Properties

Label 2080.1.cs.a.1009.2
Level 20802080
Weight 11
Character 2080.1009
Analytic conductor 1.0381.038
Analytic rank 00
Dimension 44
Projective image D4D_{4}
RM discriminant 40
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2080,1,Mod(369,2080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2080, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2080.369");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2080=25513 2080 = 2^{5} \cdot 5 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2080.cs (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.038055226281.03805522628
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 520)
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.439400.1

Embedding invariants

Embedding label 1009.2
Root 0.707107+0.707107i-0.707107 + 0.707107i of defining polynomial
Character χ\chi == 2080.1009
Dual form 2080.1.cs.a.369.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.41421q3+(0.707107+0.707107i)q5+1.00000q9+(0.707107+0.707107i)q13+(1.00000+1.00000i)q15+1.00000iq25+(1.000001.00000i)q31+(1.414211.41421i)q37+(1.00000+1.00000i)q39+(1.000001.00000i)q41+1.41421iq43+(0.707107+0.707107i)q451.00000iq49+1.41421q531.00000q65+(1.414211.41421i)q67+(1.000001.00000i)q71+1.41421iq751.00000q81+(1.41421+1.41421i)q83+(1.00000+1.00000i)q89+(1.414211.41421i)q93+O(q100)q+1.41421 q^{3} +(0.707107 + 0.707107i) q^{5} +1.00000 q^{9} +(-0.707107 + 0.707107i) q^{13} +(1.00000 + 1.00000i) q^{15} +1.00000i q^{25} +(-1.00000 - 1.00000i) q^{31} +(1.41421 - 1.41421i) q^{37} +(-1.00000 + 1.00000i) q^{39} +(-1.00000 - 1.00000i) q^{41} +1.41421i q^{43} +(0.707107 + 0.707107i) q^{45} -1.00000i q^{49} +1.41421 q^{53} -1.00000 q^{65} +(-1.41421 - 1.41421i) q^{67} +(-1.00000 - 1.00000i) q^{71} +1.41421i q^{75} -1.00000 q^{81} +(1.41421 + 1.41421i) q^{83} +(-1.00000 + 1.00000i) q^{89} +(-1.41421 - 1.41421i) q^{93} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q9+4q154q314q394q414q654q714q814q89+O(q100) 4 q + 4 q^{9} + 4 q^{15} - 4 q^{31} - 4 q^{39} - 4 q^{41} - 4 q^{65} - 4 q^{71} - 4 q^{81} - 4 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2080Z)×\left(\mathbb{Z}/2080\mathbb{Z}\right)^\times.

nn 261261 417417 16011601 19511951
χ(n)\chi(n) 1-1 1-1 e(14)e\left(\frac{1}{4}\right) 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
44 0 0
55 0.707107 + 0.707107i 0.707107 + 0.707107i
66 0 0
77 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
88 0 0
99 1.00000 1.00000
1010 0 0
1111 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1212 0 0
1313 −0.707107 + 0.707107i −0.707107 + 0.707107i
1414 0 0
1515 1.00000 + 1.00000i 1.00000 + 1.00000i
1616 0 0
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 1.00000i 1.00000i
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
3838 0 0
3939 −1.00000 + 1.00000i −1.00000 + 1.00000i
4040 0 0
4141 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
4242 0 0
4343 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4444 0 0
4545 0.707107 + 0.707107i 0.707107 + 0.707107i
4646 0 0
4747 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4848 0 0
4949 1.00000i 1.00000i
5050 0 0
5151 0 0
5252 0 0
5353 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 0 0
6565 −1.00000 −1.00000
6666 0 0
6767 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
6868 0 0
6969 0 0
7070 0 0
7171 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
7272 0 0
7373 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
7474 0 0
7575 1.41421i 1.41421i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 −1.00000 −1.00000
8282 0 0
8383 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0 0
9393 −1.41421 1.41421i −1.41421 1.41421i
9494 0 0
9595 0 0
9696 0 0
9797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
108108 0 0
109109 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
110110 0 0
111111 2.00000 2.00000i 2.00000 2.00000i
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 −0.707107 + 0.707107i −0.707107 + 0.707107i
118118 0 0
119119 0 0
120120 0 0
121121 1.00000i 1.00000i
122122 0 0
123123 −1.41421 1.41421i −1.41421 1.41421i
124124 0 0
125125 −0.707107 + 0.707107i −0.707107 + 0.707107i
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 2.00000i 2.00000i
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 1.41421i 1.41421i
148148 0 0
149149 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
150150 0 0
151151 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 1.41421i 1.41421i
156156 0 0
157157 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
158158 0 0
159159 2.00000 2.00000
160160 0 0
161161 0 0
162162 0 0
163163 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
168168 0 0
169169 1.00000i 1.00000i
170170 0 0
171171 0 0
172172 0 0
173173 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 0 0
185185 2.00000 2.00000
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 2.00000 2.00000 1.00000 00
1.00000 00
192192 0 0
193193 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
194194 0 0
195195 −1.41421 −1.41421
196196 0 0
197197 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 −2.00000 2.00000i −2.00000 2.00000i
202202 0 0
203203 0 0
204204 0 0
205205 1.41421i 1.41421i
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 −1.41421 1.41421i −1.41421 1.41421i
214214 0 0
215215 −1.00000 + 1.00000i −1.00000 + 1.00000i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
224224 0 0
225225 1.00000i 1.00000i
226226 0 0
227227 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 0 0
229229 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
240240 0 0
241241 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
242242 0 0
243243 −1.41421 −1.41421
244244 0 0
245245 0.707107 0.707107i 0.707107 0.707107i
246246 0 0
247247 0 0
248248 0 0
249249 2.00000 + 2.00000i 2.00000 + 2.00000i
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 1.00000 + 1.00000i 1.00000 + 1.00000i
266266 0 0
267267 −1.41421 + 1.41421i −1.41421 + 1.41421i
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
278278 0 0
279279 −1.00000 1.00000i −1.00000 1.00000i
280280 0 0
281281 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
282282 0 0
283283 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −1.00000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
318318 0 0
319319 0 0
320320 0 0
321321 2.00000 2.00000
322322 0 0
323323 0 0
324324 0 0
325325 −0.707107 0.707107i −0.707107 0.707107i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
332332 0 0
333333 1.41421 1.41421i 1.41421 1.41421i
334334 0 0
335335 2.00000i 2.00000i
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
348348 0 0
349349 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
354354 0 0
355355 1.41421i 1.41421i
356356 0 0
357357 0 0
358358 0 0
359359 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
360360 0 0
361361 1.00000i 1.00000i
362362 0 0
363363 1.41421i 1.41421i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 −1.00000 1.00000i −1.00000 1.00000i
370370 0 0
371371 0 0
372372 0 0
373373 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
374374 0 0
375375 −1.00000 + 1.00000i −1.00000 + 1.00000i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
384384 0 0
385385 0 0
386386 0 0
387387 1.41421i 1.41421i
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
398398 0 0
399399 0 0
400400 0 0
401401 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
402402 0 0
403403 1.41421 1.41421
404404 0 0
405405 −0.707107 0.707107i −0.707107 0.707107i
406406 0 0
407407 0 0
408408 0 0
409409 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 2.00000i 2.00000i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
440440 0 0
441441 1.00000i 1.00000i
442442 0 0
443443 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
444444 0 0
445445 −1.41421 −1.41421
446446 0 0
447447 0 0
448448 0 0
449449 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
450450 0 0
451451 0 0
452452 0 0
453453 −1.41421 + 1.41421i −1.41421 + 1.41421i
454454 0 0
455455 0 0
456456 0 0
457457 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
462462 0 0
463463 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
464464 0 0
465465 2.00000i 2.00000i
466466 0 0
467467 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
468468 0 0
469469 0 0
470470 0 0
471471 −2.00000 −2.00000
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 1.41421 1.41421
478478 0 0
479479 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
480480 0 0
481481 2.00000i 2.00000i
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 1.41421i 1.41421i
508508 0 0
509509 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 2.00000i 2.00000i
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 1.41421 1.41421
534534 0 0
535535 1.00000 + 1.00000i 1.00000 + 1.00000i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 2.82843 2.82843
556556 0 0
557557 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
558558 0 0
559559 −1.00000 1.00000i −1.00000 1.00000i
560560 0 0
561561 0 0
562562 0 0
563563 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 2.82843 2.82843
574574 0 0
575575 0 0
576576 0 0
577577 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 −1.00000 −1.00000
586586 0 0
587587 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 2.00000 2.00000 1.00000 00
1.00000 00
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 −1.41421 1.41421i −1.41421 1.41421i
604604 0 0
605605 0.707107 0.707107i 0.707107 0.707107i
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
614614 0 0
615615 2.00000i 2.00000i
616616 0 0
617617 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
618618 0 0
619619 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −1.00000 −1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0.707107 + 0.707107i 0.707107 + 0.707107i
638638 0 0
639639 −1.00000 1.00000i −1.00000 1.00000i
640640 0 0
641641 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
644644 0 0
645645 −1.41421 + 1.41421i −1.41421 + 1.41421i
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 0 0
677677 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 −1.00000 + 1.00000i −1.00000 + 1.00000i
690690 0 0
691691 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 1.41421 + 1.41421i 1.41421 + 1.41421i
718718 0 0
719719 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 0 0
723723 1.41421 1.41421i 1.41421 1.41421i
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
734734 0 0
735735 1.00000 1.00000i 1.00000 1.00000i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
744744 0 0
745745 0 0
746746 0 0
747747 1.41421 + 1.41421i 1.41421 + 1.41421i
748748 0 0
749749 0 0
750750 0 0
751751 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 −1.41421 −1.41421
756756 0 0
757757 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
758758 0 0
759759 0 0
760760 0 0
761761 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
774774 0 0
775775 1.00000 1.00000i 1.00000 1.00000i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −1.00000 1.00000i −1.00000 1.00000i
786786 0 0
787787 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 1.41421 + 1.41421i 1.41421 + 1.41421i
796796 0 0
797797 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
798798 0 0
799799 0 0
800800 0 0
801801 −1.00000 + 1.00000i −1.00000 + 1.00000i
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 2.00000 2.00000 1.00000 00
1.00000 00
810810 0 0
811811 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
812812 0 0
813813 −1.41421 + 1.41421i −1.41421 + 1.41421i
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 2.00000i 2.00000i
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 −1.41421 + 1.41421i −1.41421 + 1.41421i
844844 0 0
845845 0.707107 0.707107i 0.707107 0.707107i
846846 0 0
847847 0 0
848848 0 0
849849 2.00000i 2.00000i
850850 0 0
851851 0 0
852852 0 0
853853 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
864864 0 0
865865 −1.00000 + 1.00000i −1.00000 + 1.00000i
866866 0 0
867867 −1.41421 −1.41421
868868 0 0
869869 0 0
870870 0 0
871871 2.00000 2.00000
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
908908 0 0
909909 0 0
910910 0 0
911911 2.00000 2.00000 1.00000 00
1.00000 00
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 2.00000 2.00000 1.00000 00
1.00000 00
920920 0 0
921921 −2.00000 + 2.00000i −2.00000 + 2.00000i
922922 0 0
923923 1.41421 1.41421
924924 0 0
925925 1.41421 + 1.41421i 1.41421 + 1.41421i
926926 0 0
927927 0 0
928928 0 0
929929 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 1.41421 + 1.41421i 1.41421 + 1.41421i
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.00000i 1.00000i
962962 0 0
963963 1.41421 1.41421
964964 0 0
965965 0 0
966966 0 0
967967 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 −1.00000 1.00000i −1.00000 1.00000i
976976 0 0
977977 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2080.1.cs.a.1009.2 4
4.3 odd 2 520.1.bo.a.229.2 yes 4
5.4 even 2 inner 2080.1.cs.a.1009.1 4
8.3 odd 2 520.1.bo.a.229.1 yes 4
8.5 even 2 inner 2080.1.cs.a.1009.1 4
13.5 odd 4 inner 2080.1.cs.a.369.2 4
20.3 even 4 2600.1.r.a.2101.2 4
20.7 even 4 2600.1.r.a.2101.1 4
20.19 odd 2 520.1.bo.a.229.1 yes 4
40.3 even 4 2600.1.r.a.2101.1 4
40.19 odd 2 520.1.bo.a.229.2 yes 4
40.27 even 4 2600.1.r.a.2101.2 4
40.29 even 2 RM 2080.1.cs.a.1009.2 4
52.31 even 4 520.1.bo.a.109.2 yes 4
65.44 odd 4 inner 2080.1.cs.a.369.1 4
104.5 odd 4 inner 2080.1.cs.a.369.1 4
104.83 even 4 520.1.bo.a.109.1 4
260.83 odd 4 2600.1.r.a.2501.1 4
260.187 odd 4 2600.1.r.a.2501.2 4
260.239 even 4 520.1.bo.a.109.1 4
520.83 odd 4 2600.1.r.a.2501.2 4
520.109 odd 4 inner 2080.1.cs.a.369.2 4
520.187 odd 4 2600.1.r.a.2501.1 4
520.499 even 4 520.1.bo.a.109.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.1.bo.a.109.1 4 104.83 even 4
520.1.bo.a.109.1 4 260.239 even 4
520.1.bo.a.109.2 yes 4 52.31 even 4
520.1.bo.a.109.2 yes 4 520.499 even 4
520.1.bo.a.229.1 yes 4 8.3 odd 2
520.1.bo.a.229.1 yes 4 20.19 odd 2
520.1.bo.a.229.2 yes 4 4.3 odd 2
520.1.bo.a.229.2 yes 4 40.19 odd 2
2080.1.cs.a.369.1 4 65.44 odd 4 inner
2080.1.cs.a.369.1 4 104.5 odd 4 inner
2080.1.cs.a.369.2 4 13.5 odd 4 inner
2080.1.cs.a.369.2 4 520.109 odd 4 inner
2080.1.cs.a.1009.1 4 5.4 even 2 inner
2080.1.cs.a.1009.1 4 8.5 even 2 inner
2080.1.cs.a.1009.2 4 1.1 even 1 trivial
2080.1.cs.a.1009.2 4 40.29 even 2 RM
2600.1.r.a.2101.1 4 20.7 even 4
2600.1.r.a.2101.1 4 40.3 even 4
2600.1.r.a.2101.2 4 20.3 even 4
2600.1.r.a.2101.2 4 40.27 even 4
2600.1.r.a.2501.1 4 260.83 odd 4
2600.1.r.a.2501.1 4 520.187 odd 4
2600.1.r.a.2501.2 4 260.187 odd 4
2600.1.r.a.2501.2 4 520.83 odd 4