Properties

Label 4761.2.a.bu.1.10
Level $4761$
Weight $2$
Character 4761.1
Self dual yes
Analytic conductor $38.017$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: 10.10.5791333887977.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 12x^{8} + 22x^{7} + 49x^{6} - 84x^{5} - 73x^{4} + 132x^{3} + 17x^{2} - 74x + 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(2.65972\) of defining polynomial
Character \(\chi\) \(=\) 4761.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65972 q^{2} +5.07414 q^{4} -2.90602 q^{5} -2.29650 q^{7} +8.17636 q^{8} -7.72922 q^{10} +0.118967 q^{11} -4.31706 q^{13} -6.10806 q^{14} +11.5986 q^{16} +2.57465 q^{17} -1.72713 q^{19} -14.7456 q^{20} +0.316419 q^{22} +3.44497 q^{25} -11.4822 q^{26} -11.6528 q^{28} -1.42548 q^{29} -5.72727 q^{31} +14.4963 q^{32} +6.84785 q^{34} +6.67369 q^{35} -6.89385 q^{37} -4.59370 q^{38} -23.7607 q^{40} +6.51623 q^{41} -8.63357 q^{43} +0.603653 q^{44} -5.91880 q^{47} -1.72608 q^{49} +9.16268 q^{50} -21.9053 q^{52} +3.61800 q^{53} -0.345720 q^{55} -18.7770 q^{56} -3.79140 q^{58} +2.71366 q^{59} -12.5680 q^{61} -15.2329 q^{62} +15.3591 q^{64} +12.5455 q^{65} +0.0842144 q^{67} +13.0641 q^{68} +17.7502 q^{70} -15.4920 q^{71} -0.695461 q^{73} -18.3358 q^{74} -8.76371 q^{76} -0.273207 q^{77} +7.39276 q^{79} -33.7058 q^{80} +17.3314 q^{82} +2.78042 q^{83} -7.48198 q^{85} -22.9629 q^{86} +0.972714 q^{88} -13.2850 q^{89} +9.91413 q^{91} -15.7424 q^{94} +5.01909 q^{95} +8.52177 q^{97} -4.59090 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} + 8 q^{4} + 8 q^{5} - 19 q^{7} + 6 q^{8} - 13 q^{10} + 3 q^{11} - 4 q^{13} - 4 q^{16} + 11 q^{17} - 22 q^{19} + q^{20} - 13 q^{22} - 2 q^{25} - 4 q^{26} - 26 q^{28} + 5 q^{29} - 7 q^{31}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65972 1.88071 0.940355 0.340195i \(-0.110493\pi\)
0.940355 + 0.340195i \(0.110493\pi\)
\(3\) 0 0
\(4\) 5.07414 2.53707
\(5\) −2.90602 −1.29961 −0.649807 0.760100i \(-0.725150\pi\)
−0.649807 + 0.760100i \(0.725150\pi\)
\(6\) 0 0
\(7\) −2.29650 −0.867996 −0.433998 0.900914i \(-0.642898\pi\)
−0.433998 + 0.900914i \(0.642898\pi\)
\(8\) 8.17636 2.89078
\(9\) 0 0
\(10\) −7.72922 −2.44419
\(11\) 0.118967 0.0358698 0.0179349 0.999839i \(-0.494291\pi\)
0.0179349 + 0.999839i \(0.494291\pi\)
\(12\) 0 0
\(13\) −4.31706 −1.19734 −0.598668 0.800997i \(-0.704303\pi\)
−0.598668 + 0.800997i \(0.704303\pi\)
\(14\) −6.10806 −1.63245
\(15\) 0 0
\(16\) 11.5986 2.89965
\(17\) 2.57465 0.624444 0.312222 0.950009i \(-0.398927\pi\)
0.312222 + 0.950009i \(0.398927\pi\)
\(18\) 0 0
\(19\) −1.72713 −0.396231 −0.198116 0.980179i \(-0.563482\pi\)
−0.198116 + 0.980179i \(0.563482\pi\)
\(20\) −14.7456 −3.29721
\(21\) 0 0
\(22\) 0.316419 0.0674607
\(23\) 0 0
\(24\) 0 0
\(25\) 3.44497 0.688994
\(26\) −11.4822 −2.25184
\(27\) 0 0
\(28\) −11.6528 −2.20217
\(29\) −1.42548 −0.264706 −0.132353 0.991203i \(-0.542253\pi\)
−0.132353 + 0.991203i \(0.542253\pi\)
\(30\) 0 0
\(31\) −5.72727 −1.02865 −0.514324 0.857596i \(-0.671957\pi\)
−0.514324 + 0.857596i \(0.671957\pi\)
\(32\) 14.4963 2.56261
\(33\) 0 0
\(34\) 6.84785 1.17440
\(35\) 6.67369 1.12806
\(36\) 0 0
\(37\) −6.89385 −1.13334 −0.566671 0.823944i \(-0.691769\pi\)
−0.566671 + 0.823944i \(0.691769\pi\)
\(38\) −4.59370 −0.745196
\(39\) 0 0
\(40\) −23.7607 −3.75689
\(41\) 6.51623 1.01766 0.508832 0.860866i \(-0.330078\pi\)
0.508832 + 0.860866i \(0.330078\pi\)
\(42\) 0 0
\(43\) −8.63357 −1.31661 −0.658303 0.752753i \(-0.728726\pi\)
−0.658303 + 0.752753i \(0.728726\pi\)
\(44\) 0.603653 0.0910042
\(45\) 0 0
\(46\) 0 0
\(47\) −5.91880 −0.863345 −0.431673 0.902030i \(-0.642076\pi\)
−0.431673 + 0.902030i \(0.642076\pi\)
\(48\) 0 0
\(49\) −1.72608 −0.246583
\(50\) 9.16268 1.29580
\(51\) 0 0
\(52\) −21.9053 −3.03772
\(53\) 3.61800 0.496970 0.248485 0.968636i \(-0.420067\pi\)
0.248485 + 0.968636i \(0.420067\pi\)
\(54\) 0 0
\(55\) −0.345720 −0.0466169
\(56\) −18.7770 −2.50918
\(57\) 0 0
\(58\) −3.79140 −0.497835
\(59\) 2.71366 0.353288 0.176644 0.984275i \(-0.443476\pi\)
0.176644 + 0.984275i \(0.443476\pi\)
\(60\) 0 0
\(61\) −12.5680 −1.60917 −0.804583 0.593841i \(-0.797611\pi\)
−0.804583 + 0.593841i \(0.797611\pi\)
\(62\) −15.2329 −1.93459
\(63\) 0 0
\(64\) 15.3591 1.91989
\(65\) 12.5455 1.55607
\(66\) 0 0
\(67\) 0.0842144 0.0102884 0.00514421 0.999987i \(-0.498363\pi\)
0.00514421 + 0.999987i \(0.498363\pi\)
\(68\) 13.0641 1.58426
\(69\) 0 0
\(70\) 17.7502 2.12155
\(71\) −15.4920 −1.83857 −0.919284 0.393595i \(-0.871231\pi\)
−0.919284 + 0.393595i \(0.871231\pi\)
\(72\) 0 0
\(73\) −0.695461 −0.0813976 −0.0406988 0.999171i \(-0.512958\pi\)
−0.0406988 + 0.999171i \(0.512958\pi\)
\(74\) −18.3358 −2.13149
\(75\) 0 0
\(76\) −8.76371 −1.00527
\(77\) −0.273207 −0.0311349
\(78\) 0 0
\(79\) 7.39276 0.831751 0.415875 0.909422i \(-0.363475\pi\)
0.415875 + 0.909422i \(0.363475\pi\)
\(80\) −33.7058 −3.76842
\(81\) 0 0
\(82\) 17.3314 1.91393
\(83\) 2.78042 0.305190 0.152595 0.988289i \(-0.451237\pi\)
0.152595 + 0.988289i \(0.451237\pi\)
\(84\) 0 0
\(85\) −7.48198 −0.811535
\(86\) −22.9629 −2.47615
\(87\) 0 0
\(88\) 0.972714 0.103692
\(89\) −13.2850 −1.40820 −0.704101 0.710099i \(-0.748650\pi\)
−0.704101 + 0.710099i \(0.748650\pi\)
\(90\) 0 0
\(91\) 9.91413 1.03928
\(92\) 0 0
\(93\) 0 0
\(94\) −15.7424 −1.62370
\(95\) 5.01909 0.514947
\(96\) 0 0
\(97\) 8.52177 0.865255 0.432627 0.901573i \(-0.357587\pi\)
0.432627 + 0.901573i \(0.357587\pi\)
\(98\) −4.59090 −0.463751
\(99\) 0 0
\(100\) 17.4803 1.74803
\(101\) −6.99251 −0.695781 −0.347891 0.937535i \(-0.613102\pi\)
−0.347891 + 0.937535i \(0.613102\pi\)
\(102\) 0 0
\(103\) −13.8162 −1.36135 −0.680673 0.732587i \(-0.738312\pi\)
−0.680673 + 0.732587i \(0.738312\pi\)
\(104\) −35.2978 −3.46123
\(105\) 0 0
\(106\) 9.62288 0.934657
\(107\) 8.22279 0.794927 0.397464 0.917618i \(-0.369890\pi\)
0.397464 + 0.917618i \(0.369890\pi\)
\(108\) 0 0
\(109\) 17.2715 1.65431 0.827154 0.561975i \(-0.189958\pi\)
0.827154 + 0.561975i \(0.189958\pi\)
\(110\) −0.919520 −0.0876728
\(111\) 0 0
\(112\) −26.6362 −2.51688
\(113\) 7.49774 0.705328 0.352664 0.935750i \(-0.385276\pi\)
0.352664 + 0.935750i \(0.385276\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −7.23310 −0.671577
\(117\) 0 0
\(118\) 7.21758 0.664432
\(119\) −5.91268 −0.542015
\(120\) 0 0
\(121\) −10.9858 −0.998713
\(122\) −33.4274 −3.02637
\(123\) 0 0
\(124\) −29.0609 −2.60975
\(125\) 4.51895 0.404187
\(126\) 0 0
\(127\) −2.00858 −0.178233 −0.0891164 0.996021i \(-0.528404\pi\)
−0.0891164 + 0.996021i \(0.528404\pi\)
\(128\) 11.8583 1.04813
\(129\) 0 0
\(130\) 33.3675 2.92652
\(131\) 4.91198 0.429161 0.214581 0.976706i \(-0.431162\pi\)
0.214581 + 0.976706i \(0.431162\pi\)
\(132\) 0 0
\(133\) 3.96636 0.343927
\(134\) 0.223987 0.0193495
\(135\) 0 0
\(136\) 21.0512 1.80513
\(137\) 7.93152 0.677636 0.338818 0.940852i \(-0.389973\pi\)
0.338818 + 0.940852i \(0.389973\pi\)
\(138\) 0 0
\(139\) 10.7987 0.915936 0.457968 0.888969i \(-0.348577\pi\)
0.457968 + 0.888969i \(0.348577\pi\)
\(140\) 33.8632 2.86196
\(141\) 0 0
\(142\) −41.2046 −3.45781
\(143\) −0.513586 −0.0429482
\(144\) 0 0
\(145\) 4.14249 0.344015
\(146\) −1.84974 −0.153085
\(147\) 0 0
\(148\) −34.9804 −2.87537
\(149\) 16.5524 1.35603 0.678014 0.735049i \(-0.262841\pi\)
0.678014 + 0.735049i \(0.262841\pi\)
\(150\) 0 0
\(151\) 18.9005 1.53810 0.769051 0.639187i \(-0.220729\pi\)
0.769051 + 0.639187i \(0.220729\pi\)
\(152\) −14.1217 −1.14542
\(153\) 0 0
\(154\) −0.726656 −0.0585556
\(155\) 16.6436 1.33684
\(156\) 0 0
\(157\) −7.56346 −0.603630 −0.301815 0.953367i \(-0.597592\pi\)
−0.301815 + 0.953367i \(0.597592\pi\)
\(158\) 19.6627 1.56428
\(159\) 0 0
\(160\) −42.1267 −3.33041
\(161\) 0 0
\(162\) 0 0
\(163\) 1.66925 0.130745 0.0653727 0.997861i \(-0.479176\pi\)
0.0653727 + 0.997861i \(0.479176\pi\)
\(164\) 33.0642 2.58188
\(165\) 0 0
\(166\) 7.39514 0.573974
\(167\) −21.4339 −1.65860 −0.829302 0.558800i \(-0.811262\pi\)
−0.829302 + 0.558800i \(0.811262\pi\)
\(168\) 0 0
\(169\) 5.63697 0.433613
\(170\) −19.9000 −1.52626
\(171\) 0 0
\(172\) −43.8079 −3.34032
\(173\) 6.33043 0.481294 0.240647 0.970613i \(-0.422640\pi\)
0.240647 + 0.970613i \(0.422640\pi\)
\(174\) 0 0
\(175\) −7.91138 −0.598044
\(176\) 1.37985 0.104010
\(177\) 0 0
\(178\) −35.3343 −2.64842
\(179\) −8.19257 −0.612341 −0.306171 0.951977i \(-0.599048\pi\)
−0.306171 + 0.951977i \(0.599048\pi\)
\(180\) 0 0
\(181\) −6.31237 −0.469195 −0.234597 0.972093i \(-0.575377\pi\)
−0.234597 + 0.972093i \(0.575377\pi\)
\(182\) 26.3688 1.95459
\(183\) 0 0
\(184\) 0 0
\(185\) 20.0337 1.47291
\(186\) 0 0
\(187\) 0.306297 0.0223987
\(188\) −30.0328 −2.19037
\(189\) 0 0
\(190\) 13.3494 0.968467
\(191\) 12.9462 0.936756 0.468378 0.883528i \(-0.344839\pi\)
0.468378 + 0.883528i \(0.344839\pi\)
\(192\) 0 0
\(193\) 12.6113 0.907781 0.453891 0.891057i \(-0.350036\pi\)
0.453891 + 0.891057i \(0.350036\pi\)
\(194\) 22.6656 1.62729
\(195\) 0 0
\(196\) −8.75836 −0.625597
\(197\) 14.5326 1.03540 0.517701 0.855561i \(-0.326788\pi\)
0.517701 + 0.855561i \(0.326788\pi\)
\(198\) 0 0
\(199\) −20.1733 −1.43005 −0.715023 0.699101i \(-0.753584\pi\)
−0.715023 + 0.699101i \(0.753584\pi\)
\(200\) 28.1673 1.99173
\(201\) 0 0
\(202\) −18.5982 −1.30856
\(203\) 3.27363 0.229764
\(204\) 0 0
\(205\) −18.9363 −1.32257
\(206\) −36.7472 −2.56030
\(207\) 0 0
\(208\) −50.0717 −3.47185
\(209\) −0.205471 −0.0142127
\(210\) 0 0
\(211\) 7.45381 0.513141 0.256571 0.966525i \(-0.417407\pi\)
0.256571 + 0.966525i \(0.417407\pi\)
\(212\) 18.3582 1.26085
\(213\) 0 0
\(214\) 21.8704 1.49503
\(215\) 25.0893 1.71108
\(216\) 0 0
\(217\) 13.1527 0.892862
\(218\) 45.9374 3.11127
\(219\) 0 0
\(220\) −1.75423 −0.118270
\(221\) −11.1149 −0.747669
\(222\) 0 0
\(223\) 1.68197 0.112633 0.0563164 0.998413i \(-0.482064\pi\)
0.0563164 + 0.998413i \(0.482064\pi\)
\(224\) −33.2909 −2.22434
\(225\) 0 0
\(226\) 19.9419 1.32652
\(227\) 10.7814 0.715587 0.357794 0.933801i \(-0.383529\pi\)
0.357794 + 0.933801i \(0.383529\pi\)
\(228\) 0 0
\(229\) −21.9077 −1.44770 −0.723852 0.689955i \(-0.757630\pi\)
−0.723852 + 0.689955i \(0.757630\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −11.6553 −0.765206
\(233\) −24.8712 −1.62937 −0.814683 0.579907i \(-0.803089\pi\)
−0.814683 + 0.579907i \(0.803089\pi\)
\(234\) 0 0
\(235\) 17.2002 1.12201
\(236\) 13.7695 0.896316
\(237\) 0 0
\(238\) −15.7261 −1.01937
\(239\) −4.19683 −0.271470 −0.135735 0.990745i \(-0.543340\pi\)
−0.135735 + 0.990745i \(0.543340\pi\)
\(240\) 0 0
\(241\) 27.4295 1.76689 0.883444 0.468538i \(-0.155219\pi\)
0.883444 + 0.468538i \(0.155219\pi\)
\(242\) −29.2193 −1.87829
\(243\) 0 0
\(244\) −63.7717 −4.08256
\(245\) 5.01603 0.320462
\(246\) 0 0
\(247\) 7.45613 0.474422
\(248\) −46.8282 −2.97359
\(249\) 0 0
\(250\) 12.0192 0.760159
\(251\) −12.9237 −0.815737 −0.407868 0.913041i \(-0.633728\pi\)
−0.407868 + 0.913041i \(0.633728\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −5.34227 −0.335204
\(255\) 0 0
\(256\) 0.821585 0.0513491
\(257\) 1.43556 0.0895479 0.0447739 0.998997i \(-0.485743\pi\)
0.0447739 + 0.998997i \(0.485743\pi\)
\(258\) 0 0
\(259\) 15.8317 0.983737
\(260\) 63.6574 3.94786
\(261\) 0 0
\(262\) 13.0645 0.807128
\(263\) 14.3651 0.885790 0.442895 0.896574i \(-0.353951\pi\)
0.442895 + 0.896574i \(0.353951\pi\)
\(264\) 0 0
\(265\) −10.5140 −0.645869
\(266\) 10.5494 0.646827
\(267\) 0 0
\(268\) 0.427315 0.0261024
\(269\) 19.3890 1.18217 0.591083 0.806611i \(-0.298701\pi\)
0.591083 + 0.806611i \(0.298701\pi\)
\(270\) 0 0
\(271\) 16.3398 0.992571 0.496285 0.868159i \(-0.334697\pi\)
0.496285 + 0.868159i \(0.334697\pi\)
\(272\) 29.8623 1.81067
\(273\) 0 0
\(274\) 21.0957 1.27444
\(275\) 0.409837 0.0247141
\(276\) 0 0
\(277\) 20.1827 1.21266 0.606332 0.795212i \(-0.292640\pi\)
0.606332 + 0.795212i \(0.292640\pi\)
\(278\) 28.7216 1.72261
\(279\) 0 0
\(280\) 54.5664 3.26097
\(281\) 8.51231 0.507802 0.253901 0.967230i \(-0.418286\pi\)
0.253901 + 0.967230i \(0.418286\pi\)
\(282\) 0 0
\(283\) 3.37844 0.200828 0.100414 0.994946i \(-0.467983\pi\)
0.100414 + 0.994946i \(0.467983\pi\)
\(284\) −78.6088 −4.66457
\(285\) 0 0
\(286\) −1.36600 −0.0807731
\(287\) −14.9645 −0.883328
\(288\) 0 0
\(289\) −10.3712 −0.610070
\(290\) 11.0179 0.646992
\(291\) 0 0
\(292\) −3.52887 −0.206511
\(293\) −4.12667 −0.241083 −0.120541 0.992708i \(-0.538463\pi\)
−0.120541 + 0.992708i \(0.538463\pi\)
\(294\) 0 0
\(295\) −7.88595 −0.459138
\(296\) −56.3666 −3.27624
\(297\) 0 0
\(298\) 44.0249 2.55030
\(299\) 0 0
\(300\) 0 0
\(301\) 19.8270 1.14281
\(302\) 50.2702 2.89272
\(303\) 0 0
\(304\) −20.0323 −1.14893
\(305\) 36.5229 2.09129
\(306\) 0 0
\(307\) 10.4058 0.593893 0.296946 0.954894i \(-0.404032\pi\)
0.296946 + 0.954894i \(0.404032\pi\)
\(308\) −1.38629 −0.0789912
\(309\) 0 0
\(310\) 44.2673 2.51421
\(311\) −13.1922 −0.748061 −0.374030 0.927416i \(-0.622024\pi\)
−0.374030 + 0.927416i \(0.622024\pi\)
\(312\) 0 0
\(313\) 13.7604 0.777783 0.388892 0.921283i \(-0.372858\pi\)
0.388892 + 0.921283i \(0.372858\pi\)
\(314\) −20.1167 −1.13525
\(315\) 0 0
\(316\) 37.5119 2.11021
\(317\) 14.3418 0.805518 0.402759 0.915306i \(-0.368051\pi\)
0.402759 + 0.915306i \(0.368051\pi\)
\(318\) 0 0
\(319\) −0.169585 −0.00949495
\(320\) −44.6339 −2.49511
\(321\) 0 0
\(322\) 0 0
\(323\) −4.44676 −0.247424
\(324\) 0 0
\(325\) −14.8721 −0.824957
\(326\) 4.43974 0.245894
\(327\) 0 0
\(328\) 53.2790 2.94184
\(329\) 13.5925 0.749380
\(330\) 0 0
\(331\) −11.8344 −0.650480 −0.325240 0.945632i \(-0.605445\pi\)
−0.325240 + 0.945632i \(0.605445\pi\)
\(332\) 14.1082 0.774288
\(333\) 0 0
\(334\) −57.0083 −3.11935
\(335\) −0.244729 −0.0133710
\(336\) 0 0
\(337\) −26.7632 −1.45788 −0.728941 0.684576i \(-0.759987\pi\)
−0.728941 + 0.684576i \(0.759987\pi\)
\(338\) 14.9928 0.815500
\(339\) 0 0
\(340\) −37.9646 −2.05892
\(341\) −0.681354 −0.0368974
\(342\) 0 0
\(343\) 20.0395 1.08203
\(344\) −70.5911 −3.80602
\(345\) 0 0
\(346\) 16.8372 0.905174
\(347\) 8.84567 0.474861 0.237430 0.971405i \(-0.423695\pi\)
0.237430 + 0.971405i \(0.423695\pi\)
\(348\) 0 0
\(349\) −29.7789 −1.59403 −0.797015 0.603960i \(-0.793589\pi\)
−0.797015 + 0.603960i \(0.793589\pi\)
\(350\) −21.0421 −1.12475
\(351\) 0 0
\(352\) 1.72458 0.0919205
\(353\) 17.2117 0.916086 0.458043 0.888930i \(-0.348551\pi\)
0.458043 + 0.888930i \(0.348551\pi\)
\(354\) 0 0
\(355\) 45.0203 2.38943
\(356\) −67.4097 −3.57271
\(357\) 0 0
\(358\) −21.7900 −1.15164
\(359\) −7.12729 −0.376164 −0.188082 0.982153i \(-0.560227\pi\)
−0.188082 + 0.982153i \(0.560227\pi\)
\(360\) 0 0
\(361\) −16.0170 −0.843001
\(362\) −16.7892 −0.882419
\(363\) 0 0
\(364\) 50.3056 2.63673
\(365\) 2.02103 0.105785
\(366\) 0 0
\(367\) −13.5836 −0.709060 −0.354530 0.935045i \(-0.615359\pi\)
−0.354530 + 0.935045i \(0.615359\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 53.2841 2.77011
\(371\) −8.30874 −0.431368
\(372\) 0 0
\(373\) −18.7273 −0.969664 −0.484832 0.874607i \(-0.661119\pi\)
−0.484832 + 0.874607i \(0.661119\pi\)
\(374\) 0.814666 0.0421254
\(375\) 0 0
\(376\) −48.3942 −2.49574
\(377\) 6.15389 0.316942
\(378\) 0 0
\(379\) 10.0172 0.514549 0.257274 0.966338i \(-0.417176\pi\)
0.257274 + 0.966338i \(0.417176\pi\)
\(380\) 25.4675 1.30646
\(381\) 0 0
\(382\) 34.4334 1.76177
\(383\) −29.1229 −1.48811 −0.744056 0.668117i \(-0.767101\pi\)
−0.744056 + 0.668117i \(0.767101\pi\)
\(384\) 0 0
\(385\) 0.793947 0.0404633
\(386\) 33.5426 1.70727
\(387\) 0 0
\(388\) 43.2406 2.19521
\(389\) 4.38322 0.222238 0.111119 0.993807i \(-0.464556\pi\)
0.111119 + 0.993807i \(0.464556\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −14.1130 −0.712816
\(393\) 0 0
\(394\) 38.6526 1.94729
\(395\) −21.4835 −1.08095
\(396\) 0 0
\(397\) 0.145723 0.00731363 0.00365682 0.999993i \(-0.498836\pi\)
0.00365682 + 0.999993i \(0.498836\pi\)
\(398\) −53.6554 −2.68950
\(399\) 0 0
\(400\) 39.9568 1.99784
\(401\) −33.6620 −1.68100 −0.840500 0.541812i \(-0.817739\pi\)
−0.840500 + 0.541812i \(0.817739\pi\)
\(402\) 0 0
\(403\) 24.7249 1.23164
\(404\) −35.4810 −1.76524
\(405\) 0 0
\(406\) 8.70695 0.432119
\(407\) −0.820139 −0.0406528
\(408\) 0 0
\(409\) −30.2682 −1.49667 −0.748334 0.663322i \(-0.769146\pi\)
−0.748334 + 0.663322i \(0.769146\pi\)
\(410\) −50.3654 −2.48737
\(411\) 0 0
\(412\) −70.1050 −3.45383
\(413\) −6.23192 −0.306653
\(414\) 0 0
\(415\) −8.07995 −0.396629
\(416\) −62.5815 −3.06831
\(417\) 0 0
\(418\) −0.546497 −0.0267300
\(419\) 18.7368 0.915353 0.457676 0.889119i \(-0.348682\pi\)
0.457676 + 0.889119i \(0.348682\pi\)
\(420\) 0 0
\(421\) −39.1961 −1.91030 −0.955151 0.296120i \(-0.904307\pi\)
−0.955151 + 0.296120i \(0.904307\pi\)
\(422\) 19.8251 0.965070
\(423\) 0 0
\(424\) 29.5820 1.43663
\(425\) 8.86958 0.430238
\(426\) 0 0
\(427\) 28.8624 1.39675
\(428\) 41.7236 2.01678
\(429\) 0 0
\(430\) 66.7308 3.21804
\(431\) 21.4693 1.03414 0.517069 0.855944i \(-0.327023\pi\)
0.517069 + 0.855944i \(0.327023\pi\)
\(432\) 0 0
\(433\) 0.758349 0.0364439 0.0182220 0.999834i \(-0.494199\pi\)
0.0182220 + 0.999834i \(0.494199\pi\)
\(434\) 34.9825 1.67921
\(435\) 0 0
\(436\) 87.6378 4.19709
\(437\) 0 0
\(438\) 0 0
\(439\) 13.1094 0.625677 0.312838 0.949806i \(-0.398720\pi\)
0.312838 + 0.949806i \(0.398720\pi\)
\(440\) −2.82673 −0.134759
\(441\) 0 0
\(442\) −29.5626 −1.40615
\(443\) 3.05970 0.145371 0.0726854 0.997355i \(-0.476843\pi\)
0.0726854 + 0.997355i \(0.476843\pi\)
\(444\) 0 0
\(445\) 38.6064 1.83012
\(446\) 4.47357 0.211829
\(447\) 0 0
\(448\) −35.2722 −1.66645
\(449\) 7.66937 0.361940 0.180970 0.983489i \(-0.442076\pi\)
0.180970 + 0.983489i \(0.442076\pi\)
\(450\) 0 0
\(451\) 0.775214 0.0365034
\(452\) 38.0446 1.78947
\(453\) 0 0
\(454\) 28.6756 1.34581
\(455\) −28.8107 −1.35067
\(456\) 0 0
\(457\) −8.96378 −0.419308 −0.209654 0.977776i \(-0.567234\pi\)
−0.209654 + 0.977776i \(0.567234\pi\)
\(458\) −58.2686 −2.72271
\(459\) 0 0
\(460\) 0 0
\(461\) 7.53704 0.351035 0.175517 0.984476i \(-0.443840\pi\)
0.175517 + 0.984476i \(0.443840\pi\)
\(462\) 0 0
\(463\) −32.9644 −1.53199 −0.765993 0.642849i \(-0.777752\pi\)
−0.765993 + 0.642849i \(0.777752\pi\)
\(464\) −16.5336 −0.767553
\(465\) 0 0
\(466\) −66.1505 −3.06436
\(467\) −13.4842 −0.623976 −0.311988 0.950086i \(-0.600995\pi\)
−0.311988 + 0.950086i \(0.600995\pi\)
\(468\) 0 0
\(469\) −0.193398 −0.00893031
\(470\) 45.7477 2.11018
\(471\) 0 0
\(472\) 22.1878 1.02128
\(473\) −1.02711 −0.0472264
\(474\) 0 0
\(475\) −5.94992 −0.273001
\(476\) −30.0017 −1.37513
\(477\) 0 0
\(478\) −11.1624 −0.510557
\(479\) −20.8722 −0.953675 −0.476838 0.878991i \(-0.658217\pi\)
−0.476838 + 0.878991i \(0.658217\pi\)
\(480\) 0 0
\(481\) 29.7612 1.35699
\(482\) 72.9548 3.32300
\(483\) 0 0
\(484\) −55.7437 −2.53380
\(485\) −24.7645 −1.12450
\(486\) 0 0
\(487\) −8.26550 −0.374545 −0.187273 0.982308i \(-0.559965\pi\)
−0.187273 + 0.982308i \(0.559965\pi\)
\(488\) −102.760 −4.65174
\(489\) 0 0
\(490\) 13.3413 0.602697
\(491\) 11.1071 0.501255 0.250628 0.968084i \(-0.419363\pi\)
0.250628 + 0.968084i \(0.419363\pi\)
\(492\) 0 0
\(493\) −3.67012 −0.165294
\(494\) 19.8312 0.892250
\(495\) 0 0
\(496\) −66.4282 −2.98271
\(497\) 35.5775 1.59587
\(498\) 0 0
\(499\) −6.08342 −0.272331 −0.136166 0.990686i \(-0.543478\pi\)
−0.136166 + 0.990686i \(0.543478\pi\)
\(500\) 22.9298 1.02545
\(501\) 0 0
\(502\) −34.3735 −1.53416
\(503\) −7.86791 −0.350813 −0.175406 0.984496i \(-0.556124\pi\)
−0.175406 + 0.984496i \(0.556124\pi\)
\(504\) 0 0
\(505\) 20.3204 0.904246
\(506\) 0 0
\(507\) 0 0
\(508\) −10.1918 −0.452189
\(509\) −29.7373 −1.31808 −0.659041 0.752107i \(-0.729038\pi\)
−0.659041 + 0.752107i \(0.729038\pi\)
\(510\) 0 0
\(511\) 1.59713 0.0706528
\(512\) −21.5314 −0.951561
\(513\) 0 0
\(514\) 3.81820 0.168414
\(515\) 40.1501 1.76922
\(516\) 0 0
\(517\) −0.704140 −0.0309680
\(518\) 42.1081 1.85012
\(519\) 0 0
\(520\) 102.576 4.49826
\(521\) −18.9754 −0.831325 −0.415663 0.909519i \(-0.636450\pi\)
−0.415663 + 0.909519i \(0.636450\pi\)
\(522\) 0 0
\(523\) 26.4941 1.15851 0.579254 0.815147i \(-0.303344\pi\)
0.579254 + 0.815147i \(0.303344\pi\)
\(524\) 24.9240 1.08881
\(525\) 0 0
\(526\) 38.2072 1.66591
\(527\) −14.7457 −0.642332
\(528\) 0 0
\(529\) 0 0
\(530\) −27.9643 −1.21469
\(531\) 0 0
\(532\) 20.1259 0.872567
\(533\) −28.1309 −1.21848
\(534\) 0 0
\(535\) −23.8956 −1.03310
\(536\) 0.688567 0.0297416
\(537\) 0 0
\(538\) 51.5693 2.22331
\(539\) −0.205346 −0.00884488
\(540\) 0 0
\(541\) 32.6681 1.40451 0.702255 0.711926i \(-0.252177\pi\)
0.702255 + 0.711926i \(0.252177\pi\)
\(542\) 43.4593 1.86674
\(543\) 0 0
\(544\) 37.3229 1.60021
\(545\) −50.1913 −2.14996
\(546\) 0 0
\(547\) 45.4508 1.94334 0.971668 0.236349i \(-0.0759509\pi\)
0.971668 + 0.236349i \(0.0759509\pi\)
\(548\) 40.2456 1.71921
\(549\) 0 0
\(550\) 1.09005 0.0464800
\(551\) 2.46200 0.104885
\(552\) 0 0
\(553\) −16.9775 −0.721957
\(554\) 53.6805 2.28067
\(555\) 0 0
\(556\) 54.7942 2.32379
\(557\) 15.0491 0.637650 0.318825 0.947814i \(-0.396712\pi\)
0.318825 + 0.947814i \(0.396712\pi\)
\(558\) 0 0
\(559\) 37.2716 1.57642
\(560\) 77.4053 3.27097
\(561\) 0 0
\(562\) 22.6404 0.955027
\(563\) −34.1730 −1.44022 −0.720111 0.693859i \(-0.755909\pi\)
−0.720111 + 0.693859i \(0.755909\pi\)
\(564\) 0 0
\(565\) −21.7886 −0.916654
\(566\) 8.98573 0.377699
\(567\) 0 0
\(568\) −126.669 −5.31489
\(569\) −18.4407 −0.773076 −0.386538 0.922274i \(-0.626329\pi\)
−0.386538 + 0.922274i \(0.626329\pi\)
\(570\) 0 0
\(571\) −6.63353 −0.277605 −0.138802 0.990320i \(-0.544325\pi\)
−0.138802 + 0.990320i \(0.544325\pi\)
\(572\) −2.60600 −0.108963
\(573\) 0 0
\(574\) −39.8015 −1.66128
\(575\) 0 0
\(576\) 0 0
\(577\) −12.5728 −0.523412 −0.261706 0.965148i \(-0.584285\pi\)
−0.261706 + 0.965148i \(0.584285\pi\)
\(578\) −27.5845 −1.14736
\(579\) 0 0
\(580\) 21.0196 0.872790
\(581\) −6.38523 −0.264904
\(582\) 0 0
\(583\) 0.430421 0.0178262
\(584\) −5.68634 −0.235302
\(585\) 0 0
\(586\) −10.9758 −0.453406
\(587\) −1.09521 −0.0452041 −0.0226021 0.999745i \(-0.507195\pi\)
−0.0226021 + 0.999745i \(0.507195\pi\)
\(588\) 0 0
\(589\) 9.89175 0.407582
\(590\) −20.9745 −0.863505
\(591\) 0 0
\(592\) −79.9590 −3.28629
\(593\) −2.32202 −0.0953538 −0.0476769 0.998863i \(-0.515182\pi\)
−0.0476769 + 0.998863i \(0.515182\pi\)
\(594\) 0 0
\(595\) 17.1824 0.704409
\(596\) 83.9893 3.44034
\(597\) 0 0
\(598\) 0 0
\(599\) 43.0508 1.75901 0.879504 0.475892i \(-0.157875\pi\)
0.879504 + 0.475892i \(0.157875\pi\)
\(600\) 0 0
\(601\) 13.2724 0.541391 0.270695 0.962665i \(-0.412746\pi\)
0.270695 + 0.962665i \(0.412746\pi\)
\(602\) 52.7344 2.14929
\(603\) 0 0
\(604\) 95.9038 3.90227
\(605\) 31.9251 1.29794
\(606\) 0 0
\(607\) −32.9113 −1.33583 −0.667914 0.744238i \(-0.732813\pi\)
−0.667914 + 0.744238i \(0.732813\pi\)
\(608\) −25.0371 −1.01539
\(609\) 0 0
\(610\) 97.1407 3.93311
\(611\) 25.5518 1.03371
\(612\) 0 0
\(613\) 40.4100 1.63214 0.816072 0.577951i \(-0.196147\pi\)
0.816072 + 0.577951i \(0.196147\pi\)
\(614\) 27.6767 1.11694
\(615\) 0 0
\(616\) −2.23384 −0.0900040
\(617\) 30.0009 1.20779 0.603896 0.797063i \(-0.293614\pi\)
0.603896 + 0.797063i \(0.293614\pi\)
\(618\) 0 0
\(619\) −26.4907 −1.06475 −0.532375 0.846509i \(-0.678700\pi\)
−0.532375 + 0.846509i \(0.678700\pi\)
\(620\) 84.4517 3.39166
\(621\) 0 0
\(622\) −35.0876 −1.40688
\(623\) 30.5089 1.22231
\(624\) 0 0
\(625\) −30.3570 −1.21428
\(626\) 36.5989 1.46278
\(627\) 0 0
\(628\) −38.3780 −1.53145
\(629\) −17.7492 −0.707709
\(630\) 0 0
\(631\) −16.0502 −0.638947 −0.319474 0.947595i \(-0.603506\pi\)
−0.319474 + 0.947595i \(0.603506\pi\)
\(632\) 60.4459 2.40441
\(633\) 0 0
\(634\) 38.1453 1.51495
\(635\) 5.83699 0.231634
\(636\) 0 0
\(637\) 7.45158 0.295242
\(638\) −0.451050 −0.0178572
\(639\) 0 0
\(640\) −34.4604 −1.36217
\(641\) −46.8565 −1.85072 −0.925360 0.379090i \(-0.876237\pi\)
−0.925360 + 0.379090i \(0.876237\pi\)
\(642\) 0 0
\(643\) 27.2328 1.07396 0.536979 0.843596i \(-0.319565\pi\)
0.536979 + 0.843596i \(0.319565\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −11.8271 −0.465333
\(647\) −24.8045 −0.975165 −0.487583 0.873077i \(-0.662121\pi\)
−0.487583 + 0.873077i \(0.662121\pi\)
\(648\) 0 0
\(649\) 0.322835 0.0126724
\(650\) −39.5558 −1.55151
\(651\) 0 0
\(652\) 8.46998 0.331710
\(653\) 29.4481 1.15239 0.576197 0.817311i \(-0.304536\pi\)
0.576197 + 0.817311i \(0.304536\pi\)
\(654\) 0 0
\(655\) −14.2743 −0.557744
\(656\) 75.5790 2.95086
\(657\) 0 0
\(658\) 36.1524 1.40937
\(659\) 13.9794 0.544559 0.272279 0.962218i \(-0.412223\pi\)
0.272279 + 0.962218i \(0.412223\pi\)
\(660\) 0 0
\(661\) 24.8201 0.965390 0.482695 0.875789i \(-0.339658\pi\)
0.482695 + 0.875789i \(0.339658\pi\)
\(662\) −31.4764 −1.22336
\(663\) 0 0
\(664\) 22.7337 0.882237
\(665\) −11.5263 −0.446972
\(666\) 0 0
\(667\) 0 0
\(668\) −108.758 −4.20799
\(669\) 0 0
\(670\) −0.650912 −0.0251469
\(671\) −1.49517 −0.0577205
\(672\) 0 0
\(673\) 8.90233 0.343160 0.171580 0.985170i \(-0.445113\pi\)
0.171580 + 0.985170i \(0.445113\pi\)
\(674\) −71.1827 −2.74185
\(675\) 0 0
\(676\) 28.6027 1.10011
\(677\) 2.82095 0.108418 0.0542089 0.998530i \(-0.482736\pi\)
0.0542089 + 0.998530i \(0.482736\pi\)
\(678\) 0 0
\(679\) −19.5703 −0.751038
\(680\) −61.1754 −2.34597
\(681\) 0 0
\(682\) −1.81221 −0.0693933
\(683\) −20.7357 −0.793431 −0.396716 0.917942i \(-0.629850\pi\)
−0.396716 + 0.917942i \(0.629850\pi\)
\(684\) 0 0
\(685\) −23.0492 −0.880664
\(686\) 53.2994 2.03498
\(687\) 0 0
\(688\) −100.137 −3.81769
\(689\) −15.6191 −0.595040
\(690\) 0 0
\(691\) 1.36601 0.0519655 0.0259827 0.999662i \(-0.491729\pi\)
0.0259827 + 0.999662i \(0.491729\pi\)
\(692\) 32.1215 1.22107
\(693\) 0 0
\(694\) 23.5271 0.893075
\(695\) −31.3813 −1.19036
\(696\) 0 0
\(697\) 16.7770 0.635473
\(698\) −79.2038 −2.99791
\(699\) 0 0
\(700\) −40.1434 −1.51728
\(701\) 30.1012 1.13691 0.568454 0.822715i \(-0.307542\pi\)
0.568454 + 0.822715i \(0.307542\pi\)
\(702\) 0 0
\(703\) 11.9066 0.449066
\(704\) 1.82722 0.0688659
\(705\) 0 0
\(706\) 45.7784 1.72289
\(707\) 16.0583 0.603935
\(708\) 0 0
\(709\) 39.7000 1.49097 0.745483 0.666524i \(-0.232219\pi\)
0.745483 + 0.666524i \(0.232219\pi\)
\(710\) 119.741 4.49382
\(711\) 0 0
\(712\) −108.623 −4.07080
\(713\) 0 0
\(714\) 0 0
\(715\) 1.49249 0.0558161
\(716\) −41.5702 −1.55355
\(717\) 0 0
\(718\) −18.9566 −0.707455
\(719\) 9.17245 0.342075 0.171037 0.985265i \(-0.445288\pi\)
0.171037 + 0.985265i \(0.445288\pi\)
\(720\) 0 0
\(721\) 31.7288 1.18164
\(722\) −42.6008 −1.58544
\(723\) 0 0
\(724\) −32.0298 −1.19038
\(725\) −4.91075 −0.182381
\(726\) 0 0
\(727\) 3.80369 0.141071 0.0705355 0.997509i \(-0.477529\pi\)
0.0705355 + 0.997509i \(0.477529\pi\)
\(728\) 81.0614 3.00434
\(729\) 0 0
\(730\) 5.37538 0.198952
\(731\) −22.2284 −0.822147
\(732\) 0 0
\(733\) −40.8693 −1.50954 −0.754771 0.655989i \(-0.772252\pi\)
−0.754771 + 0.655989i \(0.772252\pi\)
\(734\) −36.1287 −1.33354
\(735\) 0 0
\(736\) 0 0
\(737\) 0.0100187 0.000369044 0
\(738\) 0 0
\(739\) −29.2620 −1.07642 −0.538211 0.842810i \(-0.680900\pi\)
−0.538211 + 0.842810i \(0.680900\pi\)
\(740\) 101.654 3.73687
\(741\) 0 0
\(742\) −22.0990 −0.811279
\(743\) −8.66121 −0.317749 −0.158875 0.987299i \(-0.550787\pi\)
−0.158875 + 0.987299i \(0.550787\pi\)
\(744\) 0 0
\(745\) −48.1018 −1.76231
\(746\) −49.8095 −1.82366
\(747\) 0 0
\(748\) 1.55419 0.0568270
\(749\) −18.8837 −0.689994
\(750\) 0 0
\(751\) −6.87470 −0.250861 −0.125431 0.992102i \(-0.540031\pi\)
−0.125431 + 0.992102i \(0.540031\pi\)
\(752\) −68.6497 −2.50340
\(753\) 0 0
\(754\) 16.3677 0.596075
\(755\) −54.9254 −1.99894
\(756\) 0 0
\(757\) 3.15721 0.114751 0.0573754 0.998353i \(-0.481727\pi\)
0.0573754 + 0.998353i \(0.481727\pi\)
\(758\) 26.6430 0.967717
\(759\) 0 0
\(760\) 41.0378 1.48860
\(761\) −17.1282 −0.620897 −0.310449 0.950590i \(-0.600479\pi\)
−0.310449 + 0.950590i \(0.600479\pi\)
\(762\) 0 0
\(763\) −39.6640 −1.43593
\(764\) 65.6909 2.37661
\(765\) 0 0
\(766\) −77.4590 −2.79871
\(767\) −11.7150 −0.423005
\(768\) 0 0
\(769\) 21.1864 0.764001 0.382000 0.924162i \(-0.375235\pi\)
0.382000 + 0.924162i \(0.375235\pi\)
\(770\) 2.11168 0.0760996
\(771\) 0 0
\(772\) 63.9915 2.30310
\(773\) 5.34046 0.192083 0.0960415 0.995377i \(-0.469382\pi\)
0.0960415 + 0.995377i \(0.469382\pi\)
\(774\) 0 0
\(775\) −19.7303 −0.708732
\(776\) 69.6770 2.50126
\(777\) 0 0
\(778\) 11.6582 0.417966
\(779\) −11.2544 −0.403230
\(780\) 0 0
\(781\) −1.84304 −0.0659491
\(782\) 0 0
\(783\) 0 0
\(784\) −20.0201 −0.715003
\(785\) 21.9796 0.784485
\(786\) 0 0
\(787\) −43.6090 −1.55449 −0.777247 0.629196i \(-0.783384\pi\)
−0.777247 + 0.629196i \(0.783384\pi\)
\(788\) 73.7403 2.62689
\(789\) 0 0
\(790\) −57.1403 −2.03296
\(791\) −17.2186 −0.612222
\(792\) 0 0
\(793\) 54.2567 1.92671
\(794\) 0.387583 0.0137548
\(795\) 0 0
\(796\) −102.362 −3.62812
\(797\) −11.5987 −0.410848 −0.205424 0.978673i \(-0.565857\pi\)
−0.205424 + 0.978673i \(0.565857\pi\)
\(798\) 0 0
\(799\) −15.2388 −0.539110
\(800\) 49.9395 1.76563
\(801\) 0 0
\(802\) −89.5316 −3.16147
\(803\) −0.0827368 −0.00291972
\(804\) 0 0
\(805\) 0 0
\(806\) 65.7615 2.31635
\(807\) 0 0
\(808\) −57.1733 −2.01135
\(809\) 7.81731 0.274842 0.137421 0.990513i \(-0.456119\pi\)
0.137421 + 0.990513i \(0.456119\pi\)
\(810\) 0 0
\(811\) 11.5174 0.404432 0.202216 0.979341i \(-0.435186\pi\)
0.202216 + 0.979341i \(0.435186\pi\)
\(812\) 16.6108 0.582926
\(813\) 0 0
\(814\) −2.18134 −0.0764561
\(815\) −4.85087 −0.169919
\(816\) 0 0
\(817\) 14.9113 0.521681
\(818\) −80.5052 −2.81480
\(819\) 0 0
\(820\) −96.0854 −3.35545
\(821\) 0.522107 0.0182217 0.00911084 0.999958i \(-0.497100\pi\)
0.00911084 + 0.999958i \(0.497100\pi\)
\(822\) 0 0
\(823\) −33.2942 −1.16056 −0.580281 0.814416i \(-0.697057\pi\)
−0.580281 + 0.814416i \(0.697057\pi\)
\(824\) −112.966 −3.93535
\(825\) 0 0
\(826\) −16.5752 −0.576725
\(827\) 24.2079 0.841791 0.420895 0.907109i \(-0.361716\pi\)
0.420895 + 0.907109i \(0.361716\pi\)
\(828\) 0 0
\(829\) 26.4851 0.919866 0.459933 0.887954i \(-0.347873\pi\)
0.459933 + 0.887954i \(0.347873\pi\)
\(830\) −21.4904 −0.745944
\(831\) 0 0
\(832\) −66.3060 −2.29875
\(833\) −4.44405 −0.153977
\(834\) 0 0
\(835\) 62.2874 2.15554
\(836\) −1.04259 −0.0360587
\(837\) 0 0
\(838\) 49.8348 1.72151
\(839\) −38.7473 −1.33771 −0.668853 0.743394i \(-0.733215\pi\)
−0.668853 + 0.743394i \(0.733215\pi\)
\(840\) 0 0
\(841\) −26.9680 −0.929931
\(842\) −104.251 −3.59272
\(843\) 0 0
\(844\) 37.8216 1.30187
\(845\) −16.3812 −0.563529
\(846\) 0 0
\(847\) 25.2290 0.866879
\(848\) 41.9637 1.44104
\(849\) 0 0
\(850\) 23.5907 0.809153
\(851\) 0 0
\(852\) 0 0
\(853\) 8.82914 0.302304 0.151152 0.988511i \(-0.451702\pi\)
0.151152 + 0.988511i \(0.451702\pi\)
\(854\) 76.7660 2.62688
\(855\) 0 0
\(856\) 67.2325 2.29796
\(857\) 0.684430 0.0233797 0.0116898 0.999932i \(-0.496279\pi\)
0.0116898 + 0.999932i \(0.496279\pi\)
\(858\) 0 0
\(859\) 12.6327 0.431023 0.215511 0.976501i \(-0.430858\pi\)
0.215511 + 0.976501i \(0.430858\pi\)
\(860\) 127.307 4.34112
\(861\) 0 0
\(862\) 57.1023 1.94491
\(863\) 5.68262 0.193439 0.0967193 0.995312i \(-0.469165\pi\)
0.0967193 + 0.995312i \(0.469165\pi\)
\(864\) 0 0
\(865\) −18.3964 −0.625496
\(866\) 2.01700 0.0685405
\(867\) 0 0
\(868\) 66.7385 2.26525
\(869\) 0.879493 0.0298347
\(870\) 0 0
\(871\) −0.363558 −0.0123187
\(872\) 141.218 4.78224
\(873\) 0 0
\(874\) 0 0
\(875\) −10.3778 −0.350833
\(876\) 0 0
\(877\) −22.6537 −0.764961 −0.382480 0.923964i \(-0.624930\pi\)
−0.382480 + 0.923964i \(0.624930\pi\)
\(878\) 34.8674 1.17672
\(879\) 0 0
\(880\) −4.00986 −0.135172
\(881\) −22.5951 −0.761250 −0.380625 0.924730i \(-0.624291\pi\)
−0.380625 + 0.924730i \(0.624291\pi\)
\(882\) 0 0
\(883\) 41.1095 1.38344 0.691722 0.722164i \(-0.256852\pi\)
0.691722 + 0.722164i \(0.256852\pi\)
\(884\) −56.3985 −1.89689
\(885\) 0 0
\(886\) 8.13796 0.273400
\(887\) 5.45590 0.183191 0.0915955 0.995796i \(-0.470803\pi\)
0.0915955 + 0.995796i \(0.470803\pi\)
\(888\) 0 0
\(889\) 4.61271 0.154705
\(890\) 102.682 3.44192
\(891\) 0 0
\(892\) 8.53452 0.285757
\(893\) 10.2225 0.342085
\(894\) 0 0
\(895\) 23.8078 0.795807
\(896\) −27.2326 −0.909776
\(897\) 0 0
\(898\) 20.3984 0.680703
\(899\) 8.16413 0.272289
\(900\) 0 0
\(901\) 9.31507 0.310330
\(902\) 2.06186 0.0686523
\(903\) 0 0
\(904\) 61.3042 2.03895
\(905\) 18.3439 0.609772
\(906\) 0 0
\(907\) −28.1199 −0.933706 −0.466853 0.884335i \(-0.654612\pi\)
−0.466853 + 0.884335i \(0.654612\pi\)
\(908\) 54.7063 1.81549
\(909\) 0 0
\(910\) −76.6285 −2.54021
\(911\) −57.1742 −1.89427 −0.947133 0.320840i \(-0.896035\pi\)
−0.947133 + 0.320840i \(0.896035\pi\)
\(912\) 0 0
\(913\) 0.330777 0.0109471
\(914\) −23.8412 −0.788596
\(915\) 0 0
\(916\) −111.163 −3.67292
\(917\) −11.2804 −0.372510
\(918\) 0 0
\(919\) −16.3674 −0.539909 −0.269955 0.962873i \(-0.587009\pi\)
−0.269955 + 0.962873i \(0.587009\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 20.0464 0.660195
\(923\) 66.8800 2.20138
\(924\) 0 0
\(925\) −23.7491 −0.780867
\(926\) −87.6763 −2.88122
\(927\) 0 0
\(928\) −20.6643 −0.678339
\(929\) −38.2037 −1.25342 −0.626711 0.779252i \(-0.715599\pi\)
−0.626711 + 0.779252i \(0.715599\pi\)
\(930\) 0 0
\(931\) 2.98117 0.0977039
\(932\) −126.200 −4.13381
\(933\) 0 0
\(934\) −35.8643 −1.17352
\(935\) −0.890107 −0.0291096
\(936\) 0 0
\(937\) −14.0763 −0.459852 −0.229926 0.973208i \(-0.573848\pi\)
−0.229926 + 0.973208i \(0.573848\pi\)
\(938\) −0.514387 −0.0167953
\(939\) 0 0
\(940\) 87.2760 2.84663
\(941\) −43.5448 −1.41952 −0.709759 0.704444i \(-0.751196\pi\)
−0.709759 + 0.704444i \(0.751196\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 31.4746 1.02441
\(945\) 0 0
\(946\) −2.73182 −0.0888192
\(947\) −30.7988 −1.00083 −0.500414 0.865786i \(-0.666819\pi\)
−0.500414 + 0.865786i \(0.666819\pi\)
\(948\) 0 0
\(949\) 3.00235 0.0974603
\(950\) −15.8252 −0.513436
\(951\) 0 0
\(952\) −48.3442 −1.56684
\(953\) 53.6218 1.73698 0.868490 0.495708i \(-0.165091\pi\)
0.868490 + 0.495708i \(0.165091\pi\)
\(954\) 0 0
\(955\) −37.6220 −1.21742
\(956\) −21.2953 −0.688739
\(957\) 0 0
\(958\) −55.5143 −1.79359
\(959\) −18.2148 −0.588185
\(960\) 0 0
\(961\) 1.80157 0.0581151
\(962\) 79.1565 2.55211
\(963\) 0 0
\(964\) 139.181 4.48271
\(965\) −36.6487 −1.17976
\(966\) 0 0
\(967\) −35.8006 −1.15127 −0.575635 0.817707i \(-0.695245\pi\)
−0.575635 + 0.817707i \(0.695245\pi\)
\(968\) −89.8242 −2.88706
\(969\) 0 0
\(970\) −65.8666 −2.11485
\(971\) −21.0599 −0.675846 −0.337923 0.941174i \(-0.609724\pi\)
−0.337923 + 0.941174i \(0.609724\pi\)
\(972\) 0 0
\(973\) −24.7993 −0.795029
\(974\) −21.9840 −0.704411
\(975\) 0 0
\(976\) −145.771 −4.66601
\(977\) −42.3706 −1.35556 −0.677778 0.735266i \(-0.737057\pi\)
−0.677778 + 0.735266i \(0.737057\pi\)
\(978\) 0 0
\(979\) −1.58047 −0.0505120
\(980\) 25.4520 0.813035
\(981\) 0 0
\(982\) 29.5418 0.942716
\(983\) 27.6419 0.881639 0.440820 0.897596i \(-0.354688\pi\)
0.440820 + 0.897596i \(0.354688\pi\)
\(984\) 0 0
\(985\) −42.2320 −1.34562
\(986\) −9.76151 −0.310870
\(987\) 0 0
\(988\) 37.8334 1.20364
\(989\) 0 0
\(990\) 0 0
\(991\) −45.4334 −1.44324 −0.721619 0.692290i \(-0.756602\pi\)
−0.721619 + 0.692290i \(0.756602\pi\)
\(992\) −83.0244 −2.63603
\(993\) 0 0
\(994\) 94.6264 3.00137
\(995\) 58.6240 1.85851
\(996\) 0 0
\(997\) −13.0846 −0.414393 −0.207196 0.978299i \(-0.566434\pi\)
−0.207196 + 0.978299i \(0.566434\pi\)
\(998\) −16.1802 −0.512176
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4761.2.a.bu.1.10 10
3.2 odd 2 1587.2.a.t.1.1 10
23.11 odd 22 207.2.i.d.190.2 20
23.21 odd 22 207.2.i.d.73.2 20
23.22 odd 2 4761.2.a.bt.1.10 10
69.11 even 22 69.2.e.c.52.1 yes 20
69.44 even 22 69.2.e.c.4.1 20
69.68 even 2 1587.2.a.u.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.c.4.1 20 69.44 even 22
69.2.e.c.52.1 yes 20 69.11 even 22
207.2.i.d.73.2 20 23.21 odd 22
207.2.i.d.190.2 20 23.11 odd 22
1587.2.a.t.1.1 10 3.2 odd 2
1587.2.a.u.1.1 10 69.68 even 2
4761.2.a.bt.1.10 10 23.22 odd 2
4761.2.a.bu.1.10 10 1.1 even 1 trivial