Properties

Label 208.8.w.b.17.2
Level $208$
Weight $8$
Character 208.17
Analytic conductor $64.976$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,8,Mod(17,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.17");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 208.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9760853007\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 22180 x^{14} + 184473654 x^{12} + 707524481236 x^{10} + \cdots + 18\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{4}\cdot 13^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Root \(-50.2253i\) of defining polynomial
Character \(\chi\) \(=\) 208.17
Dual form 208.8.w.b.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-25.1127 + 43.4964i) q^{3} +469.361i q^{5} +(-64.3718 + 37.1651i) q^{7} +(-167.792 - 290.624i) q^{9} +(-2926.79 - 1689.78i) q^{11} +(5470.00 + 5729.54i) q^{13} +(-20415.5 - 11786.9i) q^{15} +(-4589.65 - 7949.50i) q^{17} +(-40877.8 + 23600.8i) q^{19} -3733.25i q^{21} +(21052.4 - 36463.9i) q^{23} -142175. q^{25} -92988.0 q^{27} +(-82803.7 + 143420. i) q^{29} -107861. i q^{31} +(146999. - 84869.8i) q^{33} +(-17443.8 - 30213.6i) q^{35} +(-228730. - 132058. i) q^{37} +(-386581. + 94041.1i) q^{39} +(384584. + 222040. i) q^{41} +(308598. + 534508. i) q^{43} +(136408. - 78754.9i) q^{45} -281242. i q^{47} +(-409009. + 708424. i) q^{49} +461033. q^{51} +1.57574e6 q^{53} +(793118. - 1.37372e6i) q^{55} -2.37072e6i q^{57} +(-1.46781e6 + 847438. i) q^{59} +(-1.64761e6 - 2.85375e6i) q^{61} +(21602.1 + 12472.0i) q^{63} +(-2.68922e6 + 2.56740e6i) q^{65} +(2.11527e6 + 1.22125e6i) q^{67} +(1.05737e6 + 1.83141e6i) q^{69} +(2.46302e6 - 1.42202e6i) q^{71} -3.94991e6i q^{73} +(3.57039e6 - 6.18410e6i) q^{75} +251203. q^{77} -3.64110e6 q^{79} +(2.70214e6 - 4.68024e6i) q^{81} +5.97315e6i q^{83} +(3.73119e6 - 2.15420e6i) q^{85} +(-4.15884e6 - 7.20333e6i) q^{87} +(-1.28990e6 - 744724. i) q^{89} +(-565052. - 165528. i) q^{91} +(4.69156e6 + 2.70868e6i) q^{93} +(-1.10773e7 - 1.91865e7i) q^{95} +(1.20731e7 - 6.97042e6i) q^{97} +1.13413e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2520 q^{7} - 4684 q^{9} + 8496 q^{11} - 3620 q^{13} - 51648 q^{15} + 41520 q^{17} + 54432 q^{19} + 7560 q^{23} - 273960 q^{25} - 133920 q^{27} - 346056 q^{29} + 486300 q^{33} + 283248 q^{35} - 68280 q^{37}+ \cdots + 83706300 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −25.1127 + 43.4964i −0.536993 + 0.930099i 0.462071 + 0.886843i \(0.347106\pi\)
−0.999064 + 0.0432559i \(0.986227\pi\)
\(4\) 0 0
\(5\) 469.361i 1.67924i 0.543176 + 0.839619i \(0.317222\pi\)
−0.543176 + 0.839619i \(0.682778\pi\)
\(6\) 0 0
\(7\) −64.3718 + 37.1651i −0.0709336 + 0.0409536i −0.535047 0.844822i \(-0.679706\pi\)
0.464114 + 0.885776i \(0.346373\pi\)
\(8\) 0 0
\(9\) −167.792 290.624i −0.0767223 0.132887i
\(10\) 0 0
\(11\) −2926.79 1689.78i −0.663005 0.382786i 0.130416 0.991459i \(-0.458369\pi\)
−0.793421 + 0.608673i \(0.791702\pi\)
\(12\) 0 0
\(13\) 5470.00 + 5729.54i 0.690534 + 0.723300i
\(14\) 0 0
\(15\) −20415.5 11786.9i −1.56186 0.901738i
\(16\) 0 0
\(17\) −4589.65 7949.50i −0.226573 0.392436i 0.730217 0.683215i \(-0.239419\pi\)
−0.956790 + 0.290779i \(0.906086\pi\)
\(18\) 0 0
\(19\) −40877.8 + 23600.8i −1.36726 + 0.789387i −0.990577 0.136957i \(-0.956268\pi\)
−0.376681 + 0.926343i \(0.622935\pi\)
\(20\) 0 0
\(21\) 3733.25i 0.0879671i
\(22\) 0 0
\(23\) 21052.4 36463.9i 0.360790 0.624907i −0.627301 0.778777i \(-0.715840\pi\)
0.988091 + 0.153870i \(0.0491737\pi\)
\(24\) 0 0
\(25\) −142175. −1.81984
\(26\) 0 0
\(27\) −92988.0 −0.909188
\(28\) 0 0
\(29\) −82803.7 + 143420.i −0.630459 + 1.09199i 0.356999 + 0.934105i \(0.383800\pi\)
−0.987458 + 0.157882i \(0.949533\pi\)
\(30\) 0 0
\(31\) 107861.i 0.650277i −0.945666 0.325138i \(-0.894589\pi\)
0.945666 0.325138i \(-0.105411\pi\)
\(32\) 0 0
\(33\) 146999. 84869.8i 0.712058 0.411107i
\(34\) 0 0
\(35\) −17443.8 30213.6i −0.0687708 0.119114i
\(36\) 0 0
\(37\) −228730. 132058.i −0.742365 0.428605i 0.0805633 0.996749i \(-0.474328\pi\)
−0.822929 + 0.568145i \(0.807661\pi\)
\(38\) 0 0
\(39\) −386581. + 94041.1i −1.04355 + 0.253858i
\(40\) 0 0
\(41\) 384584. + 222040.i 0.871460 + 0.503138i 0.867833 0.496856i \(-0.165512\pi\)
0.00362686 + 0.999993i \(0.498846\pi\)
\(42\) 0 0
\(43\) 308598. + 534508.i 0.591907 + 1.02521i 0.993975 + 0.109604i \(0.0349581\pi\)
−0.402068 + 0.915610i \(0.631709\pi\)
\(44\) 0 0
\(45\) 136408. 78754.9i 0.223149 0.128835i
\(46\) 0 0
\(47\) 281242.i 0.395128i −0.980290 0.197564i \(-0.936697\pi\)
0.980290 0.197564i \(-0.0633030\pi\)
\(48\) 0 0
\(49\) −409009. + 708424.i −0.496646 + 0.860215i
\(50\) 0 0
\(51\) 461033. 0.486672
\(52\) 0 0
\(53\) 1.57574e6 1.45385 0.726924 0.686718i \(-0.240949\pi\)
0.726924 + 0.686718i \(0.240949\pi\)
\(54\) 0 0
\(55\) 793118. 1.37372e6i 0.642789 1.11334i
\(56\) 0 0
\(57\) 2.37072e6i 1.69558i
\(58\) 0 0
\(59\) −1.46781e6 + 847438.i −0.930436 + 0.537188i −0.886950 0.461866i \(-0.847180\pi\)
−0.0434869 + 0.999054i \(0.513847\pi\)
\(60\) 0 0
\(61\) −1.64761e6 2.85375e6i −0.929395 1.60976i −0.784336 0.620336i \(-0.786996\pi\)
−0.145059 0.989423i \(-0.546337\pi\)
\(62\) 0 0
\(63\) 21602.1 + 12472.0i 0.0108844 + 0.00628410i
\(64\) 0 0
\(65\) −2.68922e6 + 2.56740e6i −1.21459 + 1.15957i
\(66\) 0 0
\(67\) 2.11527e6 + 1.22125e6i 0.859219 + 0.496071i 0.863751 0.503919i \(-0.168109\pi\)
−0.00453136 + 0.999990i \(0.501442\pi\)
\(68\) 0 0
\(69\) 1.05737e6 + 1.83141e6i 0.387483 + 0.671141i
\(70\) 0 0
\(71\) 2.46302e6 1.42202e6i 0.816701 0.471523i −0.0325765 0.999469i \(-0.510371\pi\)
0.849278 + 0.527947i \(0.177038\pi\)
\(72\) 0 0
\(73\) 3.94991e6i 1.18839i −0.804323 0.594193i \(-0.797472\pi\)
0.804323 0.594193i \(-0.202528\pi\)
\(74\) 0 0
\(75\) 3.57039e6 6.18410e6i 0.977240 1.69263i
\(76\) 0 0
\(77\) 251203. 0.0627058
\(78\) 0 0
\(79\) −3.64110e6 −0.830880 −0.415440 0.909621i \(-0.636372\pi\)
−0.415440 + 0.909621i \(0.636372\pi\)
\(80\) 0 0
\(81\) 2.70214e6 4.68024e6i 0.564950 0.978522i
\(82\) 0 0
\(83\) 5.97315e6i 1.14665i 0.819329 + 0.573324i \(0.194346\pi\)
−0.819329 + 0.573324i \(0.805654\pi\)
\(84\) 0 0
\(85\) 3.73119e6 2.15420e6i 0.658993 0.380470i
\(86\) 0 0
\(87\) −4.15884e6 7.20333e6i −0.677104 1.17278i
\(88\) 0 0
\(89\) −1.28990e6 744724.i −0.193950 0.111977i 0.399880 0.916567i \(-0.369052\pi\)
−0.593831 + 0.804590i \(0.702385\pi\)
\(90\) 0 0
\(91\) −565052. 165528.i −0.0786038 0.0230264i
\(92\) 0 0
\(93\) 4.69156e6 + 2.70868e6i 0.604822 + 0.349194i
\(94\) 0 0
\(95\) −1.10773e7 1.91865e7i −1.32557 2.29595i
\(96\) 0 0
\(97\) 1.20731e7 6.97042e6i 1.34313 0.775457i 0.355866 0.934537i \(-0.384186\pi\)
0.987266 + 0.159080i \(0.0508526\pi\)
\(98\) 0 0
\(99\) 1.13413e6i 0.117473i
\(100\) 0 0
\(101\) −1.00902e6 + 1.74767e6i −0.0974485 + 0.168786i −0.910628 0.413227i \(-0.864401\pi\)
0.813179 + 0.582013i \(0.197735\pi\)
\(102\) 0 0
\(103\) 1.67184e7 1.50753 0.753763 0.657147i \(-0.228237\pi\)
0.753763 + 0.657147i \(0.228237\pi\)
\(104\) 0 0
\(105\) 1.75224e6 0.147718
\(106\) 0 0
\(107\) 2.27240e6 3.93592e6i 0.179326 0.310601i −0.762324 0.647195i \(-0.775942\pi\)
0.941650 + 0.336594i \(0.109275\pi\)
\(108\) 0 0
\(109\) 1.28345e7i 0.949265i 0.880184 + 0.474632i \(0.157419\pi\)
−0.880184 + 0.474632i \(0.842581\pi\)
\(110\) 0 0
\(111\) 1.14881e7 6.63263e6i 0.797290 0.460315i
\(112\) 0 0
\(113\) −7.89884e6 1.36812e7i −0.514978 0.891968i −0.999849 0.0173821i \(-0.994467\pi\)
0.484871 0.874586i \(-0.338867\pi\)
\(114\) 0 0
\(115\) 1.71147e7 + 9.88119e6i 1.04937 + 0.605853i
\(116\) 0 0
\(117\) 747321. 2.55108e6i 0.0431377 0.147256i
\(118\) 0 0
\(119\) 590887. + 341149.i 0.0321433 + 0.0185579i
\(120\) 0 0
\(121\) −4.03286e6 6.98512e6i −0.206949 0.358447i
\(122\) 0 0
\(123\) −1.93158e7 + 1.11520e7i −0.935935 + 0.540363i
\(124\) 0 0
\(125\) 3.00625e7i 1.37670i
\(126\) 0 0
\(127\) −1.38226e7 + 2.39414e7i −0.598793 + 1.03714i 0.394207 + 0.919022i \(0.371019\pi\)
−0.993000 + 0.118118i \(0.962314\pi\)
\(128\) 0 0
\(129\) −3.09989e7 −1.27140
\(130\) 0 0
\(131\) 9.74162e6 0.378601 0.189300 0.981919i \(-0.439378\pi\)
0.189300 + 0.981919i \(0.439378\pi\)
\(132\) 0 0
\(133\) 1.75425e6 3.03845e6i 0.0646564 0.111988i
\(134\) 0 0
\(135\) 4.36450e7i 1.52674i
\(136\) 0 0
\(137\) 2.47332e6 1.42797e6i 0.0821785 0.0474458i −0.458348 0.888773i \(-0.651559\pi\)
0.540526 + 0.841327i \(0.318225\pi\)
\(138\) 0 0
\(139\) −2.24368e7 3.88616e7i −0.708612 1.22735i −0.965372 0.260877i \(-0.915988\pi\)
0.256760 0.966475i \(-0.417345\pi\)
\(140\) 0 0
\(141\) 1.22330e7 + 7.06273e6i 0.367508 + 0.212181i
\(142\) 0 0
\(143\) −6.32784e6 2.60123e7i −0.180959 0.743878i
\(144\) 0 0
\(145\) −6.73159e7 3.88648e7i −1.83371 1.05869i
\(146\) 0 0
\(147\) −2.05426e7 3.55808e7i −0.533390 0.923859i
\(148\) 0 0
\(149\) 2.11798e7 1.22282e7i 0.524531 0.302838i −0.214256 0.976778i \(-0.568733\pi\)
0.738786 + 0.673940i \(0.235399\pi\)
\(150\) 0 0
\(151\) 5.94949e7i 1.40624i 0.711069 + 0.703122i \(0.248211\pi\)
−0.711069 + 0.703122i \(0.751789\pi\)
\(152\) 0 0
\(153\) −1.54021e6 + 2.66772e6i −0.0347664 + 0.0602172i
\(154\) 0 0
\(155\) 5.06257e7 1.09197
\(156\) 0 0
\(157\) 4.61680e7 0.952122 0.476061 0.879412i \(-0.342064\pi\)
0.476061 + 0.879412i \(0.342064\pi\)
\(158\) 0 0
\(159\) −3.95710e7 + 6.85390e7i −0.780706 + 1.35222i
\(160\) 0 0
\(161\) 3.12966e6i 0.0591026i
\(162\) 0 0
\(163\) 8.58326e6 4.95554e6i 0.155237 0.0896262i −0.420369 0.907353i \(-0.638099\pi\)
0.575606 + 0.817727i \(0.304766\pi\)
\(164\) 0 0
\(165\) 3.98346e7 + 6.89956e7i 0.690346 + 1.19571i
\(166\) 0 0
\(167\) −5.08074e7 2.93337e7i −0.844150 0.487370i 0.0145226 0.999895i \(-0.495377\pi\)
−0.858673 + 0.512524i \(0.828710\pi\)
\(168\) 0 0
\(169\) −2.90681e6 + 6.26812e7i −0.0463248 + 0.998926i
\(170\) 0 0
\(171\) 1.37179e7 + 7.92005e6i 0.209798 + 0.121127i
\(172\) 0 0
\(173\) 3.14153e6 + 5.44129e6i 0.0461296 + 0.0798989i 0.888168 0.459518i \(-0.151978\pi\)
−0.842039 + 0.539417i \(0.818645\pi\)
\(174\) 0 0
\(175\) 9.15205e6 5.28394e6i 0.129088 0.0745289i
\(176\) 0 0
\(177\) 8.51257e7i 1.15386i
\(178\) 0 0
\(179\) 2.66019e7 4.60759e7i 0.346679 0.600465i −0.638979 0.769225i \(-0.720643\pi\)
0.985657 + 0.168759i \(0.0539761\pi\)
\(180\) 0 0
\(181\) −3.34020e7 −0.418695 −0.209347 0.977841i \(-0.567134\pi\)
−0.209347 + 0.977841i \(0.567134\pi\)
\(182\) 0 0
\(183\) 1.65504e8 1.99631
\(184\) 0 0
\(185\) 6.19827e7 1.07357e8i 0.719729 1.24661i
\(186\) 0 0
\(187\) 3.10220e7i 0.346916i
\(188\) 0 0
\(189\) 5.98580e6 3.45590e6i 0.0644920 0.0372345i
\(190\) 0 0
\(191\) 1.59471e7 + 2.76212e7i 0.165602 + 0.286831i 0.936869 0.349681i \(-0.113710\pi\)
−0.771267 + 0.636512i \(0.780377\pi\)
\(192\) 0 0
\(193\) 1.33692e8 + 7.71874e7i 1.33862 + 0.772851i 0.986602 0.163143i \(-0.0521633\pi\)
0.352015 + 0.935994i \(0.385497\pi\)
\(194\) 0 0
\(195\) −4.41392e7 1.81446e8i −0.426288 1.75237i
\(196\) 0 0
\(197\) 1.48984e7 + 8.60161e6i 0.138838 + 0.0801582i 0.567810 0.823160i \(-0.307791\pi\)
−0.428972 + 0.903318i \(0.641124\pi\)
\(198\) 0 0
\(199\) 1.05808e8 + 1.83264e8i 0.951769 + 1.64851i 0.741594 + 0.670849i \(0.234070\pi\)
0.210175 + 0.977664i \(0.432597\pi\)
\(200\) 0 0
\(201\) −1.06240e8 + 6.13378e7i −0.922789 + 0.532773i
\(202\) 0 0
\(203\) 1.23096e7i 0.103278i
\(204\) 0 0
\(205\) −1.04217e8 + 1.80509e8i −0.844888 + 1.46339i
\(206\) 0 0
\(207\) −1.41297e7 −0.110723
\(208\) 0 0
\(209\) 1.59521e8 1.20867
\(210\) 0 0
\(211\) −2.35499e7 + 4.07897e7i −0.172584 + 0.298925i −0.939323 0.343035i \(-0.888545\pi\)
0.766738 + 0.641960i \(0.221878\pi\)
\(212\) 0 0
\(213\) 1.42843e8i 1.01282i
\(214\) 0 0
\(215\) −2.50877e8 + 1.44844e8i −1.72158 + 0.993953i
\(216\) 0 0
\(217\) 4.00866e6 + 6.94320e6i 0.0266312 + 0.0461265i
\(218\) 0 0
\(219\) 1.71807e8 + 9.91928e7i 1.10532 + 0.638154i
\(220\) 0 0
\(221\) 2.04417e7 6.97803e7i 0.127392 0.434871i
\(222\) 0 0
\(223\) −1.46451e8 8.45534e7i −0.884351 0.510580i −0.0122607 0.999925i \(-0.503903\pi\)
−0.872091 + 0.489344i \(0.837236\pi\)
\(224\) 0 0
\(225\) 2.38558e7 + 4.13194e7i 0.139622 + 0.241833i
\(226\) 0 0
\(227\) −2.75344e8 + 1.58970e8i −1.56237 + 0.902036i −0.565355 + 0.824848i \(0.691261\pi\)
−0.997017 + 0.0771881i \(0.975406\pi\)
\(228\) 0 0
\(229\) 1.16369e8i 0.640345i 0.947359 + 0.320173i \(0.103741\pi\)
−0.947359 + 0.320173i \(0.896259\pi\)
\(230\) 0 0
\(231\) −6.30839e6 + 1.09264e7i −0.0336726 + 0.0583226i
\(232\) 0 0
\(233\) −3.60170e8 −1.86536 −0.932679 0.360707i \(-0.882535\pi\)
−0.932679 + 0.360707i \(0.882535\pi\)
\(234\) 0 0
\(235\) 1.32004e8 0.663513
\(236\) 0 0
\(237\) 9.14378e7 1.58375e8i 0.446177 0.772800i
\(238\) 0 0
\(239\) 1.23549e8i 0.585394i 0.956205 + 0.292697i \(0.0945527\pi\)
−0.956205 + 0.292697i \(0.905447\pi\)
\(240\) 0 0
\(241\) −2.01715e7 + 1.16460e7i −0.0928280 + 0.0535943i −0.545695 0.837984i \(-0.683734\pi\)
0.452867 + 0.891578i \(0.350401\pi\)
\(242\) 0 0
\(243\) 3.40333e7 + 5.89475e7i 0.152154 + 0.263538i
\(244\) 0 0
\(245\) −3.32507e8 1.91973e8i −1.44451 0.833986i
\(246\) 0 0
\(247\) −3.58824e8 1.05115e8i −1.51510 0.443839i
\(248\) 0 0
\(249\) −2.59810e8 1.50002e8i −1.06649 0.615741i
\(250\) 0 0
\(251\) −1.65291e7 2.86293e7i −0.0659769 0.114275i 0.831150 0.556048i \(-0.187683\pi\)
−0.897127 + 0.441773i \(0.854350\pi\)
\(252\) 0 0
\(253\) −1.23232e8 + 7.11480e7i −0.478412 + 0.276211i
\(254\) 0 0
\(255\) 2.16391e8i 0.817238i
\(256\) 0 0
\(257\) −1.32117e8 + 2.28834e8i −0.485505 + 0.840919i −0.999861 0.0166574i \(-0.994698\pi\)
0.514356 + 0.857577i \(0.328031\pi\)
\(258\) 0 0
\(259\) 1.96317e7 0.0702116
\(260\) 0 0
\(261\) 5.55751e7 0.193481
\(262\) 0 0
\(263\) 4.04021e7 6.99785e7i 0.136949 0.237202i −0.789391 0.613890i \(-0.789604\pi\)
0.926340 + 0.376688i \(0.122937\pi\)
\(264\) 0 0
\(265\) 7.39591e8i 2.44136i
\(266\) 0 0
\(267\) 6.47856e7 3.74040e7i 0.208300 0.120262i
\(268\) 0 0
\(269\) −2.58417e8 4.47591e8i −0.809445 1.40200i −0.913249 0.407403i \(-0.866435\pi\)
0.103803 0.994598i \(-0.466899\pi\)
\(270\) 0 0
\(271\) 1.37813e8 + 7.95666e7i 0.420629 + 0.242850i 0.695346 0.718675i \(-0.255251\pi\)
−0.274718 + 0.961525i \(0.588584\pi\)
\(272\) 0 0
\(273\) 2.13898e7 2.04209e7i 0.0636265 0.0607443i
\(274\) 0 0
\(275\) 4.16116e8 + 2.40245e8i 1.20656 + 0.696609i
\(276\) 0 0
\(277\) 1.07125e8 + 1.85545e8i 0.302838 + 0.524530i 0.976778 0.214256i \(-0.0687327\pi\)
−0.673940 + 0.738786i \(0.735399\pi\)
\(278\) 0 0
\(279\) −3.13470e7 + 1.80982e7i −0.0864133 + 0.0498908i
\(280\) 0 0
\(281\) 3.43238e8i 0.922833i 0.887184 + 0.461416i \(0.152659\pi\)
−0.887184 + 0.461416i \(0.847341\pi\)
\(282\) 0 0
\(283\) −4.02846e7 + 6.97750e7i −0.105654 + 0.182998i −0.914005 0.405702i \(-0.867027\pi\)
0.808351 + 0.588701i \(0.200360\pi\)
\(284\) 0 0
\(285\) 1.11272e9 2.84728
\(286\) 0 0
\(287\) −3.30084e7 −0.0824211
\(288\) 0 0
\(289\) 1.63040e8 2.82393e8i 0.397329 0.688195i
\(290\) 0 0
\(291\) 7.00183e8i 1.66566i
\(292\) 0 0
\(293\) −3.64956e8 + 2.10707e8i −0.847625 + 0.489377i −0.859849 0.510549i \(-0.829442\pi\)
0.0122236 + 0.999925i \(0.496109\pi\)
\(294\) 0 0
\(295\) −3.97755e8 6.88931e8i −0.902066 1.56242i
\(296\) 0 0
\(297\) 2.72156e8 + 1.57129e8i 0.602796 + 0.348025i
\(298\) 0 0
\(299\) 3.24078e8 7.88365e7i 0.701133 0.170560i
\(300\) 0 0
\(301\) −3.97300e7 2.29381e7i −0.0839723 0.0484814i
\(302\) 0 0
\(303\) −5.06784e7 8.77775e7i −0.104658 0.181273i
\(304\) 0 0
\(305\) 1.33944e9 7.73325e8i 2.70317 1.56067i
\(306\) 0 0
\(307\) 8.05591e8i 1.58902i −0.607248 0.794512i \(-0.707727\pi\)
0.607248 0.794512i \(-0.292273\pi\)
\(308\) 0 0
\(309\) −4.19844e8 + 7.27191e8i −0.809530 + 1.40215i
\(310\) 0 0
\(311\) −4.44406e8 −0.837758 −0.418879 0.908042i \(-0.637577\pi\)
−0.418879 + 0.908042i \(0.637577\pi\)
\(312\) 0 0
\(313\) 4.53945e8 0.836755 0.418377 0.908273i \(-0.362599\pi\)
0.418377 + 0.908273i \(0.362599\pi\)
\(314\) 0 0
\(315\) −5.85386e6 + 1.01392e7i −0.0105525 + 0.0182775i
\(316\) 0 0
\(317\) 6.82323e8i 1.20305i −0.798855 0.601524i \(-0.794561\pi\)
0.798855 0.601524i \(-0.205439\pi\)
\(318\) 0 0
\(319\) 4.84698e8 2.79840e8i 0.835995 0.482662i
\(320\) 0 0
\(321\) 1.14132e8 + 1.97683e8i 0.192593 + 0.333581i
\(322\) 0 0
\(323\) 3.75230e8 + 2.16639e8i 0.619567 + 0.357707i
\(324\) 0 0
\(325\) −7.77696e8 8.14597e8i −1.25666 1.31629i
\(326\) 0 0
\(327\) −5.58256e8 3.22309e8i −0.882910 0.509748i
\(328\) 0 0
\(329\) 1.04524e7 + 1.81040e7i 0.0161819 + 0.0280278i
\(330\) 0 0
\(331\) 8.80479e8 5.08345e8i 1.33451 0.770478i 0.348520 0.937301i \(-0.386684\pi\)
0.985987 + 0.166823i \(0.0533509\pi\)
\(332\) 0 0
\(333\) 8.86326e7i 0.131534i
\(334\) 0 0
\(335\) −5.73208e8 + 9.92826e8i −0.833020 + 1.44283i
\(336\) 0 0
\(337\) 3.52031e8 0.501044 0.250522 0.968111i \(-0.419398\pi\)
0.250522 + 0.968111i \(0.419398\pi\)
\(338\) 0 0
\(339\) 7.93443e8 1.10616
\(340\) 0 0
\(341\) −1.82261e8 + 3.15686e8i −0.248917 + 0.431137i
\(342\) 0 0
\(343\) 1.22017e8i 0.163265i
\(344\) 0 0
\(345\) −8.59593e8 + 4.96286e8i −1.12701 + 0.650677i
\(346\) 0 0
\(347\) −3.04896e8 5.28095e8i −0.391740 0.678514i 0.600939 0.799295i \(-0.294793\pi\)
−0.992679 + 0.120781i \(0.961460\pi\)
\(348\) 0 0
\(349\) −6.42715e8 3.71072e8i −0.809337 0.467271i 0.0373883 0.999301i \(-0.488096\pi\)
−0.846726 + 0.532030i \(0.821429\pi\)
\(350\) 0 0
\(351\) −5.08644e8 5.32779e8i −0.627826 0.657615i
\(352\) 0 0
\(353\) −9.41104e8 5.43346e8i −1.13874 0.657454i −0.192624 0.981273i \(-0.561700\pi\)
−0.946119 + 0.323819i \(0.895033\pi\)
\(354\) 0 0
\(355\) 6.67442e8 + 1.15604e9i 0.791798 + 1.37143i
\(356\) 0 0
\(357\) −2.96775e7 + 1.71343e7i −0.0345214 + 0.0199310i
\(358\) 0 0
\(359\) 1.56901e9i 1.78976i −0.446302 0.894882i \(-0.647259\pi\)
0.446302 0.894882i \(-0.352741\pi\)
\(360\) 0 0
\(361\) 6.67063e8 1.15539e9i 0.746262 1.29256i
\(362\) 0 0
\(363\) 4.05103e8 0.444521
\(364\) 0 0
\(365\) 1.85393e9 1.99558
\(366\) 0 0
\(367\) −2.69422e8 + 4.66653e8i −0.284513 + 0.492791i −0.972491 0.232940i \(-0.925165\pi\)
0.687978 + 0.725732i \(0.258499\pi\)
\(368\) 0 0
\(369\) 1.49026e8i 0.154408i
\(370\) 0 0
\(371\) −1.01433e8 + 5.85624e7i −0.103127 + 0.0595402i
\(372\) 0 0
\(373\) −7.04483e8 1.22020e9i −0.702894 1.21745i −0.967446 0.253077i \(-0.918558\pi\)
0.264552 0.964371i \(-0.414776\pi\)
\(374\) 0 0
\(375\) 1.30761e9 + 7.54950e8i 1.28047 + 0.739280i
\(376\) 0 0
\(377\) −1.27467e9 + 3.10081e8i −1.22519 + 0.298044i
\(378\) 0 0
\(379\) −1.37512e9 7.93925e8i −1.29749 0.749104i −0.317517 0.948253i \(-0.602849\pi\)
−0.979969 + 0.199149i \(0.936182\pi\)
\(380\) 0 0
\(381\) −6.94244e8 1.20247e9i −0.643095 1.11387i
\(382\) 0 0
\(383\) −8.74416e8 + 5.04845e8i −0.795285 + 0.459158i −0.841820 0.539759i \(-0.818515\pi\)
0.0465351 + 0.998917i \(0.485182\pi\)
\(384\) 0 0
\(385\) 1.17905e8i 0.105298i
\(386\) 0 0
\(387\) 1.03560e8 1.79372e8i 0.0908250 0.157313i
\(388\) 0 0
\(389\) −6.14149e8 −0.528993 −0.264497 0.964387i \(-0.585206\pi\)
−0.264497 + 0.964387i \(0.585206\pi\)
\(390\) 0 0
\(391\) −3.86493e8 −0.326981
\(392\) 0 0
\(393\) −2.44638e8 + 4.23726e8i −0.203306 + 0.352136i
\(394\) 0 0
\(395\) 1.70899e9i 1.39524i
\(396\) 0 0
\(397\) 2.26743e8 1.30910e8i 0.181873 0.105004i −0.406300 0.913740i \(-0.633181\pi\)
0.588172 + 0.808736i \(0.299848\pi\)
\(398\) 0 0
\(399\) 8.81079e7 + 1.52607e8i 0.0694400 + 0.120274i
\(400\) 0 0
\(401\) 7.19925e6 + 4.15649e6i 0.00557547 + 0.00321900i 0.502785 0.864411i \(-0.332309\pi\)
−0.497210 + 0.867630i \(0.665642\pi\)
\(402\) 0 0
\(403\) 6.17994e8 5.89999e8i 0.470345 0.449039i
\(404\) 0 0
\(405\) 2.19672e9 + 1.26828e9i 1.64317 + 0.948685i
\(406\) 0 0
\(407\) 4.46297e8 + 7.73009e8i 0.328128 + 0.568334i
\(408\) 0 0
\(409\) −1.36216e8 + 7.86441e7i −0.0984454 + 0.0568375i −0.548414 0.836207i \(-0.684768\pi\)
0.449969 + 0.893044i \(0.351435\pi\)
\(410\) 0 0
\(411\) 1.43441e8i 0.101912i
\(412\) 0 0
\(413\) 6.29902e7 1.09102e8i 0.0439995 0.0762094i
\(414\) 0 0
\(415\) −2.80356e9 −1.92549
\(416\) 0 0
\(417\) 2.25379e9 1.52208
\(418\) 0 0
\(419\) 4.85746e8 8.41336e8i 0.322597 0.558754i −0.658426 0.752645i \(-0.728778\pi\)
0.981023 + 0.193891i \(0.0621109\pi\)
\(420\) 0 0
\(421\) 4.85973e8i 0.317413i −0.987326 0.158707i \(-0.949268\pi\)
0.987326 0.158707i \(-0.0507324\pi\)
\(422\) 0 0
\(423\) −8.17356e7 + 4.71901e7i −0.0525073 + 0.0303151i
\(424\) 0 0
\(425\) 6.52533e8 + 1.13022e9i 0.412326 + 0.714170i
\(426\) 0 0
\(427\) 2.12119e8 + 1.22467e8i 0.131851 + 0.0761241i
\(428\) 0 0
\(429\) 1.29035e9 + 3.77999e8i 0.789054 + 0.231148i
\(430\) 0 0
\(431\) −2.39621e8 1.38345e8i −0.144163 0.0832328i 0.426183 0.904637i \(-0.359858\pi\)
−0.570347 + 0.821404i \(0.693191\pi\)
\(432\) 0 0
\(433\) −1.17994e9 2.04371e9i −0.698476 1.20980i −0.968995 0.247081i \(-0.920529\pi\)
0.270519 0.962715i \(-0.412805\pi\)
\(434\) 0 0
\(435\) 3.38096e9 1.95200e9i 1.96937 1.13702i
\(436\) 0 0
\(437\) 1.98742e9i 1.13921i
\(438\) 0 0
\(439\) −5.02423e8 + 8.70222e8i −0.283428 + 0.490912i −0.972227 0.234041i \(-0.924805\pi\)
0.688798 + 0.724953i \(0.258138\pi\)
\(440\) 0 0
\(441\) 2.74513e8 0.152415
\(442\) 0 0
\(443\) 9.97546e8 0.545155 0.272578 0.962134i \(-0.412124\pi\)
0.272578 + 0.962134i \(0.412124\pi\)
\(444\) 0 0
\(445\) 3.49544e8 6.05429e8i 0.188037 0.325689i
\(446\) 0 0
\(447\) 1.22833e9i 0.650487i
\(448\) 0 0
\(449\) 1.25644e7 7.25408e6i 0.00655060 0.00378199i −0.496721 0.867910i \(-0.665463\pi\)
0.503272 + 0.864128i \(0.332129\pi\)
\(450\) 0 0
\(451\) −7.50397e8 1.29973e9i −0.385188 0.667166i
\(452\) 0 0
\(453\) −2.58782e9 1.49408e9i −1.30795 0.755143i
\(454\) 0 0
\(455\) 7.76925e7 2.65213e8i 0.0386669 0.131994i
\(456\) 0 0
\(457\) −6.28752e8 3.63010e8i −0.308157 0.177915i 0.337944 0.941166i \(-0.390268\pi\)
−0.646102 + 0.763251i \(0.723602\pi\)
\(458\) 0 0
\(459\) 4.26782e8 + 7.39208e8i 0.205997 + 0.356798i
\(460\) 0 0
\(461\) −1.36362e9 + 7.87284e8i −0.648244 + 0.374264i −0.787783 0.615953i \(-0.788771\pi\)
0.139539 + 0.990217i \(0.455438\pi\)
\(462\) 0 0
\(463\) 2.40145e9i 1.12445i 0.826984 + 0.562225i \(0.190054\pi\)
−0.826984 + 0.562225i \(0.809946\pi\)
\(464\) 0 0
\(465\) −1.27135e9 + 2.20204e9i −0.586380 + 1.01564i
\(466\) 0 0
\(467\) −2.88669e9 −1.31157 −0.655784 0.754948i \(-0.727662\pi\)
−0.655784 + 0.754948i \(0.727662\pi\)
\(468\) 0 0
\(469\) −1.81552e8 −0.0812634
\(470\) 0 0
\(471\) −1.15940e9 + 2.00814e9i −0.511283 + 0.885567i
\(472\) 0 0
\(473\) 2.08585e9i 0.906296i
\(474\) 0 0
\(475\) 5.81180e9 3.35545e9i 2.48819 1.43656i
\(476\) 0 0
\(477\) −2.64396e8 4.57947e8i −0.111543 0.193197i
\(478\) 0 0
\(479\) −1.36402e9 7.87515e8i −0.567081 0.327404i 0.188902 0.981996i \(-0.439507\pi\)
−0.755983 + 0.654592i \(0.772841\pi\)
\(480\) 0 0
\(481\) −4.94525e8 2.03287e9i −0.202619 0.832919i
\(482\) 0 0
\(483\) −1.36129e8 7.85941e7i −0.0549712 0.0317377i
\(484\) 0 0
\(485\) 3.27165e9 + 5.66666e9i 1.30218 + 2.25544i
\(486\) 0 0
\(487\) −1.70387e9 + 9.83730e8i −0.668475 + 0.385944i −0.795499 0.605955i \(-0.792791\pi\)
0.127023 + 0.991900i \(0.459458\pi\)
\(488\) 0 0
\(489\) 4.97788e8i 0.192514i
\(490\) 0 0
\(491\) 3.80549e8 6.59129e8i 0.145086 0.251296i −0.784319 0.620358i \(-0.786988\pi\)
0.929405 + 0.369062i \(0.120321\pi\)
\(492\) 0 0
\(493\) 1.52016e9 0.571380
\(494\) 0 0
\(495\) −5.32314e8 −0.197265
\(496\) 0 0
\(497\) −1.05699e8 + 1.83076e8i −0.0386211 + 0.0668936i
\(498\) 0 0
\(499\) 5.96355e8i 0.214859i 0.994213 + 0.107429i \(0.0342620\pi\)
−0.994213 + 0.107429i \(0.965738\pi\)
\(500\) 0 0
\(501\) 2.55182e9 1.47329e9i 0.906605 0.523429i
\(502\) 0 0
\(503\) −2.42561e8 4.20128e8i −0.0849832 0.147195i 0.820401 0.571789i \(-0.193750\pi\)
−0.905384 + 0.424594i \(0.860417\pi\)
\(504\) 0 0
\(505\) −8.20290e8 4.73595e8i −0.283431 0.163639i
\(506\) 0 0
\(507\) −2.65341e9 1.70053e9i −0.904224 0.579503i
\(508\) 0 0
\(509\) −1.92665e9 1.11235e9i −0.647576 0.373878i 0.139951 0.990158i \(-0.455305\pi\)
−0.787527 + 0.616280i \(0.788639\pi\)
\(510\) 0 0
\(511\) 1.46799e8 + 2.54263e8i 0.0486686 + 0.0842965i
\(512\) 0 0
\(513\) 3.80115e9 2.19459e9i 1.24309 0.717701i
\(514\) 0 0
\(515\) 7.84697e9i 2.53149i
\(516\) 0 0
\(517\) −4.75237e8 + 8.23135e8i −0.151249 + 0.261972i
\(518\) 0 0
\(519\) −3.15569e8 −0.0990851
\(520\) 0 0
\(521\) −5.35828e9 −1.65994 −0.829972 0.557805i \(-0.811644\pi\)
−0.829972 + 0.557805i \(0.811644\pi\)
\(522\) 0 0
\(523\) −3.99109e8 + 6.91277e8i −0.121993 + 0.211299i −0.920554 0.390616i \(-0.872262\pi\)
0.798560 + 0.601915i \(0.205595\pi\)
\(524\) 0 0
\(525\) 5.30775e8i 0.160086i
\(526\) 0 0
\(527\) −8.57441e8 + 4.95044e8i −0.255192 + 0.147335i
\(528\) 0 0
\(529\) 8.16003e8 + 1.41336e9i 0.239661 + 0.415105i
\(530\) 0 0
\(531\) 4.92572e8 + 2.84386e8i 0.142770 + 0.0824286i
\(532\) 0 0
\(533\) 8.31486e8 + 3.41804e9i 0.237854 + 0.977761i
\(534\) 0 0
\(535\) 1.84737e9 + 1.06658e9i 0.521573 + 0.301130i
\(536\) 0 0
\(537\) 1.33609e9 + 2.31417e9i 0.372328 + 0.644891i
\(538\) 0 0
\(539\) 2.39417e9 1.38227e9i 0.658557 0.380218i
\(540\) 0 0
\(541\) 3.89614e9i 1.05790i 0.848654 + 0.528949i \(0.177414\pi\)
−0.848654 + 0.528949i \(0.822586\pi\)
\(542\) 0 0
\(543\) 8.38814e8 1.45287e9i 0.224836 0.389428i
\(544\) 0 0
\(545\) −6.02403e9 −1.59404
\(546\) 0 0
\(547\) 2.21748e8 0.0579300 0.0289650 0.999580i \(-0.490779\pi\)
0.0289650 + 0.999580i \(0.490779\pi\)
\(548\) 0 0
\(549\) −5.52911e8 + 9.57670e8i −0.142611 + 0.247009i
\(550\) 0 0
\(551\) 7.81695e9i 1.99070i
\(552\) 0 0
\(553\) 2.34384e8 1.35322e8i 0.0589374 0.0340275i
\(554\) 0 0
\(555\) 3.11310e9 + 5.39205e9i 0.772979 + 1.33884i
\(556\) 0 0
\(557\) −1.24412e9 7.18292e8i −0.305048 0.176120i 0.339660 0.940548i \(-0.389688\pi\)
−0.644708 + 0.764429i \(0.723021\pi\)
\(558\) 0 0
\(559\) −1.37445e9 + 4.69188e9i −0.332804 + 1.13607i
\(560\) 0 0
\(561\) −1.34935e9 7.79045e8i −0.322666 0.186291i
\(562\) 0 0
\(563\) 2.93914e9 + 5.09074e9i 0.694130 + 1.20227i 0.970473 + 0.241209i \(0.0775439\pi\)
−0.276344 + 0.961059i \(0.589123\pi\)
\(564\) 0 0
\(565\) 6.42142e9 3.70741e9i 1.49783 0.864770i
\(566\) 0 0
\(567\) 4.01700e8i 0.0925468i
\(568\) 0 0
\(569\) 1.49786e9 2.59437e9i 0.340862 0.590390i −0.643731 0.765252i \(-0.722614\pi\)
0.984593 + 0.174862i \(0.0559478\pi\)
\(570\) 0 0
\(571\) 5.32432e9 1.19685 0.598423 0.801181i \(-0.295794\pi\)
0.598423 + 0.801181i \(0.295794\pi\)
\(572\) 0 0
\(573\) −1.60190e9 −0.355708
\(574\) 0 0
\(575\) −2.99313e9 + 5.18425e9i −0.656580 + 1.13723i
\(576\) 0 0
\(577\) 2.16008e9i 0.468118i 0.972222 + 0.234059i \(0.0752009\pi\)
−0.972222 + 0.234059i \(0.924799\pi\)
\(578\) 0 0
\(579\) −6.71475e9 + 3.87676e9i −1.43766 + 0.830031i
\(580\) 0 0
\(581\) −2.21992e8 3.84502e8i −0.0469593 0.0813359i
\(582\) 0 0
\(583\) −4.61186e9 2.66266e9i −0.963908 0.556513i
\(584\) 0 0
\(585\) 1.19738e9 + 3.50764e8i 0.247278 + 0.0724384i
\(586\) 0 0
\(587\) 4.55850e9 + 2.63185e9i 0.930227 + 0.537067i 0.886883 0.461994i \(-0.152866\pi\)
0.0433434 + 0.999060i \(0.486199\pi\)
\(588\) 0 0
\(589\) 2.54561e9 + 4.40912e9i 0.513320 + 0.889096i
\(590\) 0 0
\(591\) −7.48278e8 + 4.32019e8i −0.149110 + 0.0860888i
\(592\) 0 0
\(593\) 6.23434e9i 1.22772i 0.789415 + 0.613859i \(0.210384\pi\)
−0.789415 + 0.613859i \(0.789616\pi\)
\(594\) 0 0
\(595\) −1.60122e8 + 2.77340e8i −0.0311632 + 0.0539762i
\(596\) 0 0
\(597\) −1.06285e10 −2.04437
\(598\) 0 0
\(599\) −3.87748e9 −0.737149 −0.368575 0.929598i \(-0.620154\pi\)
−0.368575 + 0.929598i \(0.620154\pi\)
\(600\) 0 0
\(601\) −3.87101e9 + 6.70479e9i −0.727385 + 1.25987i 0.230600 + 0.973049i \(0.425931\pi\)
−0.957985 + 0.286819i \(0.907402\pi\)
\(602\) 0 0
\(603\) 8.19664e8i 0.152239i
\(604\) 0 0
\(605\) 3.27854e9 1.89287e9i 0.601918 0.347517i
\(606\) 0 0
\(607\) −7.39619e8 1.28106e9i −0.134229 0.232492i 0.791073 0.611721i \(-0.209523\pi\)
−0.925303 + 0.379229i \(0.876189\pi\)
\(608\) 0 0
\(609\) 5.35424e8 + 3.09127e8i 0.0960589 + 0.0554596i
\(610\) 0 0
\(611\) 1.61139e9 1.53839e9i 0.285796 0.272849i
\(612\) 0 0
\(613\) −2.65542e8 1.53311e8i −0.0465609 0.0268820i 0.476539 0.879153i \(-0.341891\pi\)
−0.523100 + 0.852271i \(0.675224\pi\)
\(614\) 0 0
\(615\) −5.23432e9 9.06611e9i −0.907397 1.57166i
\(616\) 0 0
\(617\) 3.53172e9 2.03904e9i 0.605325 0.349484i −0.165809 0.986158i \(-0.553023\pi\)
0.771133 + 0.636674i \(0.219690\pi\)
\(618\) 0 0
\(619\) 8.66187e9i 1.46789i −0.679208 0.733946i \(-0.737676\pi\)
0.679208 0.733946i \(-0.262324\pi\)
\(620\) 0 0
\(621\) −1.95762e9 + 3.39070e9i −0.328026 + 0.568158i
\(622\) 0 0
\(623\) 1.10711e8 0.0183435
\(624\) 0 0
\(625\) 3.00277e9 0.491973
\(626\) 0 0
\(627\) −4.00600e9 + 6.93859e9i −0.649044 + 1.12418i
\(628\) 0 0
\(629\) 2.42439e9i 0.388441i
\(630\) 0 0
\(631\) −5.94670e8 + 3.43333e8i −0.0942266 + 0.0544017i −0.546373 0.837542i \(-0.683992\pi\)
0.452146 + 0.891944i \(0.350658\pi\)
\(632\) 0 0
\(633\) −1.18280e9 2.04867e9i −0.185353 0.321041i
\(634\) 0 0
\(635\) −1.12372e10 6.48779e9i −1.74160 1.00552i
\(636\) 0 0
\(637\) −6.29623e9 + 1.53164e9i −0.965144 + 0.234785i
\(638\) 0 0
\(639\) −8.26548e8 4.77207e8i −0.125318 0.0723526i
\(640\) 0 0
\(641\) −2.49684e9 4.32466e9i −0.374445 0.648558i 0.615799 0.787903i \(-0.288833\pi\)
−0.990244 + 0.139346i \(0.955500\pi\)
\(642\) 0 0
\(643\) 1.76995e9 1.02188e9i 0.262557 0.151587i −0.362944 0.931811i \(-0.618228\pi\)
0.625500 + 0.780224i \(0.284895\pi\)
\(644\) 0 0
\(645\) 1.45497e10i 2.13498i
\(646\) 0 0
\(647\) 2.19517e9 3.80215e9i 0.318642 0.551904i −0.661563 0.749890i \(-0.730107\pi\)
0.980205 + 0.197985i \(0.0634399\pi\)
\(648\) 0 0
\(649\) 5.72794e9 0.822512
\(650\) 0 0
\(651\) −4.02672e8 −0.0572029
\(652\) 0 0
\(653\) 7.64503e8 1.32416e9i 0.107444 0.186099i −0.807290 0.590155i \(-0.799067\pi\)
0.914734 + 0.404056i \(0.132400\pi\)
\(654\) 0 0
\(655\) 4.57234e9i 0.635761i
\(656\) 0 0
\(657\) −1.14794e9 + 6.62762e8i −0.157921 + 0.0911757i
\(658\) 0 0
\(659\) −3.30987e9 5.73287e9i −0.450518 0.780320i 0.547900 0.836544i \(-0.315427\pi\)
−0.998418 + 0.0562235i \(0.982094\pi\)
\(660\) 0 0
\(661\) 1.02805e10 + 5.93546e9i 1.38455 + 0.799372i 0.992695 0.120653i \(-0.0384988\pi\)
0.391859 + 0.920025i \(0.371832\pi\)
\(662\) 0 0
\(663\) 2.52185e9 + 2.64151e9i 0.336064 + 0.352010i
\(664\) 0 0
\(665\) 1.42613e9 + 8.23378e8i 0.188055 + 0.108573i
\(666\) 0 0
\(667\) 3.48644e9 + 6.03869e9i 0.454927 + 0.787956i
\(668\) 0 0
\(669\) 7.35554e9 4.24672e9i 0.949780 0.548356i
\(670\) 0 0
\(671\) 1.11364e10i 1.42304i
\(672\) 0 0
\(673\) −5.07802e8 + 8.79539e8i −0.0642158 + 0.111225i −0.896346 0.443356i \(-0.853788\pi\)
0.832130 + 0.554581i \(0.187121\pi\)
\(674\) 0 0
\(675\) 1.32206e10 1.65458
\(676\) 0 0
\(677\) −1.52605e10 −1.89020 −0.945099 0.326785i \(-0.894035\pi\)
−0.945099 + 0.326785i \(0.894035\pi\)
\(678\) 0 0
\(679\) −5.18112e8 + 8.97397e8i −0.0635155 + 0.110012i
\(680\) 0 0
\(681\) 1.59686e10i 1.93755i
\(682\) 0 0
\(683\) −1.02242e10 + 5.90295e9i −1.22788 + 0.708918i −0.966587 0.256340i \(-0.917483\pi\)
−0.261296 + 0.965259i \(0.584150\pi\)
\(684\) 0 0
\(685\) 6.70235e8 + 1.16088e9i 0.0796728 + 0.137997i
\(686\) 0 0
\(687\) −5.06164e9 2.92234e9i −0.595584 0.343861i
\(688\) 0 0
\(689\) 8.61929e9 + 9.02827e9i 1.00393 + 1.05157i
\(690\) 0 0
\(691\) 1.95302e9 + 1.12758e9i 0.225182 + 0.130009i 0.608348 0.793671i \(-0.291833\pi\)
−0.383165 + 0.923680i \(0.625166\pi\)
\(692\) 0 0
\(693\) −4.21498e7 7.30057e7i −0.00481094 0.00833279i
\(694\) 0 0
\(695\) 1.82401e10 1.05310e10i 2.06102 1.18993i
\(696\) 0 0
\(697\) 4.07633e9i 0.455990i
\(698\) 0 0
\(699\) 9.04484e9 1.56661e10i 1.00168 1.73497i
\(700\) 0 0
\(701\) −1.12762e10 −1.23637 −0.618187 0.786031i \(-0.712132\pi\)
−0.618187 + 0.786031i \(0.712132\pi\)
\(702\) 0 0
\(703\) 1.24667e10 1.35334
\(704\) 0 0
\(705\) −3.31497e9 + 5.74170e9i −0.356302 + 0.617133i
\(706\) 0 0
\(707\) 1.50001e8i 0.0159634i
\(708\) 0 0
\(709\) 6.54595e9 3.77931e9i 0.689780 0.398245i −0.113749 0.993509i \(-0.536286\pi\)
0.803530 + 0.595265i \(0.202953\pi\)
\(710\) 0 0
\(711\) 6.10947e8 + 1.05819e9i 0.0637470 + 0.110413i
\(712\) 0 0
\(713\) −3.93303e9 2.27074e9i −0.406363 0.234614i
\(714\) 0 0
\(715\) 1.22091e10 2.97004e9i 1.24915 0.303873i
\(716\) 0 0
\(717\) −5.37396e9 3.10265e9i −0.544474 0.314352i
\(718\) 0 0
\(719\) −1.23044e9 2.13118e9i −0.123455 0.213831i 0.797673 0.603090i \(-0.206064\pi\)
−0.921128 + 0.389260i \(0.872731\pi\)
\(720\) 0 0
\(721\) −1.07619e9 + 6.21340e8i −0.106934 + 0.0617385i
\(722\) 0 0
\(723\) 1.16985e9i 0.115119i
\(724\) 0 0
\(725\) 1.17726e10 2.03908e10i 1.14733 1.98724i
\(726\) 0 0
\(727\) −1.00899e10 −0.973902 −0.486951 0.873429i \(-0.661891\pi\)
−0.486951 + 0.873429i \(0.661891\pi\)
\(728\) 0 0
\(729\) 8.40048e9 0.803078
\(730\) 0 0
\(731\) 2.83271e9 4.90640e9i 0.268220 0.464571i
\(732\) 0 0
\(733\) 8.44259e8i 0.0791793i 0.999216 + 0.0395897i \(0.0126051\pi\)
−0.999216 + 0.0395897i \(0.987395\pi\)
\(734\) 0 0
\(735\) 1.67003e10 9.64190e9i 1.55138 0.895689i
\(736\) 0 0
\(737\) −4.12730e9 7.14869e9i −0.379778 0.657795i
\(738\) 0 0
\(739\) 6.39606e9 + 3.69277e9i 0.582984 + 0.336586i 0.762318 0.647202i \(-0.224061\pi\)
−0.179334 + 0.983788i \(0.557394\pi\)
\(740\) 0 0
\(741\) 1.35831e10 1.29678e10i 1.22641 1.17086i
\(742\) 0 0
\(743\) 1.15376e10 + 6.66123e9i 1.03194 + 0.595791i 0.917540 0.397644i \(-0.130172\pi\)
0.114400 + 0.993435i \(0.463505\pi\)
\(744\) 0 0
\(745\) 5.73944e9 + 9.94099e9i 0.508537 + 0.880811i
\(746\) 0 0
\(747\) 1.73594e9 1.00224e9i 0.152374 0.0879734i
\(748\) 0 0
\(749\) 3.37816e8i 0.0293761i
\(750\) 0 0
\(751\) −6.71361e9 + 1.16283e10i −0.578384 + 1.00179i 0.417281 + 0.908778i \(0.362983\pi\)
−0.995665 + 0.0930132i \(0.970350\pi\)
\(752\) 0 0
\(753\) 1.66036e9 0.141716
\(754\) 0 0
\(755\) −2.79246e10 −2.36142
\(756\) 0 0
\(757\) −2.20189e9 + 3.81378e9i −0.184484 + 0.319536i −0.943403 0.331650i \(-0.892395\pi\)
0.758918 + 0.651186i \(0.225728\pi\)
\(758\) 0 0
\(759\) 7.14687e9i 0.593293i
\(760\) 0 0
\(761\) 6.51209e9 3.75976e9i 0.535642 0.309253i −0.207669 0.978199i \(-0.566588\pi\)
0.743311 + 0.668946i \(0.233254\pi\)
\(762\) 0 0
\(763\) −4.76996e8 8.26182e8i −0.0388758 0.0673348i
\(764\) 0 0
\(765\) −1.25212e9 7.22915e8i −0.101119 0.0583811i
\(766\) 0 0
\(767\) −1.28843e10 3.77438e9i −1.03105 0.302038i
\(768\) 0 0
\(769\) 1.97283e10 + 1.13902e10i 1.56440 + 0.903208i 0.996803 + 0.0799025i \(0.0254609\pi\)
0.567599 + 0.823305i \(0.307872\pi\)
\(770\) 0 0
\(771\) −6.63563e9 1.14933e10i −0.521425 0.903135i
\(772\) 0 0
\(773\) −1.25609e10 + 7.25204e9i −0.978122 + 0.564719i −0.901703 0.432357i \(-0.857682\pi\)
−0.0764191 + 0.997076i \(0.524349\pi\)
\(774\) 0 0
\(775\) 1.53351e10i 1.18340i
\(776\) 0 0
\(777\) −4.93004e8 + 8.53908e8i −0.0377031 + 0.0653037i
\(778\) 0 0
\(779\) −2.09613e10 −1.58868
\(780\) 0 0
\(781\) −9.61164e9 −0.721969
\(782\) 0 0
\(783\) 7.69975e9 1.33364e10i 0.573206 0.992821i
\(784\) 0 0
\(785\) 2.16695e10i 1.59884i
\(786\) 0 0
\(787\) 7.41960e9 4.28371e9i 0.542586 0.313262i −0.203540 0.979067i \(-0.565245\pi\)
0.746126 + 0.665804i \(0.231911\pi\)
\(788\) 0 0
\(789\) 2.02921e9 + 3.51469e9i 0.147081 + 0.254752i
\(790\) 0 0
\(791\) 1.01692e9 + 5.87121e8i 0.0730585 + 0.0421804i
\(792\) 0 0
\(793\) 7.33824e9 2.50500e10i 0.522559 1.78383i
\(794\) 0 0
\(795\) −3.21695e10 1.85731e10i −2.27070 1.31099i
\(796\) 0 0
\(797\) −8.46996e9 1.46704e10i −0.592621 1.02645i −0.993878 0.110484i \(-0.964760\pi\)
0.401257 0.915966i \(-0.368573\pi\)
\(798\) 0 0
\(799\) −2.23573e9 + 1.29080e9i −0.155062 + 0.0895253i
\(800\) 0 0
\(801\) 4.99834e8i 0.0343646i
\(802\) 0 0
\(803\) −6.67449e9 + 1.15606e10i −0.454897 + 0.787906i
\(804\) 0 0
\(805\) −1.46894e9 −0.0992473
\(806\) 0 0
\(807\) 2.59581e10 1.73866
\(808\) 0 0
\(809\) −4.69798e8 + 8.13714e8i −0.0311955 + 0.0540321i −0.881202 0.472741i \(-0.843265\pi\)
0.850006 + 0.526773i \(0.176598\pi\)
\(810\) 0 0
\(811\) 8.49475e9i 0.559213i 0.960115 + 0.279607i \(0.0902041\pi\)
−0.960115 + 0.279607i \(0.909796\pi\)
\(812\) 0 0
\(813\) −6.92172e9 + 3.99626e9i −0.451749 + 0.260817i
\(814\) 0 0
\(815\) 2.32594e9 + 4.02865e9i 0.150504 + 0.260680i
\(816\) 0 0
\(817\) −2.52296e10 1.45663e10i −1.61858 0.934487i
\(818\) 0 0
\(819\) 4.67047e7 + 1.91992e8i 0.00297075 + 0.0122121i
\(820\) 0 0
\(821\) 9.50583e9 + 5.48819e9i 0.599499 + 0.346121i 0.768845 0.639436i \(-0.220832\pi\)
−0.169345 + 0.985557i \(0.554165\pi\)
\(822\) 0 0
\(823\) −7.58620e9 1.31397e10i −0.474379 0.821648i 0.525191 0.850984i \(-0.323994\pi\)
−0.999570 + 0.0293366i \(0.990661\pi\)
\(824\) 0 0
\(825\) −2.08995e10 + 1.20664e10i −1.29583 + 0.748148i
\(826\) 0 0
\(827\) 1.08176e10i 0.665062i 0.943092 + 0.332531i \(0.107903\pi\)
−0.943092 + 0.332531i \(0.892097\pi\)
\(828\) 0 0
\(829\) 2.83648e9 4.91293e9i 0.172918 0.299502i −0.766521 0.642219i \(-0.778014\pi\)
0.939439 + 0.342717i \(0.111347\pi\)
\(830\) 0 0
\(831\) −1.07607e10 −0.650486
\(832\) 0 0
\(833\) 7.50883e9 0.450106
\(834\) 0 0
\(835\) 1.37681e10 2.38470e10i 0.818410 1.41753i
\(836\) 0 0
\(837\) 1.00298e10i 0.591224i
\(838\) 0 0
\(839\) 8.48728e9 4.90013e9i 0.496137 0.286445i −0.230980 0.972959i \(-0.574193\pi\)
0.727117 + 0.686514i \(0.240860\pi\)
\(840\) 0 0
\(841\) −5.08797e9 8.81262e9i −0.294957 0.510880i
\(842\) 0 0
\(843\) −1.49296e10 8.61961e9i −0.858325 0.495554i
\(844\) 0 0
\(845\) −2.94201e10 1.36434e9i −1.67743 0.0777903i
\(846\) 0 0
\(847\) 5.19205e8 + 2.99763e8i 0.0293594 + 0.0169506i
\(848\) 0 0
\(849\) −2.02331e9 3.50447e9i −0.113471 0.196538i
\(850\) 0 0
\(851\) −9.63066e9 + 5.56026e9i −0.535676 + 0.309273i
\(852\) 0 0
\(853\) 1.09563e10i 0.604424i 0.953241 + 0.302212i \(0.0977251\pi\)
−0.953241 + 0.302212i \(0.902275\pi\)
\(854\) 0 0
\(855\) −3.71736e9 + 6.43866e9i −0.203401 + 0.352301i
\(856\) 0 0
\(857\) 4.83453e9 0.262374 0.131187 0.991358i \(-0.458121\pi\)
0.131187 + 0.991358i \(0.458121\pi\)
\(858\) 0 0
\(859\) 4.19822e9 0.225990 0.112995 0.993596i \(-0.463956\pi\)
0.112995 + 0.993596i \(0.463956\pi\)
\(860\) 0 0
\(861\) 8.28930e8 1.43575e9i 0.0442595 0.0766598i
\(862\) 0 0
\(863\) 1.58890e10i 0.841510i 0.907174 + 0.420755i \(0.138235\pi\)
−0.907174 + 0.420755i \(0.861765\pi\)
\(864\) 0 0
\(865\) −2.55393e9 + 1.47451e9i −0.134169 + 0.0774626i
\(866\) 0 0
\(867\) 8.18872e9 + 1.41833e10i 0.426726 + 0.739111i
\(868\) 0 0
\(869\) 1.06567e10 + 6.15267e9i 0.550878 + 0.318049i
\(870\) 0 0
\(871\) 4.57330e9 + 1.87998e10i 0.234513 + 0.964027i
\(872\) 0 0
\(873\) −4.05154e9 2.33916e9i −0.206096 0.118990i
\(874\) 0 0
\(875\) 1.11728e9 + 1.93518e9i 0.0563809 + 0.0976546i
\(876\) 0 0
\(877\) −7.52789e9 + 4.34623e9i −0.376855 + 0.217578i −0.676449 0.736489i \(-0.736482\pi\)
0.299594 + 0.954067i \(0.403149\pi\)
\(878\) 0 0
\(879\) 2.11657e10i 1.05117i
\(880\) 0 0
\(881\) −3.97881e9 + 6.89150e9i −0.196037 + 0.339546i −0.947240 0.320525i \(-0.896141\pi\)
0.751203 + 0.660071i \(0.229474\pi\)
\(882\) 0 0
\(883\) −2.25480e8 −0.0110216 −0.00551080 0.999985i \(-0.501754\pi\)
−0.00551080 + 0.999985i \(0.501754\pi\)
\(884\) 0 0
\(885\) 3.99547e10 1.93761
\(886\) 0 0
\(887\) −1.14024e9 + 1.97496e9i −0.0548611 + 0.0950222i −0.892152 0.451736i \(-0.850805\pi\)
0.837291 + 0.546758i \(0.184138\pi\)
\(888\) 0 0
\(889\) 2.05487e9i 0.0980908i
\(890\) 0 0
\(891\) −1.58172e10 + 9.13204e9i −0.749129 + 0.432510i
\(892\) 0 0
\(893\) 6.63754e9 + 1.14966e10i 0.311909 + 0.540241i
\(894\) 0 0
\(895\) 2.16262e10 + 1.24859e10i 1.00832 + 0.582156i
\(896\) 0 0
\(897\) −4.70936e9 + 1.60760e10i −0.217865 + 0.743713i
\(898\) 0 0
\(899\) 1.54694e10 + 8.93129e9i 0.710094 + 0.409973i
\(900\) 0 0
\(901\) −7.23209e9 1.25263e10i −0.329403 0.570542i
\(902\) 0 0
\(903\) 1.99545e9 1.15208e9i 0.0901850 0.0520683i
\(904\) 0 0
\(905\) 1.56776e10i 0.703088i
\(906\) 0 0
\(907\) 1.00273e9 1.73678e9i 0.0446231 0.0772894i −0.842851 0.538147i \(-0.819125\pi\)
0.887474 + 0.460857i \(0.152458\pi\)
\(908\) 0 0
\(909\) 6.77221e8 0.0299059
\(910\) 0 0
\(911\) 2.82977e10 1.24004 0.620022 0.784584i \(-0.287124\pi\)
0.620022 + 0.784584i \(0.287124\pi\)
\(912\) 0 0
\(913\) 1.00933e10 1.74821e10i 0.438921 0.760233i
\(914\) 0 0
\(915\) 7.76810e10i 3.35228i
\(916\) 0 0
\(917\) −6.27085e8 + 3.62048e8i −0.0268555 + 0.0155051i
\(918\) 0 0
\(919\) −1.59245e10 2.75820e10i −0.676802 1.17226i −0.975939 0.218045i \(-0.930032\pi\)
0.299137 0.954210i \(-0.403301\pi\)
\(920\) 0 0
\(921\) 3.50403e10 + 2.02305e10i 1.47795 + 0.853294i
\(922\) 0 0
\(923\) 2.16202e10 + 6.33350e9i 0.905012 + 0.265117i
\(924\) 0 0
\(925\) 3.25197e10 + 1.87753e10i 1.35099 + 0.779992i
\(926\) 0 0
\(927\) −2.80521e9 4.85877e9i −0.115661 0.200330i
\(928\) 0 0
\(929\) −2.32073e10 + 1.33988e10i −0.949665 + 0.548289i −0.892977 0.450102i \(-0.851387\pi\)
−0.0566883 + 0.998392i \(0.518054\pi\)
\(930\) 0 0
\(931\) 3.86118e10i 1.56818i
\(932\) 0 0
\(933\) 1.11602e10 1.93301e10i 0.449870 0.779197i
\(934\) 0 0
\(935\) −1.45605e10 −0.582554
\(936\) 0 0
\(937\) −6.16082e9 −0.244653 −0.122326 0.992490i \(-0.539035\pi\)
−0.122326 + 0.992490i \(0.539035\pi\)
\(938\) 0 0
\(939\) −1.13998e10 + 1.97450e10i −0.449331 + 0.778264i
\(940\) 0 0
\(941\) 7.68185e9i 0.300540i 0.988645 + 0.150270i \(0.0480143\pi\)
−0.988645 + 0.150270i \(0.951986\pi\)
\(942\) 0 0
\(943\) 1.61928e10 9.34894e9i 0.628829 0.363054i
\(944\) 0 0
\(945\) 1.62207e9 + 2.80950e9i 0.0625255 + 0.108297i
\(946\) 0 0
\(947\) −2.89463e10 1.67121e10i −1.10756 0.639451i −0.169365 0.985553i \(-0.554172\pi\)
−0.938197 + 0.346102i \(0.887505\pi\)
\(948\) 0 0
\(949\) 2.26312e10 2.16060e10i 0.859559 0.820621i
\(950\) 0 0
\(951\) 2.96786e10 + 1.71350e10i 1.11895 + 0.646028i
\(952\) 0 0
\(953\) −1.24555e10 2.15736e10i −0.466162 0.807416i 0.533091 0.846058i \(-0.321030\pi\)
−0.999253 + 0.0386419i \(0.987697\pi\)
\(954\) 0 0
\(955\) −1.29643e10 + 7.48496e9i −0.481657 + 0.278085i
\(956\) 0 0
\(957\) 2.81101e10i 1.03674i
\(958\) 0 0
\(959\) −1.06141e8 + 1.83842e8i −0.00388615 + 0.00673101i
\(960\) 0 0
\(961\) 1.58786e10 0.577140
\(962\) 0 0
\(963\) −1.52516e9 −0.0550331
\(964\) 0 0
\(965\) −3.62288e10 + 6.27501e10i −1.29780 + 2.24786i
\(966\) 0 0
\(967\) 7.88858e9i 0.280547i 0.990113 + 0.140274i \(0.0447982\pi\)
−0.990113 + 0.140274i \(0.955202\pi\)
\(968\) 0 0
\(969\) −1.88460e10 + 1.08808e10i −0.665406 + 0.384172i
\(970\) 0 0
\(971\) 1.61821e10 + 2.80282e10i 0.567241 + 0.982491i 0.996837 + 0.0794697i \(0.0253227\pi\)
−0.429596 + 0.903021i \(0.641344\pi\)
\(972\) 0 0
\(973\) 2.88859e9 + 1.66773e9i 0.100529 + 0.0580404i
\(974\) 0 0
\(975\) 5.49621e10 1.33703e10i 1.89910 0.461981i
\(976\) 0 0
\(977\) −1.42381e10 8.22037e9i −0.488451 0.282007i 0.235481 0.971879i \(-0.424334\pi\)
−0.723932 + 0.689872i \(0.757667\pi\)
\(978\) 0 0
\(979\) 2.51684e9 + 4.35930e9i 0.0857268 + 0.148483i
\(980\) 0 0
\(981\) 3.73002e9 2.15353e9i 0.126145 0.0728298i
\(982\) 0 0
\(983\) 5.12228e10i 1.71999i −0.510301 0.859996i \(-0.670466\pi\)
0.510301 0.859996i \(-0.329534\pi\)
\(984\) 0 0
\(985\) −4.03726e9 + 6.99274e9i −0.134605 + 0.233142i
\(986\) 0 0
\(987\) −1.04995e9 −0.0347582
\(988\) 0 0
\(989\) 2.59870e10 0.854217
\(990\) 0 0
\(991\) 1.27794e10 2.21346e10i 0.417113 0.722460i −0.578535 0.815657i \(-0.696375\pi\)
0.995648 + 0.0931974i \(0.0297088\pi\)
\(992\) 0 0
\(993\) 5.10635e10i 1.65496i
\(994\) 0 0
\(995\) −8.60172e10 + 4.96620e10i −2.76824 + 1.59825i
\(996\) 0 0
\(997\) −1.70676e10 2.95620e10i −0.545432 0.944715i −0.998580 0.0532799i \(-0.983032\pi\)
0.453148 0.891435i \(-0.350301\pi\)
\(998\) 0 0
\(999\) 2.12692e10 + 1.22798e10i 0.674950 + 0.389682i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.8.w.b.17.2 16
4.3 odd 2 26.8.e.a.17.4 16
12.11 even 2 234.8.l.c.199.5 16
13.10 even 6 inner 208.8.w.b.49.2 16
52.7 even 12 338.8.a.m.1.2 8
52.19 even 12 338.8.a.n.1.2 8
52.23 odd 6 26.8.e.a.23.4 yes 16
52.35 odd 6 338.8.b.i.337.10 16
52.43 odd 6 338.8.b.i.337.2 16
156.23 even 6 234.8.l.c.127.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.e.a.17.4 16 4.3 odd 2
26.8.e.a.23.4 yes 16 52.23 odd 6
208.8.w.b.17.2 16 1.1 even 1 trivial
208.8.w.b.49.2 16 13.10 even 6 inner
234.8.l.c.127.8 16 156.23 even 6
234.8.l.c.199.5 16 12.11 even 2
338.8.a.m.1.2 8 52.7 even 12
338.8.a.n.1.2 8 52.19 even 12
338.8.b.i.337.2 16 52.43 odd 6
338.8.b.i.337.10 16 52.35 odd 6