Properties

Label 207.4.a.d.1.2
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,4,Mod(1,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.2009704.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 27x^{2} - 6x + 112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.45983\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.45983 q^{2} +3.97043 q^{4} -7.89053 q^{5} +4.57766 q^{7} +13.9416 q^{8} +27.2999 q^{10} +7.16805 q^{11} +9.66367 q^{13} -15.8379 q^{14} -79.9991 q^{16} +69.1871 q^{17} -21.2382 q^{19} -31.3288 q^{20} -24.8002 q^{22} -23.0000 q^{23} -62.7395 q^{25} -33.4347 q^{26} +18.1753 q^{28} -39.5338 q^{29} +28.5625 q^{31} +165.251 q^{32} -239.376 q^{34} -36.1202 q^{35} -170.923 q^{37} +73.4807 q^{38} -110.007 q^{40} -395.474 q^{41} -214.499 q^{43} +28.4603 q^{44} +79.5761 q^{46} -387.800 q^{47} -322.045 q^{49} +217.068 q^{50} +38.3690 q^{52} -268.151 q^{53} -56.5597 q^{55} +63.8200 q^{56} +136.780 q^{58} -552.468 q^{59} +354.991 q^{61} -98.8214 q^{62} +68.2540 q^{64} -76.2515 q^{65} +293.680 q^{67} +274.703 q^{68} +124.970 q^{70} -505.691 q^{71} +1048.26 q^{73} +591.365 q^{74} -84.3250 q^{76} +32.8129 q^{77} -38.4080 q^{79} +631.236 q^{80} +1368.27 q^{82} +111.501 q^{83} -545.923 q^{85} +742.130 q^{86} +99.9342 q^{88} +1479.10 q^{89} +44.2370 q^{91} -91.3200 q^{92} +1341.72 q^{94} +167.581 q^{95} -1274.61 q^{97} +1114.22 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 26 q^{4} - 4 q^{5} - 14 q^{7} - 84 q^{8} - 100 q^{10} - 70 q^{11} - 12 q^{13} + 18 q^{14} + 130 q^{16} - 178 q^{17} + 96 q^{19} + 296 q^{20} - 326 q^{22} - 92 q^{23} - 80 q^{25} + 464 q^{26}+ \cdots + 2784 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.45983 −1.22324 −0.611618 0.791154i \(-0.709481\pi\)
−0.611618 + 0.791154i \(0.709481\pi\)
\(3\) 0 0
\(4\) 3.97043 0.496304
\(5\) −7.89053 −0.705751 −0.352875 0.935670i \(-0.614796\pi\)
−0.352875 + 0.935670i \(0.614796\pi\)
\(6\) 0 0
\(7\) 4.57766 0.247170 0.123585 0.992334i \(-0.460561\pi\)
0.123585 + 0.992334i \(0.460561\pi\)
\(8\) 13.9416 0.616138
\(9\) 0 0
\(10\) 27.2999 0.863299
\(11\) 7.16805 0.196477 0.0982386 0.995163i \(-0.468679\pi\)
0.0982386 + 0.995163i \(0.468679\pi\)
\(12\) 0 0
\(13\) 9.66367 0.206171 0.103085 0.994673i \(-0.467129\pi\)
0.103085 + 0.994673i \(0.467129\pi\)
\(14\) −15.8379 −0.302348
\(15\) 0 0
\(16\) −79.9991 −1.24999
\(17\) 69.1871 0.987078 0.493539 0.869724i \(-0.335703\pi\)
0.493539 + 0.869724i \(0.335703\pi\)
\(18\) 0 0
\(19\) −21.2382 −0.256441 −0.128221 0.991746i \(-0.540927\pi\)
−0.128221 + 0.991746i \(0.540927\pi\)
\(20\) −31.3288 −0.350267
\(21\) 0 0
\(22\) −24.8002 −0.240338
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −62.7395 −0.501916
\(26\) −33.4347 −0.252195
\(27\) 0 0
\(28\) 18.1753 0.122672
\(29\) −39.5338 −0.253146 −0.126573 0.991957i \(-0.540398\pi\)
−0.126573 + 0.991957i \(0.540398\pi\)
\(30\) 0 0
\(31\) 28.5625 0.165483 0.0827415 0.996571i \(-0.473632\pi\)
0.0827415 + 0.996571i \(0.473632\pi\)
\(32\) 165.251 0.912889
\(33\) 0 0
\(34\) −239.376 −1.20743
\(35\) −36.1202 −0.174441
\(36\) 0 0
\(37\) −170.923 −0.759448 −0.379724 0.925100i \(-0.623981\pi\)
−0.379724 + 0.925100i \(0.623981\pi\)
\(38\) 73.4807 0.313688
\(39\) 0 0
\(40\) −110.007 −0.434840
\(41\) −395.474 −1.50641 −0.753203 0.657788i \(-0.771492\pi\)
−0.753203 + 0.657788i \(0.771492\pi\)
\(42\) 0 0
\(43\) −214.499 −0.760716 −0.380358 0.924839i \(-0.624199\pi\)
−0.380358 + 0.924839i \(0.624199\pi\)
\(44\) 28.4603 0.0975124
\(45\) 0 0
\(46\) 79.5761 0.255062
\(47\) −387.800 −1.20354 −0.601771 0.798669i \(-0.705538\pi\)
−0.601771 + 0.798669i \(0.705538\pi\)
\(48\) 0 0
\(49\) −322.045 −0.938907
\(50\) 217.068 0.613961
\(51\) 0 0
\(52\) 38.3690 0.102323
\(53\) −268.151 −0.694969 −0.347484 0.937686i \(-0.612964\pi\)
−0.347484 + 0.937686i \(0.612964\pi\)
\(54\) 0 0
\(55\) −56.5597 −0.138664
\(56\) 63.8200 0.152291
\(57\) 0 0
\(58\) 136.780 0.309658
\(59\) −552.468 −1.21907 −0.609535 0.792759i \(-0.708644\pi\)
−0.609535 + 0.792759i \(0.708644\pi\)
\(60\) 0 0
\(61\) 354.991 0.745113 0.372557 0.928009i \(-0.378481\pi\)
0.372557 + 0.928009i \(0.378481\pi\)
\(62\) −98.8214 −0.202425
\(63\) 0 0
\(64\) 68.2540 0.133309
\(65\) −76.2515 −0.145505
\(66\) 0 0
\(67\) 293.680 0.535504 0.267752 0.963488i \(-0.413719\pi\)
0.267752 + 0.963488i \(0.413719\pi\)
\(68\) 274.703 0.489891
\(69\) 0 0
\(70\) 124.970 0.213382
\(71\) −505.691 −0.845274 −0.422637 0.906299i \(-0.638895\pi\)
−0.422637 + 0.906299i \(0.638895\pi\)
\(72\) 0 0
\(73\) 1048.26 1.68069 0.840343 0.542055i \(-0.182354\pi\)
0.840343 + 0.542055i \(0.182354\pi\)
\(74\) 591.365 0.928984
\(75\) 0 0
\(76\) −84.3250 −0.127273
\(77\) 32.8129 0.0485633
\(78\) 0 0
\(79\) −38.4080 −0.0546992 −0.0273496 0.999626i \(-0.508707\pi\)
−0.0273496 + 0.999626i \(0.508707\pi\)
\(80\) 631.236 0.882179
\(81\) 0 0
\(82\) 1368.27 1.84269
\(83\) 111.501 0.147455 0.0737276 0.997278i \(-0.476510\pi\)
0.0737276 + 0.997278i \(0.476510\pi\)
\(84\) 0 0
\(85\) −545.923 −0.696631
\(86\) 742.130 0.930534
\(87\) 0 0
\(88\) 99.9342 0.121057
\(89\) 1479.10 1.76163 0.880813 0.473464i \(-0.156996\pi\)
0.880813 + 0.473464i \(0.156996\pi\)
\(90\) 0 0
\(91\) 44.2370 0.0509593
\(92\) −91.3200 −0.103487
\(93\) 0 0
\(94\) 1341.72 1.47222
\(95\) 167.581 0.180984
\(96\) 0 0
\(97\) −1274.61 −1.33420 −0.667099 0.744969i \(-0.732464\pi\)
−0.667099 + 0.744969i \(0.732464\pi\)
\(98\) 1114.22 1.14850
\(99\) 0 0
\(100\) −249.103 −0.249103
\(101\) 1030.08 1.01482 0.507412 0.861704i \(-0.330602\pi\)
0.507412 + 0.861704i \(0.330602\pi\)
\(102\) 0 0
\(103\) −1261.15 −1.20646 −0.603229 0.797568i \(-0.706119\pi\)
−0.603229 + 0.797568i \(0.706119\pi\)
\(104\) 134.727 0.127030
\(105\) 0 0
\(106\) 927.757 0.850110
\(107\) −314.435 −0.284089 −0.142045 0.989860i \(-0.545368\pi\)
−0.142045 + 0.989860i \(0.545368\pi\)
\(108\) 0 0
\(109\) −594.442 −0.522360 −0.261180 0.965290i \(-0.584112\pi\)
−0.261180 + 0.965290i \(0.584112\pi\)
\(110\) 195.687 0.169618
\(111\) 0 0
\(112\) −366.209 −0.308960
\(113\) −705.117 −0.587008 −0.293504 0.955958i \(-0.594821\pi\)
−0.293504 + 0.955958i \(0.594821\pi\)
\(114\) 0 0
\(115\) 181.482 0.147159
\(116\) −156.966 −0.125638
\(117\) 0 0
\(118\) 1911.45 1.49121
\(119\) 316.715 0.243977
\(120\) 0 0
\(121\) −1279.62 −0.961397
\(122\) −1228.21 −0.911449
\(123\) 0 0
\(124\) 113.405 0.0821300
\(125\) 1481.36 1.05998
\(126\) 0 0
\(127\) 365.035 0.255052 0.127526 0.991835i \(-0.459296\pi\)
0.127526 + 0.991835i \(0.459296\pi\)
\(128\) −1558.15 −1.07596
\(129\) 0 0
\(130\) 263.817 0.177987
\(131\) −841.502 −0.561239 −0.280620 0.959819i \(-0.590540\pi\)
−0.280620 + 0.959819i \(0.590540\pi\)
\(132\) 0 0
\(133\) −97.2214 −0.0633847
\(134\) −1016.08 −0.655047
\(135\) 0 0
\(136\) 964.580 0.608177
\(137\) −2767.12 −1.72563 −0.862814 0.505521i \(-0.831300\pi\)
−0.862814 + 0.505521i \(0.831300\pi\)
\(138\) 0 0
\(139\) −1201.78 −0.733336 −0.366668 0.930352i \(-0.619502\pi\)
−0.366668 + 0.930352i \(0.619502\pi\)
\(140\) −143.413 −0.0865757
\(141\) 0 0
\(142\) 1749.61 1.03397
\(143\) 69.2696 0.0405078
\(144\) 0 0
\(145\) 311.943 0.178658
\(146\) −3626.82 −2.05587
\(147\) 0 0
\(148\) −678.639 −0.376917
\(149\) 2411.55 1.32592 0.662961 0.748654i \(-0.269300\pi\)
0.662961 + 0.748654i \(0.269300\pi\)
\(150\) 0 0
\(151\) 2352.41 1.26779 0.633897 0.773418i \(-0.281454\pi\)
0.633897 + 0.773418i \(0.281454\pi\)
\(152\) −296.095 −0.158003
\(153\) 0 0
\(154\) −113.527 −0.0594044
\(155\) −225.373 −0.116790
\(156\) 0 0
\(157\) −2720.30 −1.38283 −0.691414 0.722459i \(-0.743012\pi\)
−0.691414 + 0.722459i \(0.743012\pi\)
\(158\) 132.885 0.0669099
\(159\) 0 0
\(160\) −1303.91 −0.644272
\(161\) −105.286 −0.0515386
\(162\) 0 0
\(163\) 910.107 0.437332 0.218666 0.975800i \(-0.429830\pi\)
0.218666 + 0.975800i \(0.429830\pi\)
\(164\) −1570.20 −0.747636
\(165\) 0 0
\(166\) −385.773 −0.180372
\(167\) −370.185 −0.171532 −0.0857658 0.996315i \(-0.527334\pi\)
−0.0857658 + 0.996315i \(0.527334\pi\)
\(168\) 0 0
\(169\) −2103.61 −0.957494
\(170\) 1888.80 0.852144
\(171\) 0 0
\(172\) −851.654 −0.377546
\(173\) 1674.46 0.735879 0.367940 0.929850i \(-0.380063\pi\)
0.367940 + 0.929850i \(0.380063\pi\)
\(174\) 0 0
\(175\) −287.200 −0.124059
\(176\) −573.438 −0.245594
\(177\) 0 0
\(178\) −5117.45 −2.15488
\(179\) 1890.08 0.789225 0.394613 0.918848i \(-0.370879\pi\)
0.394613 + 0.918848i \(0.370879\pi\)
\(180\) 0 0
\(181\) −1249.68 −0.513191 −0.256596 0.966519i \(-0.582601\pi\)
−0.256596 + 0.966519i \(0.582601\pi\)
\(182\) −153.053 −0.0623352
\(183\) 0 0
\(184\) −320.657 −0.128474
\(185\) 1348.67 0.535981
\(186\) 0 0
\(187\) 495.936 0.193938
\(188\) −1539.74 −0.597323
\(189\) 0 0
\(190\) −579.802 −0.221386
\(191\) −4304.02 −1.63051 −0.815257 0.579100i \(-0.803404\pi\)
−0.815257 + 0.579100i \(0.803404\pi\)
\(192\) 0 0
\(193\) −2955.56 −1.10231 −0.551156 0.834402i \(-0.685813\pi\)
−0.551156 + 0.834402i \(0.685813\pi\)
\(194\) 4409.94 1.63204
\(195\) 0 0
\(196\) −1278.66 −0.465983
\(197\) −2937.68 −1.06244 −0.531222 0.847233i \(-0.678267\pi\)
−0.531222 + 0.847233i \(0.678267\pi\)
\(198\) 0 0
\(199\) 4241.65 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(200\) −874.690 −0.309250
\(201\) 0 0
\(202\) −3563.92 −1.24137
\(203\) −180.972 −0.0625703
\(204\) 0 0
\(205\) 3120.50 1.06315
\(206\) 4363.38 1.47578
\(207\) 0 0
\(208\) −773.085 −0.257711
\(209\) −152.237 −0.0503848
\(210\) 0 0
\(211\) 5021.48 1.63835 0.819177 0.573541i \(-0.194431\pi\)
0.819177 + 0.573541i \(0.194431\pi\)
\(212\) −1064.68 −0.344916
\(213\) 0 0
\(214\) 1087.89 0.347508
\(215\) 1692.51 0.536875
\(216\) 0 0
\(217\) 130.749 0.0409025
\(218\) 2056.67 0.638969
\(219\) 0 0
\(220\) −224.567 −0.0688195
\(221\) 668.601 0.203507
\(222\) 0 0
\(223\) −1211.64 −0.363843 −0.181922 0.983313i \(-0.558232\pi\)
−0.181922 + 0.983313i \(0.558232\pi\)
\(224\) 756.461 0.225639
\(225\) 0 0
\(226\) 2439.59 0.718048
\(227\) −4524.63 −1.32295 −0.661476 0.749966i \(-0.730070\pi\)
−0.661476 + 0.749966i \(0.730070\pi\)
\(228\) 0 0
\(229\) −6614.12 −1.90862 −0.954309 0.298821i \(-0.903407\pi\)
−0.954309 + 0.298821i \(0.903407\pi\)
\(230\) −627.898 −0.180010
\(231\) 0 0
\(232\) −551.166 −0.155973
\(233\) 2017.22 0.567179 0.283589 0.958946i \(-0.408475\pi\)
0.283589 + 0.958946i \(0.408475\pi\)
\(234\) 0 0
\(235\) 3059.95 0.849401
\(236\) −2193.54 −0.605030
\(237\) 0 0
\(238\) −1095.78 −0.298441
\(239\) 2191.56 0.593140 0.296570 0.955011i \(-0.404157\pi\)
0.296570 + 0.955011i \(0.404157\pi\)
\(240\) 0 0
\(241\) 4000.34 1.06923 0.534615 0.845096i \(-0.320457\pi\)
0.534615 + 0.845096i \(0.320457\pi\)
\(242\) 4427.27 1.17601
\(243\) 0 0
\(244\) 1409.47 0.369803
\(245\) 2541.11 0.662634
\(246\) 0 0
\(247\) −205.239 −0.0528707
\(248\) 398.207 0.101960
\(249\) 0 0
\(250\) −5125.27 −1.29660
\(251\) 2219.23 0.558075 0.279037 0.960280i \(-0.409985\pi\)
0.279037 + 0.960280i \(0.409985\pi\)
\(252\) 0 0
\(253\) −164.865 −0.0409683
\(254\) −1262.96 −0.311989
\(255\) 0 0
\(256\) 4844.91 1.18284
\(257\) 548.420 0.133111 0.0665554 0.997783i \(-0.478799\pi\)
0.0665554 + 0.997783i \(0.478799\pi\)
\(258\) 0 0
\(259\) −782.428 −0.187713
\(260\) −302.751 −0.0722148
\(261\) 0 0
\(262\) 2911.46 0.686528
\(263\) 4180.82 0.980230 0.490115 0.871658i \(-0.336955\pi\)
0.490115 + 0.871658i \(0.336955\pi\)
\(264\) 0 0
\(265\) 2115.85 0.490475
\(266\) 336.370 0.0775344
\(267\) 0 0
\(268\) 1166.04 0.265773
\(269\) −4339.45 −0.983573 −0.491787 0.870716i \(-0.663656\pi\)
−0.491787 + 0.870716i \(0.663656\pi\)
\(270\) 0 0
\(271\) −1512.65 −0.339066 −0.169533 0.985524i \(-0.554226\pi\)
−0.169533 + 0.985524i \(0.554226\pi\)
\(272\) −5534.91 −1.23383
\(273\) 0 0
\(274\) 9573.77 2.11085
\(275\) −449.720 −0.0986150
\(276\) 0 0
\(277\) 537.755 0.116645 0.0583223 0.998298i \(-0.481425\pi\)
0.0583223 + 0.998298i \(0.481425\pi\)
\(278\) 4157.96 0.897042
\(279\) 0 0
\(280\) −503.574 −0.107480
\(281\) −8146.34 −1.72943 −0.864715 0.502262i \(-0.832501\pi\)
−0.864715 + 0.502262i \(0.832501\pi\)
\(282\) 0 0
\(283\) 5231.91 1.09896 0.549479 0.835508i \(-0.314826\pi\)
0.549479 + 0.835508i \(0.314826\pi\)
\(284\) −2007.81 −0.419513
\(285\) 0 0
\(286\) −239.661 −0.0495506
\(287\) −1810.35 −0.372339
\(288\) 0 0
\(289\) −126.148 −0.0256764
\(290\) −1079.27 −0.218541
\(291\) 0 0
\(292\) 4162.06 0.834131
\(293\) 1540.05 0.307067 0.153534 0.988143i \(-0.450935\pi\)
0.153534 + 0.988143i \(0.450935\pi\)
\(294\) 0 0
\(295\) 4359.26 0.860360
\(296\) −2382.95 −0.467925
\(297\) 0 0
\(298\) −8343.57 −1.62191
\(299\) −222.264 −0.0429896
\(300\) 0 0
\(301\) −981.903 −0.188026
\(302\) −8138.96 −1.55081
\(303\) 0 0
\(304\) 1699.04 0.320548
\(305\) −2801.07 −0.525864
\(306\) 0 0
\(307\) −8549.38 −1.58938 −0.794689 0.607017i \(-0.792366\pi\)
−0.794689 + 0.607017i \(0.792366\pi\)
\(308\) 130.281 0.0241022
\(309\) 0 0
\(310\) 779.753 0.142861
\(311\) 3678.75 0.670749 0.335374 0.942085i \(-0.391137\pi\)
0.335374 + 0.942085i \(0.391137\pi\)
\(312\) 0 0
\(313\) −4382.07 −0.791339 −0.395669 0.918393i \(-0.629487\pi\)
−0.395669 + 0.918393i \(0.629487\pi\)
\(314\) 9411.80 1.69152
\(315\) 0 0
\(316\) −152.496 −0.0271474
\(317\) 3015.16 0.534221 0.267111 0.963666i \(-0.413931\pi\)
0.267111 + 0.963666i \(0.413931\pi\)
\(318\) 0 0
\(319\) −283.380 −0.0497375
\(320\) −538.560 −0.0940826
\(321\) 0 0
\(322\) 364.273 0.0630438
\(323\) −1469.41 −0.253128
\(324\) 0 0
\(325\) −606.294 −0.103480
\(326\) −3148.82 −0.534959
\(327\) 0 0
\(328\) −5513.55 −0.928155
\(329\) −1775.22 −0.297480
\(330\) 0 0
\(331\) 8098.73 1.34485 0.672426 0.740164i \(-0.265252\pi\)
0.672426 + 0.740164i \(0.265252\pi\)
\(332\) 442.706 0.0731827
\(333\) 0 0
\(334\) 1280.78 0.209824
\(335\) −2317.29 −0.377932
\(336\) 0 0
\(337\) −1279.84 −0.206876 −0.103438 0.994636i \(-0.532984\pi\)
−0.103438 + 0.994636i \(0.532984\pi\)
\(338\) 7278.15 1.17124
\(339\) 0 0
\(340\) −2167.55 −0.345741
\(341\) 204.737 0.0325136
\(342\) 0 0
\(343\) −3044.35 −0.479240
\(344\) −2990.46 −0.468706
\(345\) 0 0
\(346\) −5793.36 −0.900153
\(347\) 6965.46 1.07760 0.538798 0.842435i \(-0.318879\pi\)
0.538798 + 0.842435i \(0.318879\pi\)
\(348\) 0 0
\(349\) 11580.9 1.77625 0.888123 0.459606i \(-0.152009\pi\)
0.888123 + 0.459606i \(0.152009\pi\)
\(350\) 993.664 0.151753
\(351\) 0 0
\(352\) 1184.52 0.179362
\(353\) 1359.33 0.204958 0.102479 0.994735i \(-0.467323\pi\)
0.102479 + 0.994735i \(0.467323\pi\)
\(354\) 0 0
\(355\) 3990.17 0.596553
\(356\) 5872.69 0.874303
\(357\) 0 0
\(358\) −6539.36 −0.965408
\(359\) 11315.1 1.66348 0.831738 0.555168i \(-0.187346\pi\)
0.831738 + 0.555168i \(0.187346\pi\)
\(360\) 0 0
\(361\) −6407.94 −0.934238
\(362\) 4323.67 0.627754
\(363\) 0 0
\(364\) 175.640 0.0252913
\(365\) −8271.36 −1.18614
\(366\) 0 0
\(367\) −9260.84 −1.31720 −0.658600 0.752494i \(-0.728851\pi\)
−0.658600 + 0.752494i \(0.728851\pi\)
\(368\) 1839.98 0.260640
\(369\) 0 0
\(370\) −4666.19 −0.655631
\(371\) −1227.50 −0.171776
\(372\) 0 0
\(373\) 7448.35 1.03394 0.516972 0.856002i \(-0.327059\pi\)
0.516972 + 0.856002i \(0.327059\pi\)
\(374\) −1715.86 −0.237232
\(375\) 0 0
\(376\) −5406.56 −0.741549
\(377\) −382.042 −0.0521914
\(378\) 0 0
\(379\) 13428.8 1.82003 0.910017 0.414570i \(-0.136068\pi\)
0.910017 + 0.414570i \(0.136068\pi\)
\(380\) 665.369 0.0898229
\(381\) 0 0
\(382\) 14891.2 1.99450
\(383\) 12530.8 1.67178 0.835891 0.548896i \(-0.184952\pi\)
0.835891 + 0.548896i \(0.184952\pi\)
\(384\) 0 0
\(385\) −258.911 −0.0342736
\(386\) 10225.8 1.34839
\(387\) 0 0
\(388\) −5060.76 −0.662168
\(389\) 2037.90 0.265619 0.132809 0.991142i \(-0.457600\pi\)
0.132809 + 0.991142i \(0.457600\pi\)
\(390\) 0 0
\(391\) −1591.30 −0.205820
\(392\) −4489.83 −0.578496
\(393\) 0 0
\(394\) 10163.9 1.29962
\(395\) 303.059 0.0386040
\(396\) 0 0
\(397\) −12445.6 −1.57337 −0.786683 0.617357i \(-0.788203\pi\)
−0.786683 + 0.617357i \(0.788203\pi\)
\(398\) −14675.4 −1.84827
\(399\) 0 0
\(400\) 5019.11 0.627388
\(401\) −7515.90 −0.935976 −0.467988 0.883735i \(-0.655021\pi\)
−0.467988 + 0.883735i \(0.655021\pi\)
\(402\) 0 0
\(403\) 276.018 0.0341178
\(404\) 4089.88 0.503661
\(405\) 0 0
\(406\) 626.134 0.0765382
\(407\) −1225.19 −0.149214
\(408\) 0 0
\(409\) 4458.77 0.539051 0.269526 0.962993i \(-0.413133\pi\)
0.269526 + 0.962993i \(0.413133\pi\)
\(410\) −10796.4 −1.30048
\(411\) 0 0
\(412\) −5007.33 −0.598770
\(413\) −2529.01 −0.301318
\(414\) 0 0
\(415\) −879.799 −0.104067
\(416\) 1596.93 0.188211
\(417\) 0 0
\(418\) 526.713 0.0616325
\(419\) −4506.59 −0.525445 −0.262722 0.964871i \(-0.584620\pi\)
−0.262722 + 0.964871i \(0.584620\pi\)
\(420\) 0 0
\(421\) 4391.61 0.508395 0.254197 0.967152i \(-0.418189\pi\)
0.254197 + 0.967152i \(0.418189\pi\)
\(422\) −17373.5 −2.00409
\(423\) 0 0
\(424\) −3738.46 −0.428197
\(425\) −4340.76 −0.495431
\(426\) 0 0
\(427\) 1625.03 0.184170
\(428\) −1248.44 −0.140995
\(429\) 0 0
\(430\) −5855.80 −0.656725
\(431\) 4034.85 0.450932 0.225466 0.974251i \(-0.427610\pi\)
0.225466 + 0.974251i \(0.427610\pi\)
\(432\) 0 0
\(433\) −2378.67 −0.263999 −0.131999 0.991250i \(-0.542140\pi\)
−0.131999 + 0.991250i \(0.542140\pi\)
\(434\) −452.371 −0.0500334
\(435\) 0 0
\(436\) −2360.19 −0.259249
\(437\) 488.479 0.0534717
\(438\) 0 0
\(439\) 6767.22 0.735722 0.367861 0.929881i \(-0.380090\pi\)
0.367861 + 0.929881i \(0.380090\pi\)
\(440\) −788.534 −0.0854361
\(441\) 0 0
\(442\) −2313.25 −0.248936
\(443\) −2767.13 −0.296773 −0.148386 0.988929i \(-0.547408\pi\)
−0.148386 + 0.988929i \(0.547408\pi\)
\(444\) 0 0
\(445\) −11670.9 −1.24327
\(446\) 4192.05 0.445066
\(447\) 0 0
\(448\) 312.443 0.0329499
\(449\) −3616.87 −0.380158 −0.190079 0.981769i \(-0.560874\pi\)
−0.190079 + 0.981769i \(0.560874\pi\)
\(450\) 0 0
\(451\) −2834.78 −0.295974
\(452\) −2799.62 −0.291334
\(453\) 0 0
\(454\) 15654.5 1.61828
\(455\) −349.053 −0.0359646
\(456\) 0 0
\(457\) −5912.55 −0.605202 −0.302601 0.953117i \(-0.597855\pi\)
−0.302601 + 0.953117i \(0.597855\pi\)
\(458\) 22883.8 2.33469
\(459\) 0 0
\(460\) 720.563 0.0730357
\(461\) −3865.90 −0.390570 −0.195285 0.980747i \(-0.562563\pi\)
−0.195285 + 0.980747i \(0.562563\pi\)
\(462\) 0 0
\(463\) −11789.4 −1.18337 −0.591687 0.806168i \(-0.701538\pi\)
−0.591687 + 0.806168i \(0.701538\pi\)
\(464\) 3162.67 0.316430
\(465\) 0 0
\(466\) −6979.25 −0.693793
\(467\) −3867.34 −0.383210 −0.191605 0.981472i \(-0.561369\pi\)
−0.191605 + 0.981472i \(0.561369\pi\)
\(468\) 0 0
\(469\) 1344.37 0.132361
\(470\) −10586.9 −1.03902
\(471\) 0 0
\(472\) −7702.30 −0.751116
\(473\) −1537.54 −0.149463
\(474\) 0 0
\(475\) 1332.48 0.128712
\(476\) 1257.50 0.121087
\(477\) 0 0
\(478\) −7582.44 −0.725549
\(479\) 17656.8 1.68425 0.842127 0.539279i \(-0.181303\pi\)
0.842127 + 0.539279i \(0.181303\pi\)
\(480\) 0 0
\(481\) −1651.74 −0.156576
\(482\) −13840.5 −1.30792
\(483\) 0 0
\(484\) −5080.64 −0.477145
\(485\) 10057.4 0.941611
\(486\) 0 0
\(487\) −5750.71 −0.535092 −0.267546 0.963545i \(-0.586213\pi\)
−0.267546 + 0.963545i \(0.586213\pi\)
\(488\) 4949.14 0.459093
\(489\) 0 0
\(490\) −8791.80 −0.810557
\(491\) −12090.0 −1.11123 −0.555616 0.831439i \(-0.687517\pi\)
−0.555616 + 0.831439i \(0.687517\pi\)
\(492\) 0 0
\(493\) −2735.23 −0.249875
\(494\) 710.093 0.0646733
\(495\) 0 0
\(496\) −2284.97 −0.206852
\(497\) −2314.88 −0.208927
\(498\) 0 0
\(499\) 14759.4 1.32410 0.662048 0.749462i \(-0.269688\pi\)
0.662048 + 0.749462i \(0.269688\pi\)
\(500\) 5881.66 0.526072
\(501\) 0 0
\(502\) −7678.17 −0.682657
\(503\) −15790.7 −1.39975 −0.699875 0.714265i \(-0.746761\pi\)
−0.699875 + 0.714265i \(0.746761\pi\)
\(504\) 0 0
\(505\) −8127.91 −0.716212
\(506\) 570.406 0.0501139
\(507\) 0 0
\(508\) 1449.35 0.126584
\(509\) 4800.46 0.418029 0.209014 0.977913i \(-0.432974\pi\)
0.209014 + 0.977913i \(0.432974\pi\)
\(510\) 0 0
\(511\) 4798.60 0.415416
\(512\) −4297.36 −0.370934
\(513\) 0 0
\(514\) −1897.44 −0.162826
\(515\) 9951.17 0.851458
\(516\) 0 0
\(517\) −2779.77 −0.236469
\(518\) 2707.07 0.229617
\(519\) 0 0
\(520\) −1063.07 −0.0896513
\(521\) 5068.16 0.426180 0.213090 0.977033i \(-0.431647\pi\)
0.213090 + 0.977033i \(0.431647\pi\)
\(522\) 0 0
\(523\) −4316.59 −0.360901 −0.180451 0.983584i \(-0.557756\pi\)
−0.180451 + 0.983584i \(0.557756\pi\)
\(524\) −3341.13 −0.278546
\(525\) 0 0
\(526\) −14464.9 −1.19905
\(527\) 1976.16 0.163345
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −7320.49 −0.599966
\(531\) 0 0
\(532\) −386.011 −0.0314581
\(533\) −3821.73 −0.310577
\(534\) 0 0
\(535\) 2481.06 0.200496
\(536\) 4094.38 0.329944
\(537\) 0 0
\(538\) 15013.8 1.20314
\(539\) −2308.43 −0.184474
\(540\) 0 0
\(541\) 19439.9 1.54490 0.772448 0.635079i \(-0.219032\pi\)
0.772448 + 0.635079i \(0.219032\pi\)
\(542\) 5233.51 0.414758
\(543\) 0 0
\(544\) 11433.2 0.901093
\(545\) 4690.46 0.368656
\(546\) 0 0
\(547\) 17162.2 1.34150 0.670752 0.741682i \(-0.265972\pi\)
0.670752 + 0.741682i \(0.265972\pi\)
\(548\) −10986.7 −0.856437
\(549\) 0 0
\(550\) 1555.96 0.120629
\(551\) 839.629 0.0649172
\(552\) 0 0
\(553\) −175.819 −0.0135200
\(554\) −1860.54 −0.142684
\(555\) 0 0
\(556\) −4771.59 −0.363958
\(557\) −9533.83 −0.725245 −0.362622 0.931936i \(-0.618119\pi\)
−0.362622 + 0.931936i \(0.618119\pi\)
\(558\) 0 0
\(559\) −2072.85 −0.156837
\(560\) 2889.58 0.218048
\(561\) 0 0
\(562\) 28185.0 2.11550
\(563\) 14499.5 1.08540 0.542702 0.839925i \(-0.317401\pi\)
0.542702 + 0.839925i \(0.317401\pi\)
\(564\) 0 0
\(565\) 5563.75 0.414281
\(566\) −18101.5 −1.34428
\(567\) 0 0
\(568\) −7050.15 −0.520806
\(569\) 3689.09 0.271801 0.135900 0.990723i \(-0.456607\pi\)
0.135900 + 0.990723i \(0.456607\pi\)
\(570\) 0 0
\(571\) −18230.6 −1.33612 −0.668061 0.744106i \(-0.732876\pi\)
−0.668061 + 0.744106i \(0.732876\pi\)
\(572\) 275.031 0.0201042
\(573\) 0 0
\(574\) 6263.49 0.455458
\(575\) 1443.01 0.104657
\(576\) 0 0
\(577\) 20164.4 1.45486 0.727432 0.686180i \(-0.240714\pi\)
0.727432 + 0.686180i \(0.240714\pi\)
\(578\) 436.451 0.0314083
\(579\) 0 0
\(580\) 1238.55 0.0886689
\(581\) 510.412 0.0364466
\(582\) 0 0
\(583\) −1922.12 −0.136545
\(584\) 14614.5 1.03553
\(585\) 0 0
\(586\) −5328.32 −0.375616
\(587\) −3604.51 −0.253448 −0.126724 0.991938i \(-0.540446\pi\)
−0.126724 + 0.991938i \(0.540446\pi\)
\(588\) 0 0
\(589\) −606.617 −0.0424367
\(590\) −15082.3 −1.05242
\(591\) 0 0
\(592\) 13673.7 0.949300
\(593\) −21451.6 −1.48551 −0.742757 0.669561i \(-0.766482\pi\)
−0.742757 + 0.669561i \(0.766482\pi\)
\(594\) 0 0
\(595\) −2499.05 −0.172187
\(596\) 9574.92 0.658060
\(597\) 0 0
\(598\) 768.997 0.0525863
\(599\) 14824.4 1.01120 0.505599 0.862769i \(-0.331272\pi\)
0.505599 + 0.862769i \(0.331272\pi\)
\(600\) 0 0
\(601\) −18786.5 −1.27507 −0.637535 0.770422i \(-0.720046\pi\)
−0.637535 + 0.770422i \(0.720046\pi\)
\(602\) 3397.22 0.230001
\(603\) 0 0
\(604\) 9340.11 0.629211
\(605\) 10096.9 0.678506
\(606\) 0 0
\(607\) −2160.73 −0.144484 −0.0722418 0.997387i \(-0.523015\pi\)
−0.0722418 + 0.997387i \(0.523015\pi\)
\(608\) −3509.63 −0.234102
\(609\) 0 0
\(610\) 9691.21 0.643255
\(611\) −3747.57 −0.248135
\(612\) 0 0
\(613\) 20705.6 1.36426 0.682131 0.731230i \(-0.261053\pi\)
0.682131 + 0.731230i \(0.261053\pi\)
\(614\) 29579.4 1.94418
\(615\) 0 0
\(616\) 457.465 0.0299217
\(617\) 19079.1 1.24488 0.622442 0.782666i \(-0.286140\pi\)
0.622442 + 0.782666i \(0.286140\pi\)
\(618\) 0 0
\(619\) 18244.3 1.18465 0.592325 0.805699i \(-0.298210\pi\)
0.592325 + 0.805699i \(0.298210\pi\)
\(620\) −894.830 −0.0579633
\(621\) 0 0
\(622\) −12727.9 −0.820484
\(623\) 6770.84 0.435422
\(624\) 0 0
\(625\) −3846.31 −0.246164
\(626\) 15161.2 0.967993
\(627\) 0 0
\(628\) −10800.8 −0.686303
\(629\) −11825.7 −0.749635
\(630\) 0 0
\(631\) 4623.60 0.291700 0.145850 0.989307i \(-0.453408\pi\)
0.145850 + 0.989307i \(0.453408\pi\)
\(632\) −535.469 −0.0337022
\(633\) 0 0
\(634\) −10431.9 −0.653478
\(635\) −2880.32 −0.180003
\(636\) 0 0
\(637\) −3112.14 −0.193575
\(638\) 980.449 0.0608406
\(639\) 0 0
\(640\) 12294.6 0.759357
\(641\) −21059.1 −1.29763 −0.648816 0.760945i \(-0.724736\pi\)
−0.648816 + 0.760945i \(0.724736\pi\)
\(642\) 0 0
\(643\) 18828.5 1.15478 0.577390 0.816468i \(-0.304071\pi\)
0.577390 + 0.816468i \(0.304071\pi\)
\(644\) −418.032 −0.0255788
\(645\) 0 0
\(646\) 5083.92 0.309635
\(647\) 18686.1 1.13543 0.567716 0.823224i \(-0.307827\pi\)
0.567716 + 0.823224i \(0.307827\pi\)
\(648\) 0 0
\(649\) −3960.12 −0.239520
\(650\) 2097.67 0.126581
\(651\) 0 0
\(652\) 3613.52 0.217050
\(653\) 13267.2 0.795078 0.397539 0.917585i \(-0.369864\pi\)
0.397539 + 0.917585i \(0.369864\pi\)
\(654\) 0 0
\(655\) 6639.90 0.396095
\(656\) 31637.6 1.88299
\(657\) 0 0
\(658\) 6141.96 0.363888
\(659\) −9430.56 −0.557455 −0.278727 0.960370i \(-0.589913\pi\)
−0.278727 + 0.960370i \(0.589913\pi\)
\(660\) 0 0
\(661\) −8433.69 −0.496267 −0.248134 0.968726i \(-0.579817\pi\)
−0.248134 + 0.968726i \(0.579817\pi\)
\(662\) −28020.2 −1.64507
\(663\) 0 0
\(664\) 1554.50 0.0908528
\(665\) 767.129 0.0447338
\(666\) 0 0
\(667\) 909.278 0.0527847
\(668\) −1469.80 −0.0851319
\(669\) 0 0
\(670\) 8017.44 0.462300
\(671\) 2544.59 0.146398
\(672\) 0 0
\(673\) 1486.31 0.0851310 0.0425655 0.999094i \(-0.486447\pi\)
0.0425655 + 0.999094i \(0.486447\pi\)
\(674\) 4428.03 0.253058
\(675\) 0 0
\(676\) −8352.26 −0.475208
\(677\) −3996.72 −0.226893 −0.113446 0.993544i \(-0.536189\pi\)
−0.113446 + 0.993544i \(0.536189\pi\)
\(678\) 0 0
\(679\) −5834.74 −0.329774
\(680\) −7611.05 −0.429221
\(681\) 0 0
\(682\) −708.357 −0.0397718
\(683\) 4484.96 0.251262 0.125631 0.992077i \(-0.459904\pi\)
0.125631 + 0.992077i \(0.459904\pi\)
\(684\) 0 0
\(685\) 21834.0 1.21786
\(686\) 10532.9 0.586224
\(687\) 0 0
\(688\) 17159.7 0.950884
\(689\) −2591.32 −0.143282
\(690\) 0 0
\(691\) 8534.58 0.469856 0.234928 0.972013i \(-0.424515\pi\)
0.234928 + 0.972013i \(0.424515\pi\)
\(692\) 6648.35 0.365220
\(693\) 0 0
\(694\) −24099.3 −1.31815
\(695\) 9482.69 0.517552
\(696\) 0 0
\(697\) −27361.7 −1.48694
\(698\) −40067.9 −2.17277
\(699\) 0 0
\(700\) −1140.31 −0.0615709
\(701\) −5562.07 −0.299681 −0.149841 0.988710i \(-0.547876\pi\)
−0.149841 + 0.988710i \(0.547876\pi\)
\(702\) 0 0
\(703\) 3630.11 0.194754
\(704\) 489.248 0.0261921
\(705\) 0 0
\(706\) −4703.07 −0.250711
\(707\) 4715.38 0.250834
\(708\) 0 0
\(709\) 8050.95 0.426460 0.213230 0.977002i \(-0.431602\pi\)
0.213230 + 0.977002i \(0.431602\pi\)
\(710\) −13805.3 −0.729724
\(711\) 0 0
\(712\) 20621.1 1.08541
\(713\) −656.937 −0.0345056
\(714\) 0 0
\(715\) −546.574 −0.0285884
\(716\) 7504.45 0.391696
\(717\) 0 0
\(718\) −39148.3 −2.03482
\(719\) −5103.08 −0.264691 −0.132345 0.991204i \(-0.542251\pi\)
−0.132345 + 0.991204i \(0.542251\pi\)
\(720\) 0 0
\(721\) −5773.13 −0.298201
\(722\) 22170.4 1.14279
\(723\) 0 0
\(724\) −4961.75 −0.254699
\(725\) 2480.33 0.127058
\(726\) 0 0
\(727\) −19611.5 −1.00048 −0.500240 0.865887i \(-0.666755\pi\)
−0.500240 + 0.865887i \(0.666755\pi\)
\(728\) 616.735 0.0313980
\(729\) 0 0
\(730\) 28617.5 1.45093
\(731\) −14840.5 −0.750886
\(732\) 0 0
\(733\) −13236.7 −0.666998 −0.333499 0.942750i \(-0.608229\pi\)
−0.333499 + 0.942750i \(0.608229\pi\)
\(734\) 32041.0 1.61124
\(735\) 0 0
\(736\) −3800.76 −0.190350
\(737\) 2105.11 0.105214
\(738\) 0 0
\(739\) −25308.9 −1.25981 −0.629906 0.776671i \(-0.716907\pi\)
−0.629906 + 0.776671i \(0.716907\pi\)
\(740\) 5354.82 0.266010
\(741\) 0 0
\(742\) 4246.95 0.210122
\(743\) −15214.4 −0.751230 −0.375615 0.926776i \(-0.622568\pi\)
−0.375615 + 0.926776i \(0.622568\pi\)
\(744\) 0 0
\(745\) −19028.4 −0.935770
\(746\) −25770.0 −1.26476
\(747\) 0 0
\(748\) 1969.08 0.0962524
\(749\) −1439.38 −0.0702185
\(750\) 0 0
\(751\) −2600.26 −0.126345 −0.0631724 0.998003i \(-0.520122\pi\)
−0.0631724 + 0.998003i \(0.520122\pi\)
\(752\) 31023.7 1.50441
\(753\) 0 0
\(754\) 1321.80 0.0638423
\(755\) −18561.8 −0.894746
\(756\) 0 0
\(757\) −24500.2 −1.17632 −0.588160 0.808745i \(-0.700147\pi\)
−0.588160 + 0.808745i \(0.700147\pi\)
\(758\) −46461.5 −2.22633
\(759\) 0 0
\(760\) 2336.35 0.111511
\(761\) −7901.08 −0.376365 −0.188183 0.982134i \(-0.560260\pi\)
−0.188183 + 0.982134i \(0.560260\pi\)
\(762\) 0 0
\(763\) −2721.15 −0.129112
\(764\) −17088.8 −0.809231
\(765\) 0 0
\(766\) −43354.3 −2.04498
\(767\) −5338.86 −0.251337
\(768\) 0 0
\(769\) −33754.8 −1.58287 −0.791436 0.611252i \(-0.790666\pi\)
−0.791436 + 0.611252i \(0.790666\pi\)
\(770\) 895.789 0.0419247
\(771\) 0 0
\(772\) −11734.9 −0.547082
\(773\) −9500.18 −0.442041 −0.221021 0.975269i \(-0.570939\pi\)
−0.221021 + 0.975269i \(0.570939\pi\)
\(774\) 0 0
\(775\) −1792.00 −0.0830586
\(776\) −17770.2 −0.822051
\(777\) 0 0
\(778\) −7050.79 −0.324914
\(779\) 8399.17 0.386305
\(780\) 0 0
\(781\) −3624.82 −0.166077
\(782\) 5505.64 0.251766
\(783\) 0 0
\(784\) 25763.3 1.17362
\(785\) 21464.6 0.975931
\(786\) 0 0
\(787\) −37524.0 −1.69960 −0.849800 0.527105i \(-0.823277\pi\)
−0.849800 + 0.527105i \(0.823277\pi\)
\(788\) −11663.9 −0.527295
\(789\) 0 0
\(790\) −1048.53 −0.0472217
\(791\) −3227.79 −0.145091
\(792\) 0 0
\(793\) 3430.51 0.153620
\(794\) 43059.6 1.92460
\(795\) 0 0
\(796\) 16841.2 0.749899
\(797\) −33330.8 −1.48135 −0.740675 0.671864i \(-0.765494\pi\)
−0.740675 + 0.671864i \(0.765494\pi\)
\(798\) 0 0
\(799\) −26830.8 −1.18799
\(800\) −10367.7 −0.458194
\(801\) 0 0
\(802\) 26003.8 1.14492
\(803\) 7514.01 0.330216
\(804\) 0 0
\(805\) 830.764 0.0363734
\(806\) −954.977 −0.0417340
\(807\) 0 0
\(808\) 14361.0 0.625272
\(809\) −16696.0 −0.725586 −0.362793 0.931870i \(-0.618177\pi\)
−0.362793 + 0.931870i \(0.618177\pi\)
\(810\) 0 0
\(811\) 27187.8 1.17718 0.588589 0.808432i \(-0.299684\pi\)
0.588589 + 0.808432i \(0.299684\pi\)
\(812\) −718.539 −0.0310539
\(813\) 0 0
\(814\) 4238.94 0.182524
\(815\) −7181.22 −0.308647
\(816\) 0 0
\(817\) 4555.58 0.195079
\(818\) −15426.6 −0.659387
\(819\) 0 0
\(820\) 12389.7 0.527645
\(821\) 14087.5 0.598852 0.299426 0.954119i \(-0.403205\pi\)
0.299426 + 0.954119i \(0.403205\pi\)
\(822\) 0 0
\(823\) 10841.3 0.459178 0.229589 0.973288i \(-0.426262\pi\)
0.229589 + 0.973288i \(0.426262\pi\)
\(824\) −17582.5 −0.743345
\(825\) 0 0
\(826\) 8749.95 0.368583
\(827\) −11420.3 −0.480195 −0.240097 0.970749i \(-0.577179\pi\)
−0.240097 + 0.970749i \(0.577179\pi\)
\(828\) 0 0
\(829\) 20555.8 0.861196 0.430598 0.902544i \(-0.358303\pi\)
0.430598 + 0.902544i \(0.358303\pi\)
\(830\) 3043.96 0.127298
\(831\) 0 0
\(832\) 659.583 0.0274843
\(833\) −22281.4 −0.926775
\(834\) 0 0
\(835\) 2920.96 0.121059
\(836\) −604.446 −0.0250062
\(837\) 0 0
\(838\) 15592.0 0.642742
\(839\) 12.5459 0.000516247 0 0.000258123 1.00000i \(-0.499918\pi\)
0.000258123 1.00000i \(0.499918\pi\)
\(840\) 0 0
\(841\) −22826.1 −0.935917
\(842\) −15194.2 −0.621886
\(843\) 0 0
\(844\) 19937.4 0.813122
\(845\) 16598.6 0.675752
\(846\) 0 0
\(847\) −5857.66 −0.237629
\(848\) 21451.8 0.868701
\(849\) 0 0
\(850\) 15018.3 0.606028
\(851\) 3931.23 0.158356
\(852\) 0 0
\(853\) −19060.7 −0.765096 −0.382548 0.923936i \(-0.624953\pi\)
−0.382548 + 0.923936i \(0.624953\pi\)
\(854\) −5622.32 −0.225283
\(855\) 0 0
\(856\) −4383.73 −0.175038
\(857\) 15239.1 0.607418 0.303709 0.952765i \(-0.401775\pi\)
0.303709 + 0.952765i \(0.401775\pi\)
\(858\) 0 0
\(859\) 9970.27 0.396020 0.198010 0.980200i \(-0.436552\pi\)
0.198010 + 0.980200i \(0.436552\pi\)
\(860\) 6720.00 0.266454
\(861\) 0 0
\(862\) −13959.9 −0.551596
\(863\) −35257.3 −1.39070 −0.695350 0.718671i \(-0.744751\pi\)
−0.695350 + 0.718671i \(0.744751\pi\)
\(864\) 0 0
\(865\) −13212.4 −0.519347
\(866\) 8229.79 0.322932
\(867\) 0 0
\(868\) 519.132 0.0203001
\(869\) −275.310 −0.0107471
\(870\) 0 0
\(871\) 2838.03 0.110405
\(872\) −8287.48 −0.321846
\(873\) 0 0
\(874\) −1690.06 −0.0654085
\(875\) 6781.18 0.261995
\(876\) 0 0
\(877\) −19721.8 −0.759358 −0.379679 0.925118i \(-0.623966\pi\)
−0.379679 + 0.925118i \(0.623966\pi\)
\(878\) −23413.4 −0.899960
\(879\) 0 0
\(880\) 4524.73 0.173328
\(881\) −27621.7 −1.05630 −0.528150 0.849151i \(-0.677114\pi\)
−0.528150 + 0.849151i \(0.677114\pi\)
\(882\) 0 0
\(883\) 35195.3 1.34135 0.670677 0.741750i \(-0.266004\pi\)
0.670677 + 0.741750i \(0.266004\pi\)
\(884\) 2654.64 0.101001
\(885\) 0 0
\(886\) 9573.80 0.363023
\(887\) 37874.1 1.43369 0.716847 0.697231i \(-0.245585\pi\)
0.716847 + 0.697231i \(0.245585\pi\)
\(888\) 0 0
\(889\) 1671.01 0.0630414
\(890\) 40379.4 1.52081
\(891\) 0 0
\(892\) −4810.72 −0.180577
\(893\) 8236.19 0.308638
\(894\) 0 0
\(895\) −14913.7 −0.556996
\(896\) −7132.69 −0.265945
\(897\) 0 0
\(898\) 12513.8 0.465022
\(899\) −1129.18 −0.0418915
\(900\) 0 0
\(901\) −18552.6 −0.685989
\(902\) 9807.85 0.362046
\(903\) 0 0
\(904\) −9830.48 −0.361678
\(905\) 9860.60 0.362185
\(906\) 0 0
\(907\) −23648.3 −0.865744 −0.432872 0.901455i \(-0.642500\pi\)
−0.432872 + 0.901455i \(0.642500\pi\)
\(908\) −17964.7 −0.656587
\(909\) 0 0
\(910\) 1207.67 0.0439931
\(911\) 24936.9 0.906911 0.453456 0.891279i \(-0.350191\pi\)
0.453456 + 0.891279i \(0.350191\pi\)
\(912\) 0 0
\(913\) 799.242 0.0289716
\(914\) 20456.4 0.740304
\(915\) 0 0
\(916\) −26260.9 −0.947255
\(917\) −3852.11 −0.138722
\(918\) 0 0
\(919\) 38348.8 1.37651 0.688253 0.725470i \(-0.258378\pi\)
0.688253 + 0.725470i \(0.258378\pi\)
\(920\) 2530.16 0.0906704
\(921\) 0 0
\(922\) 13375.4 0.477759
\(923\) −4886.83 −0.174271
\(924\) 0 0
\(925\) 10723.6 0.381179
\(926\) 40789.5 1.44754
\(927\) 0 0
\(928\) −6532.99 −0.231095
\(929\) 28584.5 1.00950 0.504751 0.863265i \(-0.331584\pi\)
0.504751 + 0.863265i \(0.331584\pi\)
\(930\) 0 0
\(931\) 6839.67 0.240774
\(932\) 8009.25 0.281493
\(933\) 0 0
\(934\) 13380.3 0.468756
\(935\) −3913.20 −0.136872
\(936\) 0 0
\(937\) −6982.17 −0.243434 −0.121717 0.992565i \(-0.538840\pi\)
−0.121717 + 0.992565i \(0.538840\pi\)
\(938\) −4651.29 −0.161908
\(939\) 0 0
\(940\) 12149.3 0.421561
\(941\) 34182.7 1.18419 0.592095 0.805868i \(-0.298301\pi\)
0.592095 + 0.805868i \(0.298301\pi\)
\(942\) 0 0
\(943\) 9095.90 0.314108
\(944\) 44196.9 1.52382
\(945\) 0 0
\(946\) 5319.62 0.182829
\(947\) 44105.7 1.51346 0.756729 0.653729i \(-0.226796\pi\)
0.756729 + 0.653729i \(0.226796\pi\)
\(948\) 0 0
\(949\) 10130.1 0.346508
\(950\) −4610.14 −0.157445
\(951\) 0 0
\(952\) 4415.52 0.150323
\(953\) −22993.3 −0.781560 −0.390780 0.920484i \(-0.627795\pi\)
−0.390780 + 0.920484i \(0.627795\pi\)
\(954\) 0 0
\(955\) 33961.0 1.15074
\(956\) 8701.45 0.294378
\(957\) 0 0
\(958\) −61089.4 −2.06024
\(959\) −12666.9 −0.426524
\(960\) 0 0
\(961\) −28975.2 −0.972615
\(962\) 5714.76 0.191529
\(963\) 0 0
\(964\) 15883.1 0.530664
\(965\) 23321.0 0.777957
\(966\) 0 0
\(967\) 30170.2 1.00332 0.501658 0.865066i \(-0.332724\pi\)
0.501658 + 0.865066i \(0.332724\pi\)
\(968\) −17840.0 −0.592353
\(969\) 0 0
\(970\) −34796.8 −1.15181
\(971\) −59927.1 −1.98059 −0.990295 0.138984i \(-0.955616\pi\)
−0.990295 + 0.138984i \(0.955616\pi\)
\(972\) 0 0
\(973\) −5501.34 −0.181259
\(974\) 19896.5 0.654543
\(975\) 0 0
\(976\) −28398.9 −0.931381
\(977\) 22546.4 0.738304 0.369152 0.929369i \(-0.379648\pi\)
0.369152 + 0.929369i \(0.379648\pi\)
\(978\) 0 0
\(979\) 10602.3 0.346119
\(980\) 10089.3 0.328868
\(981\) 0 0
\(982\) 41829.4 1.35930
\(983\) −1932.66 −0.0627084 −0.0313542 0.999508i \(-0.509982\pi\)
−0.0313542 + 0.999508i \(0.509982\pi\)
\(984\) 0 0
\(985\) 23179.9 0.749820
\(986\) 9463.44 0.305656
\(987\) 0 0
\(988\) −814.889 −0.0262399
\(989\) 4933.47 0.158620
\(990\) 0 0
\(991\) −47353.0 −1.51788 −0.758939 0.651161i \(-0.774282\pi\)
−0.758939 + 0.651161i \(0.774282\pi\)
\(992\) 4719.97 0.151068
\(993\) 0 0
\(994\) 8009.10 0.255567
\(995\) −33468.8 −1.06637
\(996\) 0 0
\(997\) 20613.3 0.654795 0.327397 0.944887i \(-0.393828\pi\)
0.327397 + 0.944887i \(0.393828\pi\)
\(998\) −51065.2 −1.61968
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.d.1.2 4
3.2 odd 2 69.4.a.d.1.3 4
12.11 even 2 1104.4.a.t.1.3 4
15.14 odd 2 1725.4.a.p.1.2 4
69.68 even 2 1587.4.a.g.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.d.1.3 4 3.2 odd 2
207.4.a.d.1.2 4 1.1 even 1 trivial
1104.4.a.t.1.3 4 12.11 even 2
1587.4.a.g.1.3 4 69.68 even 2
1725.4.a.p.1.2 4 15.14 odd 2