Properties

Label 2600.1.r.a.2501.1
Level 26002600
Weight 11
Character 2600.2501
Analytic conductor 1.2981.298
Analytic rank 00
Dimension 44
Projective image D4D_{4}
RM discriminant 40
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,1,Mod(2101,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.2101");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2600=235213 2600 = 2^{3} \cdot 5^{2} \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2600.r (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.297569032851.29756903285
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 520)
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.439400.1

Embedding invariants

Embedding label 2501.1
Root 0.707107+0.707107i-0.707107 + 0.707107i of defining polynomial
Character χ\chi == 2600.2501
Dual form 2600.1.r.a.2101.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.7071070.707107i)q21.41421iq3+1.00000iq4+(1.00000+1.00000i)q6+(0.7071070.707107i)q81.00000q9+1.41421q12+(0.7071070.707107i)q131.00000q16+(0.707107+0.707107i)q18+(1.000001.00000i)q241.00000q26+(1.000001.00000i)q31+(0.707107+0.707107i)q321.00000iq36+(1.414211.41421i)q37+(1.000001.00000i)q39+(1.00000+1.00000i)q411.41421q43+1.41421iq481.00000iq49+(0.707107+0.707107i)q52+1.41421iq531.41421q621.00000iq64+(1.414211.41421i)q67+(1.000001.00000i)q71+(0.707107+0.707107i)q722.00000q74+1.41421iq781.00000q81+1.41421q82+(1.414211.41421i)q83+(1.00000+1.00000i)q86+(1.00000+1.00000i)q89+(1.414211.41421i)q93+(1.000001.00000i)q96+(0.707107+0.707107i)q98+O(q100)q+(-0.707107 - 0.707107i) q^{2} -1.41421i q^{3} +1.00000i q^{4} +(-1.00000 + 1.00000i) q^{6} +(0.707107 - 0.707107i) q^{8} -1.00000 q^{9} +1.41421 q^{12} +(0.707107 - 0.707107i) q^{13} -1.00000 q^{16} +(0.707107 + 0.707107i) q^{18} +(-1.00000 - 1.00000i) q^{24} -1.00000 q^{26} +(1.00000 - 1.00000i) q^{31} +(0.707107 + 0.707107i) q^{32} -1.00000i q^{36} +(1.41421 - 1.41421i) q^{37} +(-1.00000 - 1.00000i) q^{39} +(-1.00000 + 1.00000i) q^{41} -1.41421 q^{43} +1.41421i q^{48} -1.00000i q^{49} +(0.707107 + 0.707107i) q^{52} +1.41421i q^{53} -1.41421 q^{62} -1.00000i q^{64} +(-1.41421 - 1.41421i) q^{67} +(1.00000 - 1.00000i) q^{71} +(-0.707107 + 0.707107i) q^{72} -2.00000 q^{74} +1.41421i q^{78} -1.00000 q^{81} +1.41421 q^{82} +(-1.41421 - 1.41421i) q^{83} +(1.00000 + 1.00000i) q^{86} +(1.00000 + 1.00000i) q^{89} +(-1.41421 - 1.41421i) q^{93} +(1.00000 - 1.00000i) q^{96} +(-0.707107 + 0.707107i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q64q94q164q244q26+4q314q394q41+4q718q744q81+4q86+4q89+4q96+O(q100) 4 q - 4 q^{6} - 4 q^{9} - 4 q^{16} - 4 q^{24} - 4 q^{26} + 4 q^{31} - 4 q^{39} - 4 q^{41} + 4 q^{71} - 8 q^{74} - 4 q^{81} + 4 q^{86} + 4 q^{89} + 4 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2600Z)×\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times.

nn 13011301 16011601 19511951 19771977
χ(n)\chi(n) 1-1 e(34)e\left(\frac{3}{4}\right) 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.707107 0.707107i −0.707107 0.707107i
33 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
44 1.00000i 1.00000i
55 0 0
66 −1.00000 + 1.00000i −1.00000 + 1.00000i
77 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
88 0.707107 0.707107i 0.707107 0.707107i
99 −1.00000 −1.00000
1010 0 0
1111 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
1212 1.41421 1.41421
1313 0.707107 0.707107i 0.707107 0.707107i
1414 0 0
1515 0 0
1616 −1.00000 −1.00000
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0.707107 + 0.707107i 0.707107 + 0.707107i
1919 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 −1.00000 1.00000i −1.00000 1.00000i
2525 0 0
2626 −1.00000 −1.00000
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
3232 0.707107 + 0.707107i 0.707107 + 0.707107i
3333 0 0
3434 0 0
3535 0 0
3636 1.00000i 1.00000i
3737 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
3838 0 0
3939 −1.00000 1.00000i −1.00000 1.00000i
4040 0 0
4141 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
4242 0 0
4343 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4848 1.41421i 1.41421i
4949 1.00000i 1.00000i
5050 0 0
5151 0 0
5252 0.707107 + 0.707107i 0.707107 + 0.707107i
5353 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 −1.41421 −1.41421
6363 0 0
6464 1.00000i 1.00000i
6565 0 0
6666 0 0
6767 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
6868 0 0
6969 0 0
7070 0 0
7171 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
7272 −0.707107 + 0.707107i −0.707107 + 0.707107i
7373 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
7474 −2.00000 −2.00000
7575 0 0
7676 0 0
7777 0 0
7878 1.41421i 1.41421i
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 −1.00000 −1.00000
8282 1.41421 1.41421
8383 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
8484 0 0
8585 0 0
8686 1.00000 + 1.00000i 1.00000 + 1.00000i
8787 0 0
8888 0 0
8989 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
9090 0 0
9191 0 0
9292 0 0
9393 −1.41421 1.41421i −1.41421 1.41421i
9494 0 0
9595 0 0
9696 1.00000 1.00000i 1.00000 1.00000i
9797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
9898 −0.707107 + 0.707107i −0.707107 + 0.707107i
9999 0 0
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 1.00000i 1.00000i
105105 0 0
106106 1.00000 1.00000i 1.00000 1.00000i
107107 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 0 0
109109 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
110110 0 0
111111 −2.00000 2.00000i −2.00000 2.00000i
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 −0.707107 + 0.707107i −0.707107 + 0.707107i
118118 0 0
119119 0 0
120120 0 0
121121 1.00000i 1.00000i
122122 0 0
123123 1.41421 + 1.41421i 1.41421 + 1.41421i
124124 1.00000 + 1.00000i 1.00000 + 1.00000i
125125 0 0
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 −0.707107 + 0.707107i −0.707107 + 0.707107i
129129 2.00000i 2.00000i
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 2.00000i 2.00000i
135135 0 0
136136 0 0
137137 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 −1.41421 −1.41421
143143 0 0
144144 1.00000 1.00000
145145 0 0
146146 0 0
147147 −1.41421 −1.41421
148148 1.41421 + 1.41421i 1.41421 + 1.41421i
149149 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
150150 0 0
151151 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 1.00000 1.00000i 1.00000 1.00000i
157157 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
158158 0 0
159159 2.00000 2.00000
160160 0 0
161161 0 0
162162 0.707107 + 0.707107i 0.707107 + 0.707107i
163163 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
164164 −1.00000 1.00000i −1.00000 1.00000i
165165 0 0
166166 2.00000i 2.00000i
167167 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
168168 0 0
169169 1.00000i 1.00000i
170170 0 0
171171 0 0
172172 1.41421i 1.41421i
173173 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 1.41421i 1.41421i
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 2.00000i 2.00000i
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
192192 −1.41421 −1.41421
193193 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
194194 0 0
195195 0 0
196196 1.00000 1.00000
197197 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 −2.00000 + 2.00000i −2.00000 + 2.00000i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 −0.707107 + 0.707107i −0.707107 + 0.707107i
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 −1.41421 −1.41421
213213 −1.41421 1.41421i −1.41421 1.41421i
214214 1.00000 1.00000i 1.00000 1.00000i
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 2.82843i 2.82843i
223223 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 0 0
229229 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 1.00000 1.00000
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
240240 0 0
241241 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
242242 0.707107 0.707107i 0.707107 0.707107i
243243 1.41421i 1.41421i
244244 0 0
245245 0 0
246246 2.00000i 2.00000i
247247 0 0
248248 1.41421i 1.41421i
249249 −2.00000 + 2.00000i −2.00000 + 2.00000i
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 1.41421 1.41421i 1.41421 1.41421i
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 1.41421 1.41421i 1.41421 1.41421i
268268 1.41421 1.41421i 1.41421 1.41421i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
278278 0 0
279279 −1.00000 + 1.00000i −1.00000 + 1.00000i
280280 0 0
281281 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
282282 0 0
283283 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
284284 1.00000 + 1.00000i 1.00000 + 1.00000i
285285 0 0
286286 0 0
287287 0 0
288288 −0.707107 0.707107i −0.707107 0.707107i
289289 1.00000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
294294 1.00000 + 1.00000i 1.00000 + 1.00000i
295295 0 0
296296 2.00000i 2.00000i
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 1.41421i 1.41421i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 −1.41421 −1.41421
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 1.00000 1.00000i 1.00000 1.00000i
315315 0 0
316316 0 0
317317 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
318318 −1.41421 1.41421i −1.41421 1.41421i
319319 0 0
320320 0 0
321321 2.00000 2.00000
322322 0 0
323323 0 0
324324 1.00000i 1.00000i
325325 0 0
326326 0 0
327327 0 0
328328 1.41421i 1.41421i
329329 0 0
330330 0 0
331331 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
332332 1.41421 1.41421i 1.41421 1.41421i
333333 −1.41421 + 1.41421i −1.41421 + 1.41421i
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 −0.707107 + 0.707107i −0.707107 + 0.707107i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 −1.00000 + 1.00000i −1.00000 + 1.00000i
345345 0 0
346346 −1.00000 1.00000i −1.00000 1.00000i
347347 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
348348 0 0
349349 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
354354 0 0
355355 0 0
356356 −1.00000 + 1.00000i −1.00000 + 1.00000i
357357 0 0
358358 0 0
359359 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
360360 0 0
361361 1.00000i 1.00000i
362362 0 0
363363 1.41421 1.41421
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 1.00000 1.00000i 1.00000 1.00000i
370370 0 0
371371 0 0
372372 1.41421 1.41421i 1.41421 1.41421i
373373 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
380380 0 0
381381 0 0
382382 1.41421 + 1.41421i 1.41421 + 1.41421i
383383 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
384384 1.00000 + 1.00000i 1.00000 + 1.00000i
385385 0 0
386386 0 0
387387 1.41421 1.41421
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 −0.707107 0.707107i −0.707107 0.707107i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
398398 0 0
399399 0 0
400400 0 0
401401 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
402402 2.82843 2.82843
403403 1.41421i 1.41421i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 1.00000 1.00000
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
422422 0 0
423423 0 0
424424 1.00000 + 1.00000i 1.00000 + 1.00000i
425425 0 0
426426 2.00000i 2.00000i
427427 0 0
428428 −1.41421 −1.41421
429429 0 0
430430 0 0
431431 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 1.00000i 1.00000i
442442 0 0
443443 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
444444 2.00000 2.00000i 2.00000 2.00000i
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 1.41421 1.41421i 1.41421 1.41421i
454454 0 0
455455 0 0
456456 0 0
457457 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
462462 0 0
463463 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
464464 0 0
465465 0 0
466466 0 0
467467 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
468468 −0.707107 0.707107i −0.707107 0.707107i
469469 0 0
470470 0 0
471471 2.00000 2.00000
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 1.41421i 1.41421i
478478 −1.41421 −1.41421
479479 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
480480 0 0
481481 2.00000i 2.00000i
482482 1.41421i 1.41421i
483483 0 0
484484 −1.00000 −1.00000
485485 0 0
486486 1.00000 1.00000i 1.00000 1.00000i
487487 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 −1.41421 + 1.41421i −1.41421 + 1.41421i
493493 0 0
494494 0 0
495495 0 0
496496 −1.00000 + 1.00000i −1.00000 + 1.00000i
497497 0 0
498498 2.82843 2.82843
499499 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 −1.41421 −1.41421
508508 0 0
509509 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
510510 0 0
511511 0 0
512512 −0.707107 0.707107i −0.707107 0.707107i
513513 0 0
514514 0 0
515515 0 0
516516 −2.00000 −2.00000
517517 0 0
518518 0 0
519519 2.00000i 2.00000i
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 1.00000 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 1.41421i 1.41421i
534534 −2.00000 −2.00000
535535 0 0
536536 −2.00000 −2.00000
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
542542 1.41421i 1.41421i
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 1.00000 + 1.00000i 1.00000 + 1.00000i
555555 0 0
556556 0 0
557557 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
558558 1.41421 1.41421
559559 −1.00000 + 1.00000i −1.00000 + 1.00000i
560560 0 0
561561 0 0
562562 1.41421i 1.41421i
563563 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 0 0
566566 −1.00000 1.00000i −1.00000 1.00000i
567567 0 0
568568 1.41421i 1.41421i
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 2.82843i 2.82843i
574574 0 0
575575 0 0
576576 1.00000i 1.00000i
577577 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
578578 −0.707107 0.707107i −0.707107 0.707107i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
588588 1.41421i 1.41421i
589589 0 0
590590 0 0
591591 0 0
592592 −1.41421 + 1.41421i −1.41421 + 1.41421i
593593 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 2.00000 2.00000 1.00000 00
1.00000 00
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 1.41421 + 1.41421i 1.41421 + 1.41421i
604604 −1.00000 + 1.00000i −1.00000 + 1.00000i
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
614614 −2.00000 −2.00000
615615 0 0
616616 0 0
617617 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
618618 0 0
619619 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 1.00000 + 1.00000i 1.00000 + 1.00000i
625625 0 0
626626 0 0
627627 0 0
628628 −1.41421 −1.41421
629629 0 0
630630 0 0
631631 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 2.00000i 2.00000i
637637 −0.707107 0.707107i −0.707107 0.707107i
638638 0 0
639639 −1.00000 + 1.00000i −1.00000 + 1.00000i
640640 0 0
641641 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
642642 −1.41421 1.41421i −1.41421 1.41421i
643643 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 −0.707107 + 0.707107i −0.707107 + 0.707107i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
654654 0 0
655655 0 0
656656 1.00000 1.00000i 1.00000 1.00000i
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
662662 0 0
663663 0 0
664664 −2.00000 −2.00000
665665 0 0
666666 2.00000 2.00000
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 1.00000 1.00000
677677 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 1.41421 1.41421
689689 1.00000 + 1.00000i 1.00000 + 1.00000i
690690 0 0
691691 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
692692 1.41421i 1.41421i
693693 0 0
694694 1.00000 1.00000i 1.00000 1.00000i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
710710 0 0
711711 0 0
712712 1.41421 1.41421
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 −1.41421 1.41421i −1.41421 1.41421i
718718 1.41421i 1.41421i
719719 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
720720 0 0
721721 0 0
722722 −0.707107 + 0.707107i −0.707107 + 0.707107i
723723 1.41421 1.41421i 1.41421 1.41421i
724724 0 0
725725 0 0
726726 −1.00000 1.00000i −1.00000 1.00000i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 −1.41421 −1.41421
739739 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
744744 −2.00000 −2.00000
745745 0 0
746746 −1.00000 + 1.00000i −1.00000 + 1.00000i
747747 1.41421 + 1.41421i 1.41421 + 1.41421i
748748 0 0
749749 0 0
750750 0 0
751751 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
758758 0 0
759759 0 0
760760 0 0
761761 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 2.00000i 2.00000i
765765 0 0
766766 0 0
767767 0 0
768768 1.41421i 1.41421i
769769 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
774774 −1.00000 1.00000i −1.00000 1.00000i
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000i 1.00000i
785785 0 0
786786 0 0
787787 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
798798 0 0
799799 0 0
800800 0 0
801801 −1.00000 1.00000i −1.00000 1.00000i
802802 1.41421i 1.41421i
803803 0 0
804804 −2.00000 2.00000i −2.00000 2.00000i
805805 0 0
806806 −1.00000 + 1.00000i −1.00000 + 1.00000i
807807 0 0
808808 0 0
809809 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
810810 0 0
811811 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
812812 0 0
813813 1.41421 1.41421i 1.41421 1.41421i
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −1.41421 −1.41421
819819 0 0
820820 0 0
821821 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 2.00000i 2.00000i
832832 −0.707107 0.707107i −0.707107 0.707107i
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 −1.41421 + 1.41421i −1.41421 + 1.41421i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 1.41421i 1.41421i
849849 2.00000i 2.00000i
850850 0 0
851851 0 0
852852 1.41421 1.41421i 1.41421 1.41421i
853853 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
854854 0 0
855855 0 0
856856 1.00000 + 1.00000i 1.00000 + 1.00000i
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 −1.41421 −1.41421
863863 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
864864 0 0
865865 0 0
866866 0 0
867867 1.41421i 1.41421i
868868 0 0
869869 0 0
870870 0 0
871871 −2.00000 −2.00000
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
878878 1.41421 1.41421i 1.41421 1.41421i
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0.707107 0.707107i 0.707107 0.707107i
883883 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
884884 0 0
885885 0 0
886886 1.00000 1.00000i 1.00000 1.00000i
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 −2.82843 −2.82843
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 1.41421i 1.41421i
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 −2.00000 −2.00000
907907 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
908908 0 0
909909 0 0
910910 0 0
911911 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 2.00000 2.00000 1.00000 00
1.00000 00
920920 0 0
921921 −2.00000 2.00000i −2.00000 2.00000i
922922 0 0
923923 1.41421i 1.41421i
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 −1.00000 1.00000i −1.00000 1.00000i
935935 0 0
936936 1.00000i 1.00000i
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
942942 −1.41421 1.41421i −1.41421 1.41421i
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 −1.00000 + 1.00000i −1.00000 + 1.00000i
955955 0 0
956956 1.00000 + 1.00000i 1.00000 + 1.00000i
957957 0 0
958958 1.41421i 1.41421i
959959 0 0
960960 0 0
961961 1.00000i 1.00000i
962962 −1.41421 + 1.41421i −1.41421 + 1.41421i
963963 1.41421i 1.41421i
964964 −1.00000 + 1.00000i −1.00000 + 1.00000i
965965 0 0
966966 0 0
967967 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
968968 0.707107 + 0.707107i 0.707107 + 0.707107i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 −1.41421 −1.41421
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
984984 2.00000 2.00000
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 1.41421 1.41421
993993 0 0
994994 0 0
995995 0 0
996996 −2.00000 2.00000i −2.00000 2.00000i
997997 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.1.r.a.2501.1 4
5.2 odd 4 520.1.bo.a.109.2 yes 4
5.3 odd 4 520.1.bo.a.109.1 4
5.4 even 2 inner 2600.1.r.a.2501.2 4
8.5 even 2 inner 2600.1.r.a.2501.2 4
13.8 odd 4 inner 2600.1.r.a.2101.2 4
20.3 even 4 2080.1.cs.a.369.1 4
20.7 even 4 2080.1.cs.a.369.2 4
40.3 even 4 2080.1.cs.a.369.2 4
40.13 odd 4 520.1.bo.a.109.2 yes 4
40.27 even 4 2080.1.cs.a.369.1 4
40.29 even 2 RM 2600.1.r.a.2501.1 4
40.37 odd 4 520.1.bo.a.109.1 4
65.8 even 4 520.1.bo.a.229.1 yes 4
65.34 odd 4 inner 2600.1.r.a.2101.1 4
65.47 even 4 520.1.bo.a.229.2 yes 4
104.21 odd 4 inner 2600.1.r.a.2101.1 4
260.47 odd 4 2080.1.cs.a.1009.2 4
260.203 odd 4 2080.1.cs.a.1009.1 4
520.203 odd 4 2080.1.cs.a.1009.2 4
520.229 odd 4 inner 2600.1.r.a.2101.2 4
520.307 odd 4 2080.1.cs.a.1009.1 4
520.333 even 4 520.1.bo.a.229.2 yes 4
520.437 even 4 520.1.bo.a.229.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.1.bo.a.109.1 4 5.3 odd 4
520.1.bo.a.109.1 4 40.37 odd 4
520.1.bo.a.109.2 yes 4 5.2 odd 4
520.1.bo.a.109.2 yes 4 40.13 odd 4
520.1.bo.a.229.1 yes 4 65.8 even 4
520.1.bo.a.229.1 yes 4 520.437 even 4
520.1.bo.a.229.2 yes 4 65.47 even 4
520.1.bo.a.229.2 yes 4 520.333 even 4
2080.1.cs.a.369.1 4 20.3 even 4
2080.1.cs.a.369.1 4 40.27 even 4
2080.1.cs.a.369.2 4 20.7 even 4
2080.1.cs.a.369.2 4 40.3 even 4
2080.1.cs.a.1009.1 4 260.203 odd 4
2080.1.cs.a.1009.1 4 520.307 odd 4
2080.1.cs.a.1009.2 4 260.47 odd 4
2080.1.cs.a.1009.2 4 520.203 odd 4
2600.1.r.a.2101.1 4 65.34 odd 4 inner
2600.1.r.a.2101.1 4 104.21 odd 4 inner
2600.1.r.a.2101.2 4 13.8 odd 4 inner
2600.1.r.a.2101.2 4 520.229 odd 4 inner
2600.1.r.a.2501.1 4 1.1 even 1 trivial
2600.1.r.a.2501.1 4 40.29 even 2 RM
2600.1.r.a.2501.2 4 5.4 even 2 inner
2600.1.r.a.2501.2 4 8.5 even 2 inner