735128i 0.0679036 + 0.0783649i
\(89\) −12.7468 3.74281i −1.35116 0.396737i −0.475522 0.879704i \(-0.657741\pi\)
−0.875638 + 0.482967i \(0.839559\pi\)
\(90\) 0 0
\(91\) −9.91413 −1.03928
\(92\) 23.4144 + 6.62886i 2.44112 + 0.691107i
\(93\) 0 0
\(94\) −6.53962 + 14.3198i −0.674510 + 1.47697i
\(95\) −4.81578 1.41404i −0.494089 0.145077i
\(96\) 0 0
\(97\) −7.16897 + 4.60722i −0.727898 + 0.467792i −0.851376 0.524555i \(-0.824232\pi\)
0.123478 + 0.992347i \(0.460595\pi\)
\(98\) 3.00640 3.46957i 0.303692 0.350479i
\(99\) 0 0
\(100\) −16.7722 + 4.92476i −1.67722 + 0.492476i
\(101\) −5.88248 3.78044i −0.585328 0.376168i 0.214206 0.976789i \(-0.431284\pi\)
−0.799534 + 0.600621i \(0.794920\pi\)
\(102\) 0 0
\(103\) 5.73944 + 12.5676i 0.565523 + 1.23832i 0.949147 + 0.314834i \(0.101949\pi\)
−0.383623 + 0.923490i \(0.625324\pi\)
\(104\) −14.6632 32.1080i −1.43785 3.14845i
\(105\) 0 0
\(106\) −8.09528 5.20252i −0.786283 0.505314i
\(107\) 7.88971 2.31663i 0.762727 0.223957i 0.122841 0.992426i \(-0.460800\pi\)
0.639886 + 0.768469i \(0.278981\pi\)
\(108\) 0 0
\(109\) 11.3104 13.0529i 1.08334 1.25024i 0.116958 0.993137i \(-0.462686\pi\)
0.966383 0.257106i \(-0.0827688\pi\)
\(110\) −0.773550 + 0.497130i −0.0737551 + 0.0473995i
\(111\) 0 0
\(112\) −25.5572 7.50428i −2.41493 0.709088i
\(113\) −3.11467 + 6.82019i −0.293004 + 0.641589i −0.997690 0.0679300i \(-0.978361\pi\)
0.704686 + 0.709519i \(0.251088\pi\)
\(114\) 0 0
\(115\) −5.66620 + 12.7330i −0.528376 + 1.18736i
\(116\) −7.23310 −0.671577
\(117\) 0 0
\(118\) −6.92522 2.03343i −0.637518 0.187192i
\(119\) 3.87198 + 4.46851i 0.354944 + 0.409627i
\(120\) 0 0
\(121\) 7.19420 8.30255i 0.654018 0.754777i
\(122\) −4.75721 + 33.0871i −0.430698 + 2.99557i
\(123\) 0 0
\(124\) −24.4476 15.7115i −2.19546 1.41094i
\(125\) 0.643114 + 4.47295i 0.0575218 + 0.400073i
\(126\) 0 0
\(127\) −0.834395 1.82707i −0.0740406 0.162126i 0.868992 0.494825i \(-0.164768\pi\)
−0.943033 + 0.332699i \(0.892041\pi\)
\(128\) −1.68761 11.7376i −0.149165 1.03747i
\(129\) 0 0
\(130\) 32.0159 9.40071i 2.80798 0.824496i
\(131\) −0.699047 + 4.86198i −0.0610760 + 0.424793i 0.936227 + 0.351396i \(0.114293\pi\)
−0.997303 + 0.0733967i \(0.976616\pi\)
\(132\) 0 0
\(133\) 3.33672 2.14438i 0.289330 0.185941i
\(134\) 0.146680 + 0.169278i 0.0126712 + 0.0146234i
\(135\) 0 0
\(136\) −8.74500 + 19.1489i −0.749877 + 1.64200i
\(137\) −7.93152 −0.677636 −0.338818 0.940852i \(-0.610027\pi\)
−0.338818 + 0.940852i \(0.610027\pi\)
\(138\) 0 0
\(139\) 10.7987 0.915936 0.457968 0.888969i \(-0.348577\pi\)
0.457968 + 0.888969i \(0.348577\pi\)
\(140\) 14.0673 30.8030i 1.18890 2.60333i
\(141\) 0 0
\(142\) 26.9833 + 31.1403i 2.26439 + 2.61324i
\(143\) 0.432056 0.277665i 0.0361303 0.0232196i
\(144\) 0 0
\(145\) 0.589538 4.10033i 0.0489585 0.340514i
\(146\) 1.77481 0.521131i 0.146884 0.0431291i
\(147\) 0 0
\(148\) −4.97822 34.6243i −0.409207 2.84610i
\(149\) −6.87613 15.0566i −0.563315 1.23349i −0.950281 0.311393i \(-0.899204\pi\)
0.386967 0.922094i \(-0.373523\pi\)
\(150\) 0 0
\(151\) −2.68982 18.7081i −0.218895 1.52245i −0.742128 0.670258i \(-0.766184\pi\)
0.523234 0.852189i \(-0.324726\pi\)
\(152\) 11.8799 + 7.63474i 0.963586 + 0.619259i
\(153\) 0 0
\(154\) 0.103414 0.719260i 0.00833333 0.0579596i
\(155\) 10.8992 12.5784i 0.875446 1.01032i
\(156\) 0 0
\(157\) −4.95301 5.71608i −0.395293 0.456193i 0.522860 0.852419i \(-0.324865\pi\)
−0.918153 + 0.396226i \(0.870320\pi\)
\(158\) 18.8662 + 5.53963i 1.50092 + 0.440709i
\(159\) 0 0
\(160\) 42.1267 3.33041
\(161\) −4.67228 9.97346i −0.368227 0.786019i
\(162\) 0 0
\(163\) 0.693430 1.51840i 0.0543136 0.118930i −0.880529 0.473992i \(-0.842813\pi\)
0.934843 + 0.355061i \(0.115540\pi\)
\(164\) −31.7249 9.31527i −2.47730 0.727400i
\(165\) 0 0
\(166\) −6.22119 + 3.99811i −0.482858 + 0.310314i
\(167\) 14.0362 16.1987i 1.08615 1.25349i 0.120764 0.992681i \(-0.461465\pi\)
0.965391 0.260808i \(-0.0839890\pi\)
\(168\) 0 0
\(169\) −5.40863 + 1.58812i −0.416049 + 0.122163i
\(170\) −16.7410 10.7588i −1.28397 0.825159i
\(171\) 0 0
\(172\) 18.1985 + 39.8491i 1.38762 + 3.03846i
\(173\) 2.62976 + 5.75836i 0.199937 + 0.437800i 0.982869 0.184307i \(-0.0590041\pi\)
−0.782932 + 0.622107i \(0.786277\pi\)
\(174\) 0 0
\(175\) 6.65548 + 4.27722i 0.503107 + 0.323327i
\(176\) 1.32395 0.388747i 0.0997966 0.0293029i
\(177\) 0 0
\(178\) −23.1391 + 26.7039i −1.73435 + 2.00154i
\(179\) −6.89203 + 4.42924i −0.515134 + 0.331057i −0.772245 0.635325i \(-0.780866\pi\)
0.257110 + 0.966382i \(0.417230\pi\)
\(180\) 0 0
\(181\) −6.05668 1.77840i −0.450189 0.132188i 0.0487755 0.998810i \(-0.484468\pi\)
−0.498965 + 0.866622i \(0.666286\pi\)
\(182\) −10.9540 + 23.9859i −0.811966 + 1.77796i
\(183\) 0 0
\(184\) 25.3897 29.8827i 1.87176 2.20298i
\(185\) 20.0337 1.47291
\(186\) 0 0
\(187\) −0.293890 0.0862939i −0.0214914 0.00631044i
\(188\) 19.6673 + 22.6973i 1.43438 + 1.65537i
\(189\) 0 0
\(190\) −8.74199 + 10.0888i −0.634211 + 0.731918i
\(191\) 1.84244 12.8144i 0.133314 0.927221i −0.807878 0.589350i \(-0.799384\pi\)
0.941192 0.337871i \(-0.109707\pi\)
\(192\) 0 0
\(193\) 10.6093 + 6.81818i 0.763674 + 0.490784i 0.863579 0.504213i \(-0.168217\pi\)
−0.0999048 + 0.994997i \(0.531854\pi\)
\(194\) 3.22565 + 22.4349i 0.231588 + 1.61073i
\(195\) 0 0
\(196\) −3.63836 7.96689i −0.259883 0.569064i
\(197\) −2.06820 14.3847i −0.147353 1.02486i −0.920530 0.390673i \(-0.872242\pi\)
0.773176 0.634191i \(-0.218667\pi\)
\(198\) 0 0
\(199\) −19.3561 + 5.68347i −1.37212 + 0.402890i −0.883019 0.469337i \(-0.844493\pi\)
−0.489100 + 0.872228i \(0.662675\pi\)
\(200\) −4.00863 + 27.8806i −0.283453 + 1.97146i
\(201\) 0 0
\(202\) −15.6458 + 10.0549i −1.10083 + 0.707462i
\(203\) 2.14377 + 2.47404i 0.150463 + 0.173644i
\(204\) 0 0
\(205\) 7.86642 17.2251i 0.549415 1.20305i
\(206\) 36.7472 2.56030
\(207\) 0 0
\(208\) −50.0717 −3.47185
\(209\) −0.0853558 + 0.186903i −0.00590419 + 0.0129284i
\(210\) 0 0
\(211\) −4.88121 5.63321i −0.336036 0.387806i 0.562433 0.826843i \(-0.309865\pi\)
−0.898469 + 0.439036i \(0.855320\pi\)
\(212\) −15.4439 + 9.92520i −1.06069 + 0.681666i
\(213\) 0 0
\(214\) 3.11248 21.6478i 0.212765 1.47981i
\(215\) −24.0731 + 7.06849i −1.64177 + 0.482067i
\(216\) 0 0
\(217\) 1.87182 + 13.0188i 0.127067 + 0.883774i
\(218\) −19.0831 41.7861i −1.29247 2.83011i
\(219\) 0 0
\(220\) 0.249653 + 1.73637i 0.0168316 + 0.117066i
\(221\) 9.35044 + 6.00917i 0.628979 + 0.404220i
\(222\) 0 0
\(223\) −0.239369 + 1.66485i −0.0160293 + 0.111486i −0.996265 0.0863458i \(-0.972481\pi\)
0.980236 + 0.197832i \(0.0633901\pi\)
\(224\) −21.8009 + 25.1596i −1.45663 + 1.68104i
\(225\) 0 0
\(226\) 13.0592 + 15.0711i 0.868684 + 1.00252i
\(227\) 10.3447 + 3.03747i 0.686601 + 0.201604i 0.606383 0.795173i \(-0.292620\pi\)
0.0802184 + 0.996777i \(0.474438\pi\)
\(228\) 0 0
\(229\) 21.9077 1.44770 0.723852 0.689955i \(-0.242370\pi\)
0.723852 + 0.689955i \(0.242370\pi\)
\(230\) 24.5453 + 27.7772i 1.61847 + 1.83157i
\(231\) 0 0
\(232\) −4.84177 + 10.6020i −0.317878 + 0.696056i
\(233\) 23.8637 + 7.00702i 1.56336 + 0.459045i 0.945061 0.326894i \(-0.106002\pi\)
0.618304 + 0.785939i \(0.287820\pi\)
\(234\) 0 0
\(235\) −14.4697 + 9.29911i −0.943899 + 0.606607i
\(236\) −9.01709 + 10.4063i −0.586962 + 0.677391i
\(237\) 0 0
\(238\) 15.0891 4.43056i 0.978080 0.287190i
\(239\) −3.53060 2.26898i −0.228375 0.146768i 0.421450 0.906852i \(-0.361521\pi\)
−0.649825 + 0.760084i \(0.725158\pi\)
\(240\) 0 0
\(241\) −11.3946 24.9507i −0.733991 1.60722i −0.793193 0.608971i \(-0.791583\pi\)
0.0592012 0.998246i \(-0.481145\pi\)
\(242\) −12.1381 26.5788i −0.780270 1.70855i
\(243\) 0 0
\(244\) 53.6481 + 34.4776i 3.43447 + 2.20720i
\(245\) 4.81284 1.41318i 0.307481 0.0902847i
\(246\) 0 0
\(247\) 4.88272 5.63496i 0.310680 0.358544i
\(248\) −39.3944 + 25.3172i −2.50154 + 1.60764i
\(249\) 0 0
\(250\) 11.5323 + 3.38619i 0.729367 + 0.214161i
\(251\) 5.36870 11.7558i 0.338869 0.742020i −0.661096 0.750301i \(-0.729909\pi\)
0.999966 + 0.00828064i \(0.00263584\pi\)
\(252\) 0 0
\(253\) 0.482945 + 0.303785i 0.0303625 + 0.0190988i
\(254\) −5.34227 −0.335204
\(255\) 0 0
\(256\) −0.788305 0.231467i −0.0492691 0.0144667i
\(257\) −0.940093 1.08493i −0.0586414 0.0676758i 0.725671 0.688042i \(-0.241529\pi\)
−0.784312 + 0.620366i \(0.786984\pi\)
\(258\) 0 0
\(259\) −10.3676 + 11.9648i −0.644211 + 0.743459i
\(260\) 9.05939 63.0095i 0.561840 3.90768i
\(261\) 0 0
\(262\) 10.9906 + 7.06320i 0.678999 + 0.436366i
\(263\) 2.04437 + 14.2189i 0.126061 + 0.876774i 0.950478 + 0.310791i \(0.100594\pi\)
−0.824417 + 0.565983i \(0.808497\pi\)
\(264\) 0 0
\(265\) −4.36767 9.56386i −0.268304 0.587503i
\(266\) −1.50134 10.4421i −0.0920531 0.640244i
\(267\) 0 0
\(268\) 0.410006 0.120389i 0.0250451 0.00735390i
\(269\) −2.75934 + 19.1916i −0.168240 + 1.17013i 0.714281 + 0.699859i \(0.246754\pi\)
−0.882520 + 0.470274i \(0.844155\pi\)
\(270\) 0 0
\(271\) 13.7459 8.83395i 0.835004 0.536624i −0.0518607 0.998654i \(-0.516515\pi\)
0.886864 + 0.462030i \(0.152879\pi\)
\(272\) 19.5556 + 22.5684i 1.18573 + 1.36841i
\(273\) 0 0
\(274\) −8.76346 + 19.1893i −0.529420 + 1.15927i
\(275\) −0.409837 −0.0247141
\(276\) 0 0
\(277\) 20.1827 1.21266 0.606332 0.795212i \(-0.292640\pi\)
0.606332 + 0.795212i \(0.292640\pi\)
\(278\) 11.9314 26.1261i 0.715598 1.56694i
\(279\) 0 0
\(280\) −35.7334 41.2386i −2.13548 2.46448i
\(281\) −7.16101 + 4.60210i −0.427190 + 0.274538i −0.736519 0.676417i \(-0.763532\pi\)
0.309329 + 0.950955i \(0.399896\pi\)
\(282\) 0 0
\(283\) 0.480803 3.34406i 0.0285808 0.198784i −0.970528 0.240987i \(-0.922529\pi\)
0.999109 + 0.0422038i \(0.0134379\pi\)
\(284\) 75.4246 22.1466i 4.47562 1.31416i
\(285\) 0 0
\(286\) −0.194402 1.35209i −0.0114952 0.0799509i
\(287\) 6.21649 + 13.6122i 0.366948 + 0.803503i
\(288\) 0 0
\(289\) 1.47597 + 10.2656i 0.0868220 + 0.603861i
\(290\) −9.26883 5.95672i −0.544285 0.349791i
\(291\) 0 0
\(292\) 0.502210 3.49295i 0.0293896 0.204409i
\(293\) −2.70239 + 3.11873i −0.157876 + 0.182198i −0.829177 0.558987i \(-0.811190\pi\)
0.671301 + 0.741185i \(0.265736\pi\)
\(294\) 0 0
\(295\) −5.16420 5.95981i −0.300671 0.346993i
\(296\) −54.0834 15.8803i −3.14353 0.923024i
\(297\) 0 0
\(298\) −44.0249 −2.55030
\(299\) −13.7094 15.5146i −0.792837 0.897231i
\(300\) 0 0
\(301\) 8.23643 18.0353i 0.474740 1.03954i
\(302\) −48.2339 14.1627i −2.77555 0.814975i
\(303\) 0 0
\(304\) 16.8522 10.8303i 0.966542 0.621159i
\(305\) −23.9174 + 27.6021i −1.36951 + 1.58049i
\(306\) 0 0
\(307\) −9.98433 + 2.93166i −0.569836 + 0.167319i −0.553943 0.832555i \(-0.686877\pi\)
−0.0158931 + 0.999874i \(0.505059\pi\)
\(308\) −1.16622 0.749485i −0.0664517 0.0427059i
\(309\) 0 0
\(310\) −18.3893 40.2670i −1.04444 2.28701i
\(311\) −5.48023 12.0000i −0.310756 0.680460i 0.688230 0.725493i \(-0.258388\pi\)
−0.998986 + 0.0450328i \(0.985661\pi\)
\(312\) 0 0
\(313\) −11.5760 7.43943i −0.654313 0.420501i 0.170927 0.985284i \(-0.445324\pi\)
−0.825240 + 0.564782i \(0.808960\pi\)
\(314\) −19.3018 + 5.66753i −1.08927 + 0.319837i
\(315\) 0 0
\(316\) 24.5651 28.3496i 1.38189 1.59479i
\(317\) 12.0651 7.75378i 0.677645 0.435496i −0.156029 0.987752i \(-0.549869\pi\)
0.833674 + 0.552257i \(0.186233\pi\)
\(318\) 0 0
\(319\) −0.162716 0.0477777i −0.00911033 0.00267504i
\(320\) 18.5416 40.6004i 1.03651 2.26963i
\(321\) 0 0
\(322\) −29.2919 + 0.284406i −1.63237 + 0.0158493i
\(323\) −4.44676 −0.247424
\(324\) 0 0
\(325\) 14.2697 + 4.18996i 0.791541 + 0.232417i
\(326\) −2.90741 3.35533i −0.161026 0.185834i
\(327\) 0 0
\(328\) −34.8903 + 40.2656i −1.92650 + 2.22329i
\(329\) 1.93442 13.4542i 0.106648 0.741753i
\(330\) 0 0
\(331\) −9.95577 6.39818i −0.547219 0.351676i 0.237638 0.971354i \(-0.423627\pi\)
−0.784856 + 0.619678i \(0.787263\pi\)
\(332\) 2.00781 + 13.9646i 0.110193 + 0.766407i
\(333\) 0 0
\(334\) −23.6821 51.8565i −1.29583 2.83746i
\(335\) 0.0348286 + 0.242238i 0.00190289 + 0.0132349i
\(336\) 0 0
\(337\) −25.6791 + 7.54006i −1.39883 + 0.410733i −0.892281 0.451480i \(-0.850896\pi\)
−0.506547 + 0.862213i \(0.669078\pi\)
\(338\) −2.13370 + 14.8402i −0.116058 + 0.807199i
\(339\) 0 0
\(340\) −31.9379 + 20.5252i −1.73207 + 1.11314i
\(341\) −0.446192 0.514933i −0.0241626 0.0278852i
\(342\) 0 0
\(343\) −8.32469 + 18.2285i −0.449491 + 0.984248i
\(344\) 70.5911 3.80602
\(345\) 0 0
\(346\) 16.8372 0.905174
\(347\) 3.67463 8.04631i 0.197264 0.431948i −0.784989 0.619510i \(-0.787331\pi\)
0.982253 + 0.187562i \(0.0600585\pi\)
\(348\) 0 0
\(349\) 19.5011 + 22.5054i 1.04387 + 1.20469i 0.978376 + 0.206834i \(0.0663160\pi\)
0.0654913 + 0.997853i \(0.479139\pi\)
\(350\) 17.7017 11.3762i 0.946198 0.608084i
\(351\) 0 0
\(352\) 0.245433 1.70703i 0.0130816 0.0909849i
\(353\) −16.5145 + 4.84909i −0.878978 + 0.258091i −0.689930 0.723877i \(-0.742359\pi\)
−0.189048 + 0.981968i \(0.560540\pi\)
\(354\) 0 0
\(355\) 6.40705 + 44.5620i 0.340051 + 2.36511i
\(356\) 28.0030 + 61.3180i 1.48416 + 3.24985i
\(357\) 0 0
\(358\) 3.10104 + 21.5682i 0.163895 + 1.13991i
\(359\) 5.99586 + 3.85331i 0.316449 + 0.203370i 0.689217 0.724555i \(-0.257955\pi\)
−0.372767 + 0.927925i \(0.621591\pi\)
\(360\) 0 0
\(361\) 2.27946 15.8540i 0.119972 0.834420i
\(362\) −10.9946 + 12.6884i −0.577862 + 0.666888i
\(363\) 0 0
\(364\) 32.9432 + 38.0185i 1.72669 + 1.99271i
\(365\) 1.93916 + 0.569389i 0.101500 + 0.0298032i
\(366\) 0 0
\(367\) 13.5836 0.709060 0.354530 0.935045i \(-0.384641\pi\)
0.354530 + 0.935045i \(0.384641\pi\)
\(368\) −23.5976 50.3714i −1.23011 2.62579i
\(369\) 0 0
\(370\) 22.1350 48.4690i 1.15075 2.51978i
\(371\) 7.97218 + 2.34084i 0.413895 + 0.121531i
\(372\) 0 0
\(373\) 15.7544 10.1247i 0.815733 0.524240i −0.0649821 0.997886i \(-0.520699\pi\)
0.880715 + 0.473647i \(0.157063\pi\)
\(374\) −0.533493 + 0.615684i −0.0275863 + 0.0318363i
\(375\) 0 0
\(376\) 46.4339 13.6342i 2.39465 0.703131i
\(377\) 5.17699 + 3.32705i 0.266628 + 0.171352i
\(378\) 0 0
\(379\) −4.16129 9.11196i −0.213751 0.468050i 0.772137 0.635456i \(-0.219188\pi\)
−0.985888 + 0.167406i \(0.946461\pi\)
\(380\) 10.5796 + 23.1661i 0.542722 + 1.18839i
\(381\) 0 0
\(382\) −28.9672 18.6161i −1.48209 0.952482i
\(383\) −27.9432 + 8.20488i −1.42783 + 0.419250i −0.902147 0.431429i \(-0.858010\pi\)
−0.525686 + 0.850679i \(0.676191\pi\)
\(384\) 0 0
\(385\) 0.519924 0.600025i 0.0264978 0.0305801i
\(386\) 28.2178 18.1345i 1.43625 0.923022i
\(387\) 0 0
\(388\) 41.4891 + 12.1823i 2.10629 + 0.618462i
\(389\) −1.82086 + 3.98712i −0.0923211 + 0.202155i −0.950159 0.311765i \(-0.899080\pi\)
0.857838 + 0.513920i \(0.171807\pi\)
\(390\) 0 0
\(391\) −1.63850 + 12.2384i −0.0828624 + 0.618921i
\(392\) −14.1130 −0.712816
\(393\) 0 0
\(394\) −37.0869 10.8897i −1.86841 0.548616i
\(395\) 14.0687 + 16.2362i 0.707875 + 0.816931i
\(396\) 0 0
\(397\) −0.0954283 + 0.110130i −0.00478941 + 0.00552727i −0.758139 0.652093i \(-0.773891\pi\)
0.753350 + 0.657620i \(0.228437\pi\)
\(398\) −7.63595 + 53.1092i −0.382756 + 2.66213i
\(399\) 0 0
\(400\) 33.6138 + 21.6023i 1.68069 + 1.08011i
\(401\) −4.79060 33.3194i −0.239231 1.66389i −0.655912 0.754837i \(-0.727716\pi\)
0.416681 0.909053i \(-0.363193\pi\)
\(402\) 0 0
\(403\) 10.2711 + 22.4906i 0.511640 + 1.12034i
\(404\) 5.04947 + 35.1198i 0.251220 + 1.74728i
\(405\) 0 0
\(406\) 8.35425 2.45303i 0.414615 0.121742i
\(407\) 0.116718 0.811791i 0.00578549 0.0402390i
\(408\) 0 0
\(409\) −25.4633 + 16.3642i −1.25908 + 0.809160i −0.988158 0.153442i \(-0.950964\pi\)
−0.270920 + 0.962602i \(0.587328\pi\)
\(410\) −32.9823 38.0636i −1.62888 1.87983i
\(411\) 0 0
\(412\) 29.1227 63.7698i 1.43477 3.14171i
\(413\) 6.23192 0.306653
\(414\) 0 0
\(415\) −8.07995 −0.396629
\(416\) −25.9973 + 56.9261i −1.27462 + 2.79103i
\(417\) 0 0
\(418\) 0.357879 + 0.413015i 0.0175045 + 0.0202012i
\(419\) −15.7624 + 10.1299i −0.770044 + 0.494877i −0.865716 0.500536i \(-0.833136\pi\)
0.0956719 + 0.995413i \(0.469500\pi\)
\(420\) 0 0
\(421\) −5.57819 + 38.7972i −0.271864 + 1.89086i 0.157173 + 0.987571i \(0.449762\pi\)
−0.429038 + 0.903287i \(0.641147\pi\)
\(422\) −19.0220 + 5.58537i −0.925978 + 0.271892i
\(423\) 0 0
\(424\) 4.20996 + 29.2809i 0.204454 + 1.42201i
\(425\) −3.68456 8.06806i −0.178727 0.391358i
\(426\) 0 0
\(427\) −4.10755 28.5686i −0.198778 1.38253i
\(428\) −35.1001 22.5575i −1.69663 1.09036i
\(429\) 0 0
\(430\) −9.49678 + 66.0515i −0.457975 + 3.18529i
\(431\) 14.0594 16.2254i 0.677217 0.781550i −0.308271 0.951299i \(-0.599750\pi\)
0.985487 + 0.169749i \(0.0542957\pi\)
\(432\) 0 0
\(433\) 0.496613 + 0.573122i 0.0238657 + 0.0275425i 0.767557 0.640981i \(-0.221472\pi\)
−0.743691 + 0.668523i \(0.766927\pi\)
\(434\) 33.5655 + 9.85571i 1.61119 + 0.473089i
\(435\) 0 0
\(436\) −87.6378 −4.19709
\(437\) 7.96980 + 2.25633i 0.381247 + 0.107935i
\(438\) 0 0
\(439\) 5.44584 11.9247i 0.259916 0.569136i −0.734016 0.679132i \(-0.762357\pi\)
0.993932 + 0.109996i \(0.0350838\pi\)
\(440\) 2.71223 + 0.796382i 0.129300 + 0.0379660i
\(441\) 0 0
\(442\) 24.8696 15.9827i 1.18293 0.760221i
\(443\) −2.00368 + 2.31237i −0.0951976 + 0.109864i −0.801349 0.598197i \(-0.795884\pi\)
0.706152 + 0.708061i \(0.250430\pi\)
\(444\) 0 0
\(445\) −37.0426 + 10.8767i −1.75599 + 0.515604i
\(446\) 3.76340 + 2.41859i 0.178202 + 0.114524i
\(447\) 0 0
\(448\) 14.6526 + 32.0847i 0.692270 + 1.51586i
\(449\) 3.18597 + 6.97630i 0.150355 + 0.329232i 0.969790 0.243940i \(-0.0784400\pi\)
−0.819435 + 0.573172i \(0.805713\pi\)
\(450\) 0 0
\(451\) −0.652151 0.419112i −0.0307086 0.0197352i
\(452\) 36.5035 10.7184i 1.71698 0.504151i
\(453\) 0 0
\(454\) 18.7785 21.6716i 0.881319 1.01710i
\(455\) −24.2371 + 15.5762i −1.13625 + 0.730225i
\(456\) 0 0
\(457\) −8.60068 2.52539i −0.402323 0.118133i 0.0743097 0.997235i \(-0.476325\pi\)
−0.476633 + 0.879103i \(0.658143\pi\)
\(458\) 24.2056 53.0030i 1.13106 2.47667i
\(459\) 0 0
\(460\) 67.6560 20.5812i 3.15448 0.959602i
\(461\) 7.53704 0.351035 0.175517 0.984476i \(-0.443840\pi\)
0.175517 + 0.984476i \(0.443840\pi\)
\(462\) 0 0
\(463\) 31.6291 + 9.28715i 1.46993 + 0.431610i 0.916076 0.401004i \(-0.131339\pi\)
0.553853 + 0.832614i \(0.313157\pi\)
\(464\) 10.8272 + 12.4953i 0.502640 + 0.580078i
\(465\) 0 0
\(466\) 43.3194 49.9932i 2.00673 2.31589i
\(467\) −1.91901 + 13.3470i −0.0888010 + 0.617624i 0.896015 + 0.444024i \(0.146449\pi\)
−0.984816 + 0.173601i \(0.944460\pi\)
\(468\) 0 0
\(469\) −0.162697 0.104559i −0.00751265 0.00482809i
\(470\) 6.51058 + 45.2821i 0.300311 + 2.08871i
\(471\) 0 0
\(472\) 9.21716 + 20.1828i 0.424254 + 0.928987i
\(473\) 0.146173 + 1.01665i 0.00672102 + 0.0467457i
\(474\) 0 0
\(475\) −5.70891 + 1.67629i −0.261943 + 0.0769133i
\(476\) 4.26969 29.6964i 0.195701 1.36113i
\(477\) 0 0
\(478\) −9.39042 + 6.03486i −0.429508 + 0.276028i
\(479\) −13.6684 15.7742i −0.624524 0.720740i 0.352035 0.935987i \(-0.385490\pi\)
−0.976560 + 0.215247i \(0.930944\pi\)
\(480\) 0 0
\(481\) −12.3632 + 27.0717i −0.563715 + 1.23436i
\(482\) −72.9548 −3.32300
\(483\) 0 0
\(484\) −55.7437 −2.53380
\(485\) −10.2875 + 22.5265i −0.467133 + 1.02288i
\(486\) 0 0
\(487\) 5.41275 + 6.24665i 0.245275 + 0.283063i 0.865016 0.501744i \(-0.167308\pi\)
−0.619741 + 0.784806i \(0.712762\pi\)
\(488\) 86.4475 55.5564i 3.91329 2.51492i
\(489\) 0 0
\(490\) 1.89866 13.2055i 0.0857727 0.596562i
\(491\) −10.6572 + 3.12922i −0.480951 + 0.141220i −0.513216 0.858259i \(-0.671546\pi\)
0.0322652 + 0.999479i \(0.489728\pi\)
\(492\) 0 0
\(493\) −0.522312 3.63276i −0.0235238 0.163611i
\(494\) −8.23820 18.0391i −0.370654 0.811619i
\(495\) 0 0
\(496\) 9.45372 + 65.7520i 0.424484 + 2.95235i
\(497\) −29.9297 19.2347i −1.34253 0.862792i
\(498\) 0 0
\(499\) 0.865761 6.02150i 0.0387568 0.269559i −0.961224 0.275769i \(-0.911067\pi\)
0.999981 + 0.00620960i \(0.00197659\pi\)
\(500\) 15.0158 17.3292i 0.671527 0.774984i
\(501\) 0 0
\(502\) −22.5099 25.9778i −1.00466 1.15944i
\(503\) −7.54921 2.21665i −0.336602 0.0988354i 0.109063 0.994035i \(-0.465215\pi\)
−0.445666 + 0.895199i \(0.647033\pi\)
\(504\) 0 0
\(505\) −20.3204 −0.904246
\(506\) 1.26857 0.832773i 0.0563948 0.0370213i
\(507\) 0 0
\(508\) −4.23383 + 9.27080i −0.187846 + 0.411325i
\(509\) 28.5327 + 8.37797i 1.26469 + 0.371347i 0.844238 0.535968i \(-0.180053\pi\)
0.420453 + 0.907315i \(0.361871\pi\)
\(510\) 0 0
\(511\) −1.34359 + 0.863473i −0.0594369 + 0.0381978i
\(512\) 14.1000 16.2723i 0.623140 0.719142i
\(513\) 0 0
\(514\) −3.66354 + 1.07571i −0.161592 + 0.0474476i
\(515\) 33.7764 + 21.7068i 1.48836 + 0.956514i
\(516\) 0 0
\(517\) 0.292510 + 0.640508i 0.0128646 + 0.0281695i
\(518\) 17.4923 + 38.3029i 0.768569 + 1.68293i
\(519\) 0 0
\(520\) −86.2926 55.4569i −3.78418 2.43194i
\(521\) −18.2067 + 5.34598i −0.797651 + 0.234211i −0.655066 0.755571i \(-0.727359\pi\)
−0.142584 + 0.989783i \(0.545541\pi\)
\(522\) 0 0
\(523\) 17.3500 20.0229i 0.758661 0.875542i −0.236717 0.971579i \(-0.576071\pi\)
0.995378 + 0.0960371i \(0.0306168\pi\)
\(524\) 20.9674 13.4749i 0.915966 0.588656i
\(525\) 0 0
\(526\) 36.6595 + 10.7642i 1.59843 + 0.469342i
\(527\) 6.12558 13.4131i 0.266834 0.584286i
\(528\) 0 0
\(529\) 9.14651 21.1031i 0.397674 0.917527i
\(530\) −27.9643 −1.21469
\(531\) 0 0
\(532\) −19.3106 5.67011i −0.837222 0.245831i
\(533\) 18.4218 + 21.2599i 0.797938 + 0.920869i
\(534\) 0 0
\(535\) 15.6483 18.0591i 0.676535 0.780763i
\(536\) 0.0979933 0.681558i 0.00423266 0.0294388i
\(537\) 0 0
\(538\) 43.3829 + 27.8805i 1.87037 + 1.20201i
\(539\) −0.0292238 0.203256i −0.00125876 0.00875485i
\(540\) 0 0
\(541\) 13.5708 + 29.7159i 0.583454 + 1.27759i 0.939318 + 0.343049i \(0.111460\pi\)
−0.355863 + 0.934538i \(0.615813\pi\)
\(542\) −6.18490 43.0170i −0.265664 1.84774i
\(543\) 0 0
\(544\) 35.8111 10.5151i 1.53539 0.450831i
\(545\) 7.14297 49.6805i 0.305971 2.12808i
\(546\) 0 0
\(547\) 38.2357 24.5726i 1.63484 1.05065i 0.689639 0.724153i \(-0.257769\pi\)
0.945199 0.326494i \(-0.105867\pi\)
\(548\) 26.3553 + 30.4156i 1.12584 + 1.29929i
\(549\) 0 0
\(550\) −0.452824 + 0.991547i −0.0193085 + 0.0422797i
\(551\) −2.46200 −0.104885
\(552\) 0 0
\(553\) −16.9775 −0.721957
\(554\) 22.2997 48.8295i 0.947424 2.07457i
\(555\) 0 0
\(556\) −35.8826 41.4107i −1.52176 1.75620i
\(557\) −12.6601 + 8.13615i −0.536425 + 0.344740i −0.780639 0.624982i \(-0.785106\pi\)
0.244214 + 0.969721i \(0.421470\pi\)
\(558\) 0 0
\(559\) 5.30430 36.8922i 0.224348 1.56037i
\(560\) −74.2699 + 21.8076i −3.13848 + 0.921539i
\(561\) 0 0
\(562\) 3.22206 + 22.4099i 0.135915 + 0.945307i
\(563\) 14.1960 + 31.0849i 0.598290 + 1.31007i 0.930301 + 0.366796i \(0.119545\pi\)
−0.332012 + 0.943275i \(0.607727\pi\)
\(564\) 0 0
\(565\) 3.10084 + 21.5668i 0.130453 + 0.907324i
\(566\) −7.55928 4.85805i −0.317740 0.204199i
\(567\) 0 0
\(568\) 18.0268 125.379i 0.756388 5.26079i
\(569\) −12.0761 + 13.9366i −0.506257 + 0.584252i −0.950136 0.311835i \(-0.899056\pi\)
0.443879 + 0.896087i \(0.353602\pi\)
\(570\) 0 0
\(571\) −4.34404 5.01329i −0.181792 0.209799i 0.657538 0.753422i \(-0.271598\pi\)
−0.839330 + 0.543622i \(0.817053\pi\)
\(572\) −2.50044 0.734196i −0.104549 0.0306983i
\(573\) 0 0
\(574\) 39.8015 1.66128
\(575\) 2.50992 + 16.3297i 0.104671 + 0.680997i
\(576\) 0 0
\(577\) −5.22293 + 11.4366i −0.217433 + 0.476112i −0.986646 0.162881i \(-0.947921\pi\)
0.769213 + 0.638993i \(0.220649\pi\)
\(578\) 26.4672 + 7.77146i 1.10089 + 0.323250i
\(579\) 0 0
\(580\) −17.6828 + 11.3640i −0.734237 + 0.471866i
\(581\) 4.18144 4.82563i 0.173475 0.200201i
\(582\) 0 0
\(583\) −0.412986 + 0.121264i −0.0171041 + 0.00502223i
\(584\) −4.78365 3.07427i −0.197949 0.127214i
\(585\) 0 0
\(586\) 4.55952 + 9.98395i 0.188352 + 0.412433i
\(587\) −0.454966 0.996237i −0.0187785 0.0411191i 0.900010 0.435868i \(-0.143559\pi\)
−0.918789 + 0.394749i \(0.870831\pi\)
\(588\) 0 0
\(589\) −8.32147 5.34788i −0.342880 0.220356i
\(590\) −20.1249 + 5.90919i −0.828527 + 0.243278i
\(591\) 0 0
\(592\) −52.3620 + 60.4290i −2.15206 + 2.48361i
\(593\) −1.95340 + 1.25538i −0.0802167 + 0.0515521i −0.580134 0.814521i \(-0.697000\pi\)
0.499918 + 0.866073i \(0.333364\pi\)
\(594\) 0 0
\(595\) 16.4864 + 4.84084i 0.675876 + 0.198455i
\(596\) −34.8904 + 76.3994i −1.42917 + 3.12944i
\(597\) 0 0
\(598\) −52.6829 + 16.0263i −2.15436 + 0.655364i
\(599\) 43.0508 1.75901 0.879504 0.475892i \(-0.157875\pi\)
0.879504 + 0.475892i \(0.157875\pi\)
\(600\) 0 0
\(601\) −12.7347 3.73926i −0.519461 0.152527i 0.0114837 0.999934i \(-0.496345\pi\)
−0.530944 + 0.847407i \(0.678163\pi\)
\(602\) −34.5337 39.8540i −1.40749 1.62433i
\(603\) 0 0
\(604\) −62.8036 + 72.4793i −2.55544 + 2.94914i
\(605\) 4.54342 31.6002i 0.184716 1.28473i
\(606\) 0 0
\(607\) −27.6867 17.7932i −1.12377 0.722203i −0.159520 0.987195i \(-0.550995\pi\)
−0.964251 + 0.264991i \(0.914631\pi\)
\(608\) −3.56315 24.7822i −0.144505 1.00505i
\(609\) 0 0
\(610\) 40.3537 + 88.3623i 1.63387 + 3.57769i
\(611\) −3.63640 25.2917i −0.147113 1.02319i
\(612\) 0 0
\(613\) 38.7731 11.3848i 1.56603 0.459828i 0.620188 0.784454i \(-0.287057\pi\)
0.945843 + 0.324626i \(0.105238\pi\)
\(614\) −3.93880 + 27.3950i −0.158957 + 1.10557i
\(615\) 0 0
\(616\) −1.87923 + 1.20770i −0.0757162 + 0.0486598i
\(617\) 19.6464 + 22.6732i 0.790935 + 0.912788i 0.997848 0.0655717i \(-0.0208871\pi\)
−0.206913 + 0.978359i \(0.566342\pi\)
\(618\) 0 0
\(619\) 11.0046 24.0967i 0.442313 0.968530i −0.548855 0.835918i \(-0.684936\pi\)
0.991168 0.132613i \(-0.0423366\pi\)
\(620\) −84.4517 −3.39166
\(621\) 0 0
\(622\) −35.0876 −1.40688
\(623\) 12.6739 27.7519i 0.507768 1.11186i
\(624\) 0 0
\(625\) 19.8796 + 22.9423i 0.795185 + 0.917692i
\(626\) −30.7889 + 19.7868i −1.23057 + 0.790841i
\(627\) 0 0
\(628\) −5.46176 + 37.9874i −0.217948 + 1.51586i
\(629\) 17.0303 5.00054i 0.679041 0.199385i
\(630\) 0 0
\(631\) −2.28418 15.8868i −0.0909316 0.632443i −0.983416 0.181365i \(-0.941948\pi\)
0.892484 0.451079i \(-0.148961\pi\)
\(632\) −25.1101 54.9835i −0.998827 2.18713i
\(633\) 0 0
\(634\) −5.42865 37.7571i −0.215599 1.49953i
\(635\) −4.91038 3.15571i −0.194863 0.125231i
\(636\) 0 0
\(637\) −1.06047 + 7.37574i −0.0420174 + 0.292237i
\(638\) −0.295375 + 0.340881i −0.0116940 + 0.0134956i
\(639\) 0 0
\(640\) −22.5668 26.0435i −0.892031 1.02946i
\(641\) −44.9585 13.2010i −1.77575 0.521408i −0.781074 0.624438i \(-0.785328\pi\)
−0.994678 + 0.103030i \(0.967146\pi\)
\(642\) 0 0
\(643\) −27.2328 −1.07396 −0.536979 0.843596i \(-0.680435\pi\)
−0.536979 + 0.843596i \(0.680435\pi\)
\(644\) −22.7207 + 51.0575i −0.895321 + 2.01195i
\(645\) 0 0
\(646\) −4.91317 + 10.7584i −0.193306 + 0.423282i
\(647\) 23.7997 + 6.98823i 0.935664 + 0.274736i 0.713806 0.700343i \(-0.246970\pi\)
0.221858 + 0.975079i \(0.428788\pi\)
\(648\) 0 0
\(649\) −0.271586 + 0.174538i −0.0106607 + 0.00685121i
\(650\) 25.9035 29.8943i 1.01602 1.17255i
\(651\) 0 0
\(652\) −8.12689 + 2.38627i −0.318274 + 0.0934535i
\(653\) 24.7733 + 15.9208i 0.969455 + 0.623031i 0.926599 0.376050i \(-0.122718\pi\)
0.0428558 + 0.999081i \(0.486354\pi\)
\(654\) 0 0
\(655\) 5.92976 + 12.9844i 0.231695 + 0.507341i
\(656\) 31.3967 + 68.7491i 1.22583 + 2.68420i
\(657\) 0 0
\(658\) −30.4133 19.5455i −1.18563 0.761961i
\(659\) 13.4131 3.93844i 0.522500 0.153420i −0.00983813 0.999952i \(-0.503132\pi\)
0.532338 + 0.846532i \(0.321313\pi\)
\(660\) 0 0
\(661\) 16.2537 18.7578i 0.632196 0.729593i −0.345779 0.938316i \(-0.612385\pi\)
0.977975 + 0.208723i \(0.0669308\pi\)
\(662\) −26.4796 + 17.0174i −1.02916 + 0.661400i
\(663\) 0 0
\(664\) 21.8128 + 6.40481i 0.846501 + 0.248555i
\(665\) 4.78822 10.4847i 0.185679 0.406580i
\(666\) 0 0
\(667\) −0.907174 + 6.77593i −0.0351259 + 0.262365i
\(668\) −108.758 −4.20799
\(669\) 0 0
\(670\) 0.624545 + 0.183383i 0.0241283 + 0.00708470i
\(671\) 0.979129 + 1.12998i 0.0377989 + 0.0436222i
\(672\) 0 0
\(673\) −5.82979 + 6.72793i −0.224722 + 0.259343i −0.856903 0.515478i \(-0.827614\pi\)
0.632181 + 0.774821i \(0.282160\pi\)
\(674\) −10.1303 + 70.4581i −0.390206 + 2.71395i
\(675\) 0 0
\(676\) 24.0622 + 15.4638i 0.925468 + 0.594762i
\(677\) 0.401463 + 2.79223i 0.0154295 + 0.107314i 0.996081 0.0884485i \(-0.0281909\pi\)
−0.980651 + 0.195763i \(0.937282\pi\)
\(678\) 0 0
\(679\) −8.12978 17.8017i −0.311992 0.683168i
\(680\) 8.70616 + 60.5527i 0.333866 + 2.32209i
\(681\) 0 0
\(682\) −1.73881 + 0.510560i −0.0665823 + 0.0195503i
\(683\) 2.95100 20.5247i 0.112917 0.785355i −0.852140 0.523314i \(-0.824695\pi\)
0.965057 0.262041i \(-0.0843956\pi\)
\(684\) 0 0
\(685\) −19.3902 + 12.4613i −0.740862 + 0.476123i
\(686\) 34.9037 + 40.2810i 1.33263 + 1.53794i
\(687\) 0 0
\(688\) 41.5985 91.0880i 1.58593 3.47270i
\(689\) 15.6191 0.595040
\(690\) 0 0
\(691\) 1.36601 0.0519655 0.0259827 0.999662i \(-0.491729\pi\)
0.0259827 + 0.999662i \(0.491729\pi\)
\(692\) 13.3437 29.2187i 0.507253 1.11073i
\(693\) 0 0
\(694\) −15.4069 17.7806i −0.584840 0.674941i
\(695\) 26.3997 16.9660i 1.00140 0.643558i
\(696\) 0 0
\(697\) 2.38761 16.6062i 0.0904373 0.629005i
\(698\) 75.9955 22.3143i 2.87647 0.844608i
\(699\) 0 0
\(700\) −5.71301 39.7348i −0.215931 1.50184i
\(701\) −12.5045 27.3810i −0.472288 1.03417i −0.984512 0.175315i \(-0.943906\pi\)
0.512224 0.858852i \(-0.328822\pi\)
\(702\) 0 0
\(703\) −1.69449 11.7854i −0.0639087 0.444495i
\(704\) −1.53716 0.987870i −0.0579337 0.0372317i
\(705\) 0 0
\(706\) −6.51494 + 45.3124i −0.245193 + 1.70535i
\(707\) 10.5160 12.1361i 0.395493 0.456424i
\(708\) 0 0
\(709\) 25.9980 + 30.0033i 0.976375 + 1.12680i 0.991913 + 0.126918i \(0.0405085\pi\)
−0.0155379 + 0.999879i \(0.504946\pi\)
\(710\) 114.891 + 33.7351i 4.31179 + 1.26605i
\(711\) 0 0
\(712\) 108.623 4.07080
\(713\) −17.7847 + 20.9318i −0.666041 + 0.783903i
\(714\) 0 0
\(715\) 0.620004 1.35762i 0.0231868 0.0507721i
\(716\) 39.8863 + 11.7117i 1.49062 + 0.437686i
\(717\) 0 0
\(718\) 15.9473 10.2487i 0.595149 0.382479i
\(719\) −6.00668 + 6.93208i −0.224011 + 0.258523i −0.856619 0.515950i \(-0.827439\pi\)
0.632608 + 0.774473i \(0.281985\pi\)
\(720\) 0 0
\(721\) −30.4436 + 8.93904i −1.13378 + 0.332907i
\(722\) −35.8381 23.0318i −1.33376 0.857153i
\(723\) 0 0
\(724\) 13.3057 + 29.1354i 0.494502 + 1.08281i
\(725\) −2.04000 4.46698i −0.0757637 0.165899i
\(726\) 0 0
\(727\) −3.19987 2.05643i −0.118676 0.0762687i 0.479956 0.877293i \(-0.340653\pi\)
−0.598632 + 0.801024i \(0.704289\pi\)
\(728\) 77.7779 22.8376i 2.88264 0.846419i
\(729\) 0 0
\(730\) 3.52012 4.06244i 0.130286 0.150358i
\(731\) −18.6997 + 12.0176i −0.691634 + 0.444486i
\(732\) 0 0
\(733\) −39.2138 11.5142i −1.44839 0.425287i −0.539384 0.842060i \(-0.681343\pi\)
−0.909011 + 0.416773i \(0.863161\pi\)
\(734\) 15.0084 32.8638i 0.553971 1.21303i
\(735\) 0 0
\(736\) −69.5187 + 0.674985i −2.56249 + 0.0248803i
\(737\) 0.0100187 0.000369044
\(738\) 0 0
\(739\) 28.0767 + 8.24407i 1.03282 + 0.303263i 0.753856 0.657039i \(-0.228191\pi\)
0.278962 + 0.960302i \(0.410010\pi\)
\(740\) −66.5690 76.8248i −2.44713 2.82413i
\(741\) 0 0
\(742\) 14.4717 16.7013i 0.531274 0.613123i
\(743\) −1.23262 + 8.57306i −0.0452204 + 0.314515i 0.954639 + 0.297765i \(0.0962411\pi\)
−0.999860 + 0.0167502i \(0.994668\pi\)
\(744\) 0 0
\(745\) −40.4658 26.0058i −1.48255 0.952778i
\(746\) −7.08863 49.3025i −0.259533 1.80509i
\(747\) 0 0
\(748\) 0.645636 + 1.41374i 0.0236068 + 0.0516916i
\(749\) 2.68742 + 18.6914i 0.0981964 + 0.682971i
\(750\) 0 0
\(751\) −6.59622 + 1.93683i −0.240700 + 0.0706758i −0.399857 0.916577i \(-0.630940\pi\)
0.159158 + 0.987253i \(0.449122\pi\)
\(752\) 9.76987 67.9509i 0.356270 2.47792i
\(753\) 0 0
\(754\) 13.7694 8.84903i 0.501450 0.322263i
\(755\) −35.9685 41.5098i −1.30903 1.51070i
\(756\) 0 0
\(757\) −1.31155 + 2.87190i −0.0476692 + 0.104381i −0.931968 0.362540i \(-0.881910\pi\)
0.884299 + 0.466921i \(0.154637\pi\)
\(758\) −26.6430 −0.967717
\(759\) 0 0
\(760\) 41.0378 1.48860
\(761\) −7.11532 + 15.5804i −0.257930 + 0.564788i −0.993652 0.112495i \(-0.964116\pi\)
0.735722 + 0.677284i \(0.236843\pi\)
\(762\) 0 0
\(763\) 25.9744 + 29.9760i 0.940336 + 1.08521i
\(764\) −55.2627 + 35.5152i −1.99933 + 1.28489i
\(765\) 0 0
\(766\) −11.0236 + 76.6706i −0.398298 + 2.77022i
\(767\) 11.2405 3.30050i 0.405870 0.119174i
\(768\) 0 0
\(769\) 3.01514 + 20.9707i 0.108729 + 0.756224i 0.969120 + 0.246590i \(0.0793101\pi\)
−0.860391 + 0.509634i \(0.829781\pi\)
\(770\) −0.877223 1.92085i −0.0316129 0.0692227i
\(771\) 0 0
\(772\) −9.10694 63.3401i −0.327766 2.27966i
\(773\) −4.49268 2.88727i −0.161590 0.103848i 0.457346 0.889289i \(-0.348800\pi\)
−0.618937 + 0.785441i \(0.712436\pi\)
\(774\) 0 0
\(775\) 2.80791 19.5294i 0.100863 0.701518i
\(776\) 45.6287 52.6584i 1.63798 1.89033i
\(777\) 0 0
\(778\) 7.63448 + 8.81066i 0.273709 + 0.315877i
\(779\) −10.7985 3.17073i −0.386897 0.113603i
\(780\) 0 0
\(781\) 1.84304 0.0659491
\(782\) 27.7988 + 17.4862i 0.994084 + 0.625305i
\(783\) 0 0
\(784\) −8.31664 + 18.2109i −0.297023 + 0.650390i
\(785\) −21.0893 6.19236i −0.752708 0.221015i
\(786\) 0 0
\(787\) 36.6862 23.5768i 1.30772 0.840423i 0.313693 0.949525i \(-0.398434\pi\)
0.994031 + 0.109102i \(0.0347975\pi\)
\(788\) −48.2896 + 55.7292i −1.72025 + 1.98527i
\(789\) 0 0
\(790\) 54.8257 16.0983i 1.95061 0.572751i
\(791\) −14.4852 9.30907i −0.515034 0.330992i
\(792\) 0 0
\(793\) −22.5390 49.3536i −0.800385 1.75260i
\(794\) 0.161008 + 0.352558i 0.00571396 + 0.0125118i
\(795\) 0 0
\(796\) 86.1124 + 55.3410i 3.05217 + 1.96151i
\(797\) −11.1289 + 3.26774i −0.394205 + 0.115749i −0.472827 0.881155i \(-0.656766\pi\)
0.0786214 + 0.996905i \(0.474948\pi\)
\(798\) 0 0
\(799\) −9.97930 + 11.5167i −0.353042 + 0.407432i
\(800\) 42.0117 26.9993i 1.48534 0.954570i
\(801\) 0 0
\(802\) −85.9050 25.2240i −3.03341 0.890690i
\(803\) 0.0343701 0.0752600i 0.00121289 0.00265587i
\(804\) 0 0
\(805\) −27.0918 17.0415i −0.954860 0.600632i
\(806\) 65.7615 2.31635
\(807\) 0 0
\(808\) 54.8574 + 16.1076i 1.92988 + 0.566663i
\(809\) −5.11925 5.90793i −0.179983 0.207712i 0.658588 0.752504i \(-0.271154\pi\)
−0.838571 + 0.544792i \(0.816609\pi\)
\(810\) 0 0
\(811\) −7.54232 + 8.70430i −0.264847 + 0.305649i −0.872560 0.488507i \(-0.837542\pi\)
0.607713 + 0.794157i \(0.292087\pi\)
\(812\) 2.36397 16.4418i 0.0829590 0.576993i
\(813\) 0 0
\(814\) −1.83506 1.17932i −0.0643189 0.0413353i
\(815\) −0.690351 4.80149i −0.0241819 0.168189i
\(816\) 0 0
\(817\) 6.19438 + 13.5638i 0.216714 + 0.474538i
\(818\) 11.4571 + 79.6858i 0.400588 + 2.78615i
\(819\) 0 0
\(820\) −92.1932 + 27.0704i −3.21953 + 0.945339i
\(821\) −0.0743036 + 0.516793i −0.00259321 + 0.0180362i −0.991077 0.133291i \(-0.957446\pi\)
0.988484 + 0.151327i \(0.0483547\pi\)
\(822\) 0 0
\(823\) −28.0088 + 18.0002i −0.976327 + 0.627447i −0.928470 0.371407i \(-0.878876\pi\)
−0.0478569 + 0.998854i \(0.515239\pi\)
\(824\) −73.9768 85.3738i −2.57711 2.97414i
\(825\) 0 0
\(826\) 6.88558 15.0773i 0.239580 0.524607i
\(827\) −24.2079 −0.841791 −0.420895 0.907109i \(-0.638284\pi\)
−0.420895 + 0.907109i \(0.638284\pi\)
\(828\) 0 0
\(829\) 26.4851 0.919866 0.459933 0.887954i \(-0.347873\pi\)
0.459933 + 0.887954i \(0.347873\pi\)
\(830\) −8.92746 + 19.5484i −0.309876 + 0.678535i
\(831\) 0 0
\(832\) 43.4212 + 50.1108i 1.50536 + 1.73728i
\(833\) 3.73857 2.40263i 0.129534 0.0832463i
\(834\) 0 0
\(835\) 8.86442 61.6534i 0.306766 2.13360i
\(836\) 1.00036 0.293731i 0.0345981 0.0101589i
\(837\) 0 0
\(838\) 7.09223 + 49.3275i 0.244997 + 1.70399i
\(839\) 16.0962 + 35.2458i 0.555703 + 1.21682i 0.954067 + 0.299593i \(0.0968510\pi\)
−0.398364 + 0.917228i \(0.630422\pi\)
\(840\) 0 0
\(841\) 3.83795 + 26.6935i 0.132343 + 0.920465i
\(842\) 87.7014 + 56.3623i 3.02239 + 1.94237i
\(843\) 0 0
\(844\) −5.38258 + 37.4367i −0.185276 + 1.28862i
\(845\) −10.7274 + 12.3801i −0.369033 + 0.425887i
\(846\) 0 0
\(847\) 16.5215 + 19.0668i 0.567685 + 0.655144i
\(848\) 40.2638 + 11.8225i 1.38267 + 0.405987i
\(849\) 0 0
\(850\) −23.5907 −0.809153
\(851\) −33.0602 + 0.320995i −1.13329 + 0.0110036i
\(852\) 0 0
\(853\) 3.66776 8.03127i 0.125582 0.274985i −0.836390 0.548135i \(-0.815338\pi\)
0.961972 + 0.273149i \(0.0880654\pi\)
\(854\) −73.6565 21.6275i −2.52047 0.740078i
\(855\) 0 0
\(856\) −56.5596 + 36.3486i −1.93317 + 1.24237i
\(857\) −0.448206 + 0.517257i −0.0153104 + 0.0176692i −0.763353 0.645981i \(-0.776448\pi\)
0.748043 + 0.663651i \(0.230994\pi\)
\(858\) 0 0
\(859\) −12.1210 + 3.55905i −0.413563 + 0.121433i −0.481894 0.876230i \(-0.660051\pi\)
0.0683306 + 0.997663i \(0.478233\pi\)
\(860\) 107.097 + 68.8272i 3.65199 + 2.34699i
\(861\) 0 0
\(862\) −23.7212 51.9421i −0.807946 1.76916i
\(863\) 2.36065 + 5.16909i 0.0803573 + 0.175958i 0.945546 0.325488i \(-0.105529\pi\)
−0.865189 + 0.501446i \(0.832801\pi\)
\(864\) 0 0
\(865\) 15.4760 + 9.94583i 0.526200 + 0.338168i
\(866\) 1.93530 0.568255i 0.0657641 0.0193101i
\(867\) 0 0
\(868\) 43.7044 50.4376i 1.48342 1.71196i
\(869\) 0.739876 0.475490i 0.0250986 0.0161299i
\(870\) 0 0
\(871\) −0.348831 0.102426i −0.0118197 0.00347058i
\(872\) −58.6640 + 128.456i −1.98661 + 4.35008i
\(873\) 0 0
\(874\) 14.2646 16.7889i 0.482509 0.567893i
\(875\) −10.3778 −0.350833
\(876\) 0 0
\(877\) 21.7361 + 6.38228i 0.733974 + 0.215514i 0.627298 0.778779i \(-0.284161\pi\)
0.106677 + 0.994294i \(0.465979\pi\)
\(878\) −22.8333 26.3510i −0.770585 0.889303i
\(879\) 0 0
\(880\) 2.62590 3.03045i 0.0885191 0.102157i
\(881\) −3.21562 + 22.3652i −0.108337 + 0.753501i 0.861149 + 0.508353i \(0.169746\pi\)
−0.969486 + 0.245148i \(0.921164\pi\)
\(882\) 0 0
\(883\) 34.5835 + 22.2255i 1.16383 + 0.747947i 0.972345 0.233549i \(-0.0750341\pi\)
0.191483 + 0.981496i \(0.438670\pi\)
\(884\) −8.02634 55.8244i −0.269955 1.87758i
\(885\) 0 0
\(886\) 3.38063 + 7.40255i 0.113575 + 0.248693i
\(887\) −0.776455 5.40036i −0.0260708 0.181326i 0.972625 0.232380i \(-0.0746512\pi\)
−0.998696 + 0.0510534i \(0.983742\pi\)
\(888\) 0 0
\(889\) 4.42586 1.29955i 0.148439 0.0435855i
\(890\) −14.6132 + 101.637i −0.489837 + 3.40689i
\(891\) 0 0
\(892\) 7.17970 4.61411i 0.240394 0.154492i
\(893\) 6.69434 + 7.72569i 0.224018 + 0.258530i
\(894\) 0 0
\(895\) −9.89011 + 21.6563i −0.330590 + 0.723891i
\(896\) 27.2326 0.909776
\(897\) 0 0
\(898\) 20.3984 0.680703
\(899\) 3.39150 7.42635i 0.113113 0.247683i
\(900\) 0 0
\(901\) −6.10007 7.03986i −0.203223 0.234532i
\(902\) −1.73454 + 1.11472i −0.0577540 + 0.0371162i
\(903\) 0 0
\(904\) 8.72450 60.6802i 0.290173 2.01819i
\(905\) −17.6008 + 5.16807i −0.585072 + 0.171793i
\(906\) 0 0
\(907\) −4.00188 27.8337i −0.132880 0.924202i −0.941774 0.336247i \(-0.890842\pi\)
0.808894 0.587955i \(-0.200067\pi\)
\(908\) −22.7258 49.7626i −0.754183 1.65143i
\(909\) 0 0
\(910\) 10.9054 + 75.8485i 0.361509 + 2.51435i
\(911\) 48.0980 + 30.9107i 1.59356 + 1.02412i 0.970239 + 0.242151i \(0.0778530\pi\)
0.623320 + 0.781967i \(0.285783\pi\)
\(912\) 0 0
\(913\) −0.0470745 + 0.327410i −0.00155794 + 0.0108357i
\(914\) −15.6127 + 18.0180i −0.516421 + 0.595981i
\(915\) 0 0
\(916\) −72.7962 84.0113i −2.40525 2.77581i
\(917\) −10.8234 3.17804i −0.357421 0.104948i
\(918\) 0 0
\(919\) 16.3674 0.539909 0.269955 0.962873i \(-0.412991\pi\)
0.269955 + 0.962873i \(0.412991\pi\)
\(920\) 15.1212 112.944i 0.498532 3.72367i
\(921\) 0 0
\(922\) 8.32759 18.2349i 0.274255 0.600534i
\(923\) −64.1709 18.8423i −2.11221 0.620201i
\(924\) 0 0
\(925\) 19.9790 12.8397i 0.656907 0.422168i
\(926\) 57.4157 66.2613i 1.88680 2.17748i
\(927\) 0 0
\(928\) 19.8272 5.82181i 0.650861 0.191110i
\(929\) −32.1390 20.6545i −1.05445 0.677651i −0.105928 0.994374i \(-0.533781\pi\)
−0.948518 + 0.316723i \(0.897418\pi\)
\(930\) 0 0
\(931\) −1.23842 2.71177i −0.0405877 0.0888746i
\(932\) −52.4253 114.795i −1.71725 3.76025i
\(933\) 0 0
\(934\) 30.1710 + 19.3897i 0.987225 + 0.634451i
\(935\) −0.854051 + 0.250772i −0.0279305 + 0.00820112i
\(936\) 0 0
\(937\) −9.21800 + 10.6381i −0.301139 + 0.347533i −0.886071 0.463549i \(-0.846576\pi\)
0.584932 + 0.811082i \(0.301121\pi\)
\(938\) −0.432730 + 0.278098i −0.0141291 + 0.00908023i
\(939\) 0 0
\(940\) 83.7407 + 24.5885i 2.73132 + 0.801988i
\(941\) 18.0891 39.6097i 0.589689 1.29124i −0.345940 0.938256i \(-0.612440\pi\)
0.935630 0.352983i \(-0.114833\pi\)
\(942\) 0 0
\(943\) −12.7054 + 28.5514i −0.413745 + 0.929760i
\(944\) 31.4746 1.02441
\(945\) 0 0
\(946\) 2.62116 + 0.769643i 0.0852214 + 0.0250233i
\(947\) 20.1689 + 23.2762i 0.655403 + 0.756375i 0.982019 0.188782i \(-0.0604540\pi\)
−0.326616 + 0.945157i \(0.605908\pi\)
\(948\) 0 0
\(949\) −1.96612 + 2.26902i −0.0638229 + 0.0736556i
\(950\) −2.25215 + 15.6641i −0.0730695 + 0.508210i
\(951\) 0 0
\(952\) −40.6697 26.1368i −1.31811 0.847100i
\(953\) 7.63117 + 53.0760i 0.247198 + 1.71930i 0.614261 + 0.789103i \(0.289454\pi\)
−0.367063 + 0.930196i \(0.619637\pi\)
\(954\) 0 0
\(955\) −15.6288 34.2222i −0.505734 1.10740i
\(956\) 3.03063 + 21.0785i 0.0980177 + 0.681728i
\(957\) 0 0
\(958\) −53.2656 + 15.6402i −1.72093 + 0.505312i
\(959\) 2.59223 18.0294i 0.0837075 0.582198i
\(960\) 0 0
\(961\) 1.51558 0.974001i 0.0488895 0.0314194i
\(962\) 51.8365 + 59.8225i 1.67127 + 1.92875i
\(963\) 0 0
\(964\) −57.8178 + 126.603i −1.86219 + 4.07762i
\(965\) 36.6487 1.17976
\(966\) 0 0
\(967\) −35.8006 −1.15127 −0.575635 0.817707i \(-0.695245\pi\)
−0.575635 + 0.817707i \(0.695245\pi\)
\(968\) −37.3143 + 81.7070i −1.19933 + 2.62616i
\(969\) 0 0
\(970\) 43.1335 + 49.7787i 1.38493 + 1.59830i
\(971\) 17.7167 11.3859i 0.568557 0.365390i −0.224558 0.974461i \(-0.572094\pi\)
0.793116 + 0.609071i \(0.208458\pi\)
\(972\) 0 0
\(973\) −3.52931 + 24.5469i −0.113144 + 0.786937i
\(974\) 21.0934 6.19359i 0.675878 0.198456i
\(975\) 0 0
\(976\) −20.7454 144.287i −0.664043 4.61852i
\(977\) 17.6014 + 38.5417i 0.563119 + 1.23306i 0.950381 + 0.311088i \(0.100693\pi\)
−0.387262 + 0.921970i \(0.626579\pi\)
\(978\) 0 0
\(979\) 0.224924 + 1.56438i 0.00718860 + 0.0499978i
\(980\) −21.4116 13.7604i −0.683968 0.439560i
\(981\) 0 0
\(982\) −4.20423 + 29.2411i −0.134162 + 0.933120i
\(983\) 18.1016 20.8903i 0.577351 0.666299i −0.389682 0.920949i \(-0.627415\pi\)
0.967033 + 0.254651i \(0.0819605\pi\)
\(984\) 0 0
\(985\) −27.6561 31.9168i −0.881196 1.01695i
\(986\) −9.36610 2.75013i −0.298277 0.0875821i
\(987\) 0 0
\(988\) −37.8334 −1.20364
\(989\) 39.6128 12.0503i 1.25961 0.383179i
\(990\) 0 0
\(991\) −18.8737 + 41.3276i −0.599543 + 1.31282i 0.329958 + 0.943996i \(0.392966\pi\)
−0.929501 + 0.368820i \(0.879762\pi\)
\(992\) 79.6613 + 23.3907i 2.52925 + 0.742654i
\(993\) 0 0
\(994\) −79.6048 + 51.1589i −2.52491 + 1.62266i
\(995\) −38.3906 + 44.3051i −1.21706 + 1.40457i
\(996\) 0 0
\(997\) 12.5546 3.68635i 0.397607 0.116748i −0.0768154 0.997045i \(-0.524475\pi\)
0.474422 + 0.880297i \(0.342657\pi\)
\(998\) −13.6117 8.74769i −0.430870 0.276903i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.2.i.d.190.2 20
3.2 odd 2 69.2.e.c.52.1 yes 20
23.2 even 11 4761.2.a.bt.1.10 10
23.4 even 11 inner 207.2.i.d.73.2 20
23.21 odd 22 4761.2.a.bu.1.10 10
69.2 odd 22 1587.2.a.u.1.1 10
69.44 even 22 1587.2.a.t.1.1 10
69.50 odd 22 69.2.e.c.4.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.c.4.1 20 69.50 odd 22
69.2.e.c.52.1 yes 20 3.2 odd 2
207.2.i.d.73.2 20 23.4 even 11 inner
207.2.i.d.190.2 20 1.1 even 1 trivial
1587.2.a.t.1.1 10 69.44 even 22
1587.2.a.u.1.1 10 69.2 odd 22
4761.2.a.bt.1.10 10 23.2 even 11
4761.2.a.bu.1.10 10 23.21 odd 22