Properties

Label 21.18.a.b.1.4
Level $21$
Weight $18$
Character 21.1
Self dual yes
Analytic conductor $38.477$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [21,18,Mod(1,21)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("21.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 21.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.4766383424\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 401750x^{2} - 42202572x + 5013099432 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(673.806\) of defining polynomial
Character \(\chi\) \(=\) 21.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+579.806 q^{2} -6561.00 q^{3} +205104. q^{4} +3275.54 q^{5} -3.80411e6 q^{6} -5.76480e6 q^{7} +4.29240e7 q^{8} +4.30467e7 q^{9} +O(q^{10})\) \(q+579.806 q^{2} -6561.00 q^{3} +205104. q^{4} +3275.54 q^{5} -3.80411e6 q^{6} -5.76480e6 q^{7} +4.29240e7 q^{8} +4.30467e7 q^{9} +1.89918e6 q^{10} -5.18037e8 q^{11} -1.34568e9 q^{12} -2.75126e9 q^{13} -3.34247e9 q^{14} -2.14908e7 q^{15} -1.99573e9 q^{16} +1.79277e10 q^{17} +2.49588e10 q^{18} -9.37067e9 q^{19} +6.71824e8 q^{20} +3.78229e10 q^{21} -3.00361e11 q^{22} -2.27276e11 q^{23} -2.81624e11 q^{24} -7.62929e11 q^{25} -1.59520e12 q^{26} -2.82430e11 q^{27} -1.18238e12 q^{28} -4.34800e12 q^{29} -1.24605e10 q^{30} -3.53323e10 q^{31} -6.78327e12 q^{32} +3.39884e12 q^{33} +1.03946e13 q^{34} -1.88828e10 q^{35} +8.82904e12 q^{36} +1.79145e13 q^{37} -5.43317e12 q^{38} +1.80510e13 q^{39} +1.40599e11 q^{40} +5.22632e12 q^{41} +2.19299e13 q^{42} -6.97711e13 q^{43} -1.06251e14 q^{44} +1.41001e11 q^{45} -1.31776e14 q^{46} -1.91799e13 q^{47} +1.30940e13 q^{48} +3.32329e13 q^{49} -4.42351e14 q^{50} -1.17623e14 q^{51} -5.64294e14 q^{52} +2.13105e14 q^{53} -1.63754e14 q^{54} -1.69685e12 q^{55} -2.47448e14 q^{56} +6.14810e13 q^{57} -2.52100e15 q^{58} +1.09480e15 q^{59} -4.40784e12 q^{60} -1.01854e15 q^{61} -2.04859e13 q^{62} -2.48156e14 q^{63} -3.67140e15 q^{64} -9.01186e12 q^{65} +1.97067e15 q^{66} +5.44758e14 q^{67} +3.67703e15 q^{68} +1.49115e15 q^{69} -1.09484e13 q^{70} +7.36700e15 q^{71} +1.84774e15 q^{72} +7.63541e15 q^{73} +1.03870e16 q^{74} +5.00558e15 q^{75} -1.92196e15 q^{76} +2.98638e15 q^{77} +1.04661e16 q^{78} -1.89661e16 q^{79} -6.53709e12 q^{80} +1.85302e15 q^{81} +3.03025e15 q^{82} -1.88245e16 q^{83} +7.75760e15 q^{84} +5.87228e13 q^{85} -4.04538e16 q^{86} +2.85272e16 q^{87} -2.22362e16 q^{88} +6.24578e16 q^{89} +8.17534e13 q^{90} +1.58605e16 q^{91} -4.66150e16 q^{92} +2.31815e14 q^{93} -1.11206e16 q^{94} -3.06940e13 q^{95} +4.45050e16 q^{96} -1.04148e14 q^{97} +1.92687e16 q^{98} -2.22998e16 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 375 q^{2} - 26244 q^{3} + 314369 q^{4} - 154140 q^{5} + 2460375 q^{6} - 23059204 q^{7} - 3766143 q^{8} + 172186884 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 375 q^{2} - 26244 q^{3} + 314369 q^{4} - 154140 q^{5} + 2460375 q^{6} - 23059204 q^{7} - 3766143 q^{8} + 172186884 q^{9} + 23352830 q^{10} - 1452022884 q^{11} - 2062575009 q^{12} + 1793559040 q^{13} + 2161800375 q^{14} + 1011312540 q^{15} + 36719981057 q^{16} + 68581449948 q^{17} - 16142520375 q^{18} - 2578000592 q^{19} + 132998517630 q^{20} + 151291437444 q^{21} + 270530423852 q^{22} + 649239533556 q^{23} + 24709664223 q^{24} - 708242296300 q^{25} - 2508729280746 q^{26} - 1129718145924 q^{27} - 1812274725569 q^{28} - 3258162962760 q^{29} - 153217917630 q^{30} + 2414795507136 q^{31} - 18040133068671 q^{32} + 9526722141924 q^{33} + 8860338750210 q^{34} + 888586426140 q^{35} + 13532554634049 q^{36} + 23164217924208 q^{37} - 67011195804708 q^{38} - 11767540861440 q^{39} - 115859765446530 q^{40} - 117516076237164 q^{41} - 14183572260375 q^{42} - 175144919320720 q^{43} - 379640394802500 q^{44} - 6635221574940 q^{45} - 441875935197000 q^{46} - 392013343869480 q^{47} - 240919795714977 q^{48} + 132931722278404 q^{49} - 366102837059625 q^{50} - 449962893108828 q^{51} - 647834999852794 q^{52} - 86395731614976 q^{53} + 105911076180375 q^{54} - 987784569502880 q^{55} + 21711064932543 q^{56} + 16914261884112 q^{57} - 21\!\cdots\!66 q^{58}+ \cdots - 62\!\cdots\!64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 579.806 1.60150 0.800752 0.598996i \(-0.204433\pi\)
0.800752 + 0.598996i \(0.204433\pi\)
\(3\) −6561.00 −0.577350
\(4\) 205104. 1.56482
\(5\) 3275.54 0.00375005 0.00187503 0.999998i \(-0.499403\pi\)
0.00187503 + 0.999998i \(0.499403\pi\)
\(6\) −3.80411e6 −0.924629
\(7\) −5.76480e6 −0.377964
\(8\) 4.29240e7 0.904555
\(9\) 4.30467e7 0.333333
\(10\) 1.89918e6 0.00600573
\(11\) −5.18037e8 −0.728657 −0.364328 0.931271i \(-0.618701\pi\)
−0.364328 + 0.931271i \(0.618701\pi\)
\(12\) −1.34568e9 −0.903447
\(13\) −2.75126e9 −0.935435 −0.467717 0.883878i \(-0.654924\pi\)
−0.467717 + 0.883878i \(0.654924\pi\)
\(14\) −3.34247e9 −0.605312
\(15\) −2.14908e7 −0.00216509
\(16\) −1.99573e9 −0.116167
\(17\) 1.79277e10 0.623316 0.311658 0.950194i \(-0.399116\pi\)
0.311658 + 0.950194i \(0.399116\pi\)
\(18\) 2.49588e10 0.533835
\(19\) −9.37067e9 −0.126580 −0.0632900 0.997995i \(-0.520159\pi\)
−0.0632900 + 0.997995i \(0.520159\pi\)
\(20\) 6.71824e8 0.00586814
\(21\) 3.78229e10 0.218218
\(22\) −3.00361e11 −1.16695
\(23\) −2.27276e11 −0.605154 −0.302577 0.953125i \(-0.597847\pi\)
−0.302577 + 0.953125i \(0.597847\pi\)
\(24\) −2.81624e11 −0.522245
\(25\) −7.62929e11 −0.999986
\(26\) −1.59520e12 −1.49810
\(27\) −2.82430e11 −0.192450
\(28\) −1.18238e12 −0.591445
\(29\) −4.34800e12 −1.61401 −0.807006 0.590544i \(-0.798913\pi\)
−0.807006 + 0.590544i \(0.798913\pi\)
\(30\) −1.24605e10 −0.00346741
\(31\) −3.53323e10 −0.00744042 −0.00372021 0.999993i \(-0.501184\pi\)
−0.00372021 + 0.999993i \(0.501184\pi\)
\(32\) −6.78327e12 −1.09060
\(33\) 3.39884e12 0.420690
\(34\) 1.03946e13 0.998243
\(35\) −1.88828e10 −0.00141739
\(36\) 8.82904e12 0.521605
\(37\) 1.79145e13 0.838475 0.419238 0.907877i \(-0.362297\pi\)
0.419238 + 0.907877i \(0.362297\pi\)
\(38\) −5.43317e12 −0.202718
\(39\) 1.80510e13 0.540074
\(40\) 1.40599e11 0.00339213
\(41\) 5.22632e12 0.102219 0.0511097 0.998693i \(-0.483724\pi\)
0.0511097 + 0.998693i \(0.483724\pi\)
\(42\) 2.19299e13 0.349477
\(43\) −6.97711e13 −0.910320 −0.455160 0.890410i \(-0.650418\pi\)
−0.455160 + 0.890410i \(0.650418\pi\)
\(44\) −1.06251e14 −1.14021
\(45\) 1.41001e11 0.00125002
\(46\) −1.31776e14 −0.969157
\(47\) −1.91799e13 −0.117494 −0.0587469 0.998273i \(-0.518710\pi\)
−0.0587469 + 0.998273i \(0.518710\pi\)
\(48\) 1.30940e13 0.0670690
\(49\) 3.32329e13 0.142857
\(50\) −4.42351e14 −1.60148
\(51\) −1.17623e14 −0.359872
\(52\) −5.64294e14 −1.46378
\(53\) 2.13105e14 0.470164 0.235082 0.971976i \(-0.424464\pi\)
0.235082 + 0.971976i \(0.424464\pi\)
\(54\) −1.63754e14 −0.308210
\(55\) −1.69685e12 −0.00273250
\(56\) −2.47448e14 −0.341890
\(57\) 6.14810e13 0.0730810
\(58\) −2.52100e15 −2.58485
\(59\) 1.09480e15 0.970721 0.485360 0.874314i \(-0.338688\pi\)
0.485360 + 0.874314i \(0.338688\pi\)
\(60\) −4.40784e12 −0.00338797
\(61\) −1.01854e15 −0.680261 −0.340130 0.940378i \(-0.610471\pi\)
−0.340130 + 0.940378i \(0.610471\pi\)
\(62\) −2.04859e13 −0.0119159
\(63\) −2.48156e14 −0.125988
\(64\) −3.67140e15 −1.63043
\(65\) −9.01186e12 −0.00350793
\(66\) 1.97067e15 0.673737
\(67\) 5.44758e14 0.163896 0.0819480 0.996637i \(-0.473886\pi\)
0.0819480 + 0.996637i \(0.473886\pi\)
\(68\) 3.67703e15 0.975374
\(69\) 1.49115e15 0.349386
\(70\) −1.09484e13 −0.00226995
\(71\) 7.36700e15 1.35393 0.676963 0.736017i \(-0.263296\pi\)
0.676963 + 0.736017i \(0.263296\pi\)
\(72\) 1.84774e15 0.301518
\(73\) 7.63541e15 1.10812 0.554061 0.832476i \(-0.313077\pi\)
0.554061 + 0.832476i \(0.313077\pi\)
\(74\) 1.03870e16 1.34282
\(75\) 5.00558e15 0.577342
\(76\) −1.92196e15 −0.198074
\(77\) 2.98638e15 0.275406
\(78\) 1.04661e16 0.864930
\(79\) −1.89661e16 −1.40653 −0.703264 0.710929i \(-0.748275\pi\)
−0.703264 + 0.710929i \(0.748275\pi\)
\(80\) −6.53709e12 −0.000435632 0
\(81\) 1.85302e15 0.111111
\(82\) 3.03025e15 0.163705
\(83\) −1.88245e16 −0.917404 −0.458702 0.888590i \(-0.651685\pi\)
−0.458702 + 0.888590i \(0.651685\pi\)
\(84\) 7.75760e15 0.341471
\(85\) 5.87228e13 0.00233747
\(86\) −4.04538e16 −1.45788
\(87\) 2.85272e16 0.931850
\(88\) −2.22362e16 −0.659110
\(89\) 6.24578e16 1.68179 0.840894 0.541199i \(-0.182030\pi\)
0.840894 + 0.541199i \(0.182030\pi\)
\(90\) 8.17534e13 0.00200191
\(91\) 1.58605e16 0.353561
\(92\) −4.66150e16 −0.946955
\(93\) 2.31815e14 0.00429573
\(94\) −1.11206e16 −0.188167
\(95\) −3.06940e13 −0.000474682 0
\(96\) 4.45050e16 0.629656
\(97\) −1.04148e14 −0.00134925 −0.000674625 1.00000i \(-0.500215\pi\)
−0.000674625 1.00000i \(0.500215\pi\)
\(98\) 1.92687e16 0.228786
\(99\) −2.22998e16 −0.242886
\(100\) −1.56479e17 −1.56479
\(101\) 1.12029e17 1.02943 0.514717 0.857360i \(-0.327897\pi\)
0.514717 + 0.857360i \(0.327897\pi\)
\(102\) −6.81988e16 −0.576336
\(103\) 9.18797e16 0.714666 0.357333 0.933977i \(-0.383686\pi\)
0.357333 + 0.933977i \(0.383686\pi\)
\(104\) −1.18095e17 −0.846153
\(105\) 1.23890e14 0.000818329 0
\(106\) 1.23560e17 0.752969
\(107\) 2.21720e16 0.124751 0.0623755 0.998053i \(-0.480132\pi\)
0.0623755 + 0.998053i \(0.480132\pi\)
\(108\) −5.79273e16 −0.301149
\(109\) 1.27584e17 0.613295 0.306648 0.951823i \(-0.400793\pi\)
0.306648 + 0.951823i \(0.400793\pi\)
\(110\) −9.83844e14 −0.00437611
\(111\) −1.17537e17 −0.484094
\(112\) 1.15050e16 0.0439070
\(113\) −1.26931e16 −0.0449159 −0.0224579 0.999748i \(-0.507149\pi\)
−0.0224579 + 0.999748i \(0.507149\pi\)
\(114\) 3.56471e16 0.117039
\(115\) −7.44449e14 −0.00226936
\(116\) −8.91790e17 −2.52563
\(117\) −1.18433e17 −0.311812
\(118\) 6.34775e17 1.55461
\(119\) −1.03349e17 −0.235591
\(120\) −9.22471e14 −0.00195845
\(121\) −2.37085e17 −0.469059
\(122\) −5.90558e17 −1.08944
\(123\) −3.42899e16 −0.0590164
\(124\) −7.24678e15 −0.0116429
\(125\) −4.99804e15 −0.00750005
\(126\) −1.43882e17 −0.201771
\(127\) 8.11706e17 1.06431 0.532154 0.846648i \(-0.321383\pi\)
0.532154 + 0.846648i \(0.321383\pi\)
\(128\) −1.23960e18 −1.52054
\(129\) 4.57768e17 0.525573
\(130\) −5.22514e15 −0.00561797
\(131\) −1.72605e18 −1.73879 −0.869393 0.494120i \(-0.835490\pi\)
−0.869393 + 0.494120i \(0.835490\pi\)
\(132\) 6.97115e17 0.658303
\(133\) 5.40200e16 0.0478427
\(134\) 3.15854e17 0.262480
\(135\) −9.25108e14 −0.000721698 0
\(136\) 7.69527e17 0.563824
\(137\) −2.11323e18 −1.45486 −0.727432 0.686180i \(-0.759286\pi\)
−0.727432 + 0.686180i \(0.759286\pi\)
\(138\) 8.64581e17 0.559543
\(139\) 3.19308e18 1.94349 0.971747 0.236023i \(-0.0758441\pi\)
0.971747 + 0.236023i \(0.0758441\pi\)
\(140\) −3.87293e15 −0.00221795
\(141\) 1.25839e17 0.0678351
\(142\) 4.27144e18 2.16832
\(143\) 1.42526e18 0.681611
\(144\) −8.59097e16 −0.0387223
\(145\) −1.42420e16 −0.00605263
\(146\) 4.42706e18 1.77466
\(147\) −2.18041e17 −0.0824786
\(148\) 3.67433e18 1.31206
\(149\) 2.79688e18 0.943172 0.471586 0.881820i \(-0.343682\pi\)
0.471586 + 0.881820i \(0.343682\pi\)
\(150\) 2.90227e18 0.924616
\(151\) −5.05909e18 −1.52324 −0.761619 0.648025i \(-0.775595\pi\)
−0.761619 + 0.648025i \(0.775595\pi\)
\(152\) −4.02226e17 −0.114499
\(153\) 7.71728e17 0.207772
\(154\) 1.73152e18 0.441065
\(155\) −1.15732e14 −2.79020e−5 0
\(156\) 3.70233e18 0.845116
\(157\) −8.30018e18 −1.79449 −0.897244 0.441535i \(-0.854434\pi\)
−0.897244 + 0.441535i \(0.854434\pi\)
\(158\) −1.09967e19 −2.25256
\(159\) −1.39818e18 −0.271449
\(160\) −2.22189e16 −0.00408980
\(161\) 1.31020e18 0.228727
\(162\) 1.07439e18 0.177945
\(163\) −1.08404e19 −1.70393 −0.851965 0.523599i \(-0.824589\pi\)
−0.851965 + 0.523599i \(0.824589\pi\)
\(164\) 1.07194e18 0.159954
\(165\) 1.11330e16 0.00157761
\(166\) −1.09146e19 −1.46923
\(167\) −1.05243e19 −1.34618 −0.673090 0.739561i \(-0.735033\pi\)
−0.673090 + 0.739561i \(0.735033\pi\)
\(168\) 1.62351e18 0.197390
\(169\) −1.08097e18 −0.124962
\(170\) 3.40478e16 0.00374346
\(171\) −4.03377e17 −0.0421933
\(172\) −1.43103e19 −1.42448
\(173\) −1.08672e19 −1.02973 −0.514867 0.857270i \(-0.672159\pi\)
−0.514867 + 0.857270i \(0.672159\pi\)
\(174\) 1.65403e19 1.49236
\(175\) 4.39813e18 0.377959
\(176\) 1.03386e18 0.0846458
\(177\) −7.18301e18 −0.560446
\(178\) 3.62134e19 2.69339
\(179\) −8.72527e18 −0.618768 −0.309384 0.950937i \(-0.600123\pi\)
−0.309384 + 0.950937i \(0.600123\pi\)
\(180\) 2.89198e16 0.00195605
\(181\) 5.32474e18 0.343582 0.171791 0.985133i \(-0.445045\pi\)
0.171791 + 0.985133i \(0.445045\pi\)
\(182\) 9.19601e18 0.566230
\(183\) 6.68266e18 0.392749
\(184\) −9.75557e18 −0.547395
\(185\) 5.86796e16 0.00314433
\(186\) 1.34408e17 0.00687963
\(187\) −9.28720e18 −0.454183
\(188\) −3.93387e18 −0.183856
\(189\) 1.62815e18 0.0727393
\(190\) −1.77966e16 −0.000760205 0
\(191\) −3.60001e19 −1.47069 −0.735343 0.677695i \(-0.762979\pi\)
−0.735343 + 0.677695i \(0.762979\pi\)
\(192\) 2.40881e19 0.941329
\(193\) −8.73885e18 −0.326751 −0.163376 0.986564i \(-0.552238\pi\)
−0.163376 + 0.986564i \(0.552238\pi\)
\(194\) −6.03858e16 −0.00216083
\(195\) 5.91268e16 0.00202530
\(196\) 6.81619e18 0.223545
\(197\) 5.93068e18 0.186270 0.0931348 0.995654i \(-0.470311\pi\)
0.0931348 + 0.995654i \(0.470311\pi\)
\(198\) −1.29296e19 −0.388982
\(199\) 4.98122e19 1.43577 0.717884 0.696162i \(-0.245111\pi\)
0.717884 + 0.696162i \(0.245111\pi\)
\(200\) −3.27479e19 −0.904543
\(201\) −3.57416e18 −0.0946253
\(202\) 6.49551e19 1.64864
\(203\) 2.50654e19 0.610039
\(204\) −2.41250e19 −0.563133
\(205\) 1.71190e16 0.000383328 0
\(206\) 5.32724e19 1.14454
\(207\) −9.78347e18 −0.201718
\(208\) 5.49078e18 0.108667
\(209\) 4.85435e18 0.0922334
\(210\) 7.18323e16 0.00131056
\(211\) −4.19793e19 −0.735587 −0.367793 0.929908i \(-0.619887\pi\)
−0.367793 + 0.929908i \(0.619887\pi\)
\(212\) 4.37086e19 0.735720
\(213\) −4.83349e19 −0.781689
\(214\) 1.28555e19 0.199789
\(215\) −2.28538e17 −0.00341375
\(216\) −1.21230e19 −0.174082
\(217\) 2.03684e17 0.00281221
\(218\) 7.39738e19 0.982195
\(219\) −5.00959e19 −0.639775
\(220\) −3.48030e17 −0.00427586
\(221\) −4.93237e19 −0.583071
\(222\) −6.81488e19 −0.775279
\(223\) 1.40489e20 1.53833 0.769165 0.639050i \(-0.220672\pi\)
0.769165 + 0.639050i \(0.220672\pi\)
\(224\) 3.91042e19 0.412207
\(225\) −3.28416e19 −0.333329
\(226\) −7.35952e18 −0.0719329
\(227\) −1.34756e20 −1.26861 −0.634306 0.773082i \(-0.718714\pi\)
−0.634306 + 0.773082i \(0.718714\pi\)
\(228\) 1.26100e19 0.114358
\(229\) 1.16495e19 0.101790 0.0508949 0.998704i \(-0.483793\pi\)
0.0508949 + 0.998704i \(0.483793\pi\)
\(230\) −4.31637e17 −0.00363439
\(231\) −1.95936e19 −0.159006
\(232\) −1.86633e20 −1.45996
\(233\) 2.09012e20 1.57632 0.788162 0.615467i \(-0.211033\pi\)
0.788162 + 0.615467i \(0.211033\pi\)
\(234\) −6.86681e19 −0.499368
\(235\) −6.28246e16 −0.000440608 0
\(236\) 2.24548e20 1.51900
\(237\) 1.24437e20 0.812059
\(238\) −5.99227e19 −0.377300
\(239\) 1.30388e20 0.792235 0.396117 0.918200i \(-0.370357\pi\)
0.396117 + 0.918200i \(0.370357\pi\)
\(240\) 4.28899e16 0.000251512 0
\(241\) 9.89039e18 0.0559846 0.0279923 0.999608i \(-0.491089\pi\)
0.0279923 + 0.999608i \(0.491089\pi\)
\(242\) −1.37463e20 −0.751200
\(243\) −1.21577e19 −0.0641500
\(244\) −2.08907e20 −1.06448
\(245\) 1.08856e17 0.000535722 0
\(246\) −1.98815e19 −0.0945150
\(247\) 2.57812e19 0.118407
\(248\) −1.51660e18 −0.00673027
\(249\) 1.23508e20 0.529663
\(250\) −2.89789e18 −0.0120114
\(251\) −4.45770e20 −1.78601 −0.893006 0.450044i \(-0.851408\pi\)
−0.893006 + 0.450044i \(0.851408\pi\)
\(252\) −5.08976e19 −0.197148
\(253\) 1.17737e20 0.440950
\(254\) 4.70632e20 1.70449
\(255\) −3.85280e17 −0.00134954
\(256\) −2.37513e20 −0.804725
\(257\) 6.48375e19 0.212518 0.106259 0.994339i \(-0.466113\pi\)
0.106259 + 0.994339i \(0.466113\pi\)
\(258\) 2.65417e20 0.841708
\(259\) −1.03274e20 −0.316914
\(260\) −1.84837e18 −0.00548927
\(261\) −1.87167e20 −0.538004
\(262\) −1.00077e21 −2.78467
\(263\) −8.96789e19 −0.241583 −0.120791 0.992678i \(-0.538543\pi\)
−0.120791 + 0.992678i \(0.538543\pi\)
\(264\) 1.45892e20 0.380538
\(265\) 6.98034e17 0.00176314
\(266\) 3.13212e19 0.0766203
\(267\) −4.09785e20 −0.970981
\(268\) 1.11732e20 0.256467
\(269\) −7.76453e20 −1.72672 −0.863358 0.504592i \(-0.831643\pi\)
−0.863358 + 0.504592i \(0.831643\pi\)
\(270\) −5.36384e17 −0.00115580
\(271\) −4.82686e20 −1.00792 −0.503960 0.863727i \(-0.668124\pi\)
−0.503960 + 0.863727i \(0.668124\pi\)
\(272\) −3.57788e19 −0.0724087
\(273\) −1.04061e20 −0.204129
\(274\) −1.22527e21 −2.32997
\(275\) 3.95225e20 0.728647
\(276\) 3.05841e20 0.546725
\(277\) 9.59440e20 1.66318 0.831591 0.555388i \(-0.187430\pi\)
0.831591 + 0.555388i \(0.187430\pi\)
\(278\) 1.85137e21 3.11252
\(279\) −1.52094e18 −0.00248014
\(280\) −8.10526e17 −0.00128210
\(281\) 9.16949e19 0.140715 0.0703577 0.997522i \(-0.477586\pi\)
0.0703577 + 0.997522i \(0.477586\pi\)
\(282\) 7.29626e19 0.108638
\(283\) 8.26069e18 0.0119353 0.00596763 0.999982i \(-0.498100\pi\)
0.00596763 + 0.999982i \(0.498100\pi\)
\(284\) 1.51100e21 2.11864
\(285\) 2.01383e17 0.000274058 0
\(286\) 8.26373e20 1.09160
\(287\) −3.01287e19 −0.0386353
\(288\) −2.91998e20 −0.363532
\(289\) −5.05839e20 −0.611477
\(290\) −8.25762e18 −0.00969331
\(291\) 6.83317e17 0.000778990 0
\(292\) 1.56605e21 1.73401
\(293\) −4.22662e20 −0.454588 −0.227294 0.973826i \(-0.572988\pi\)
−0.227294 + 0.973826i \(0.572988\pi\)
\(294\) −1.26422e20 −0.132090
\(295\) 3.58607e18 0.00364025
\(296\) 7.68962e20 0.758447
\(297\) 1.46309e20 0.140230
\(298\) 1.62165e21 1.51049
\(299\) 6.25295e20 0.566082
\(300\) 1.02666e21 0.903434
\(301\) 4.02217e20 0.344069
\(302\) −2.93329e21 −2.43947
\(303\) −7.35022e20 −0.594344
\(304\) 1.87013e19 0.0147044
\(305\) −3.33627e18 −0.00255101
\(306\) 4.47453e20 0.332748
\(307\) 6.52210e20 0.471749 0.235874 0.971784i \(-0.424205\pi\)
0.235874 + 0.971784i \(0.424205\pi\)
\(308\) 6.12517e20 0.430960
\(309\) −6.02822e20 −0.412612
\(310\) −6.71023e16 −4.46851e−5 0
\(311\) −8.44362e20 −0.547098 −0.273549 0.961858i \(-0.588198\pi\)
−0.273549 + 0.961858i \(0.588198\pi\)
\(312\) 7.74822e20 0.488526
\(313\) 2.89142e21 1.77413 0.887063 0.461648i \(-0.152742\pi\)
0.887063 + 0.461648i \(0.152742\pi\)
\(314\) −4.81250e21 −2.87388
\(315\) −8.12843e17 −0.000472462 0
\(316\) −3.89002e21 −2.20096
\(317\) −9.42786e20 −0.519290 −0.259645 0.965704i \(-0.583605\pi\)
−0.259645 + 0.965704i \(0.583605\pi\)
\(318\) −8.10675e20 −0.434727
\(319\) 2.25243e21 1.17606
\(320\) −1.20258e19 −0.00611420
\(321\) −1.45471e20 −0.0720250
\(322\) 7.59661e20 0.366307
\(323\) −1.67994e20 −0.0788993
\(324\) 3.80061e20 0.173868
\(325\) 2.09902e21 0.935422
\(326\) −6.28535e21 −2.72885
\(327\) −8.37076e20 −0.354086
\(328\) 2.24334e20 0.0924631
\(329\) 1.10568e20 0.0444085
\(330\) 6.45500e18 0.00252655
\(331\) 3.02132e21 1.15255 0.576273 0.817257i \(-0.304507\pi\)
0.576273 + 0.817257i \(0.304507\pi\)
\(332\) −3.86098e21 −1.43557
\(333\) 7.71161e20 0.279492
\(334\) −6.10206e21 −2.15591
\(335\) 1.78438e18 0.000614618 0
\(336\) −7.54843e19 −0.0253497
\(337\) 2.52365e20 0.0826370 0.0413185 0.999146i \(-0.486844\pi\)
0.0413185 + 0.999146i \(0.486844\pi\)
\(338\) −6.26753e20 −0.200127
\(339\) 8.32792e19 0.0259322
\(340\) 1.20442e19 0.00365771
\(341\) 1.83034e19 0.00542151
\(342\) −2.33880e20 −0.0675728
\(343\) −1.91581e20 −0.0539949
\(344\) −2.99486e21 −0.823435
\(345\) 4.88433e18 0.00131022
\(346\) −6.30087e21 −1.64912
\(347\) −1.00182e21 −0.255853 −0.127927 0.991784i \(-0.540832\pi\)
−0.127927 + 0.991784i \(0.540832\pi\)
\(348\) 5.85104e21 1.45817
\(349\) 5.01500e21 1.21971 0.609853 0.792515i \(-0.291228\pi\)
0.609853 + 0.792515i \(0.291228\pi\)
\(350\) 2.55007e21 0.605303
\(351\) 7.77038e20 0.180025
\(352\) 3.51399e21 0.794671
\(353\) 1.06436e21 0.234965 0.117482 0.993075i \(-0.462518\pi\)
0.117482 + 0.993075i \(0.462518\pi\)
\(354\) −4.16476e21 −0.897557
\(355\) 2.41309e19 0.00507729
\(356\) 1.28103e22 2.63169
\(357\) 6.78076e20 0.136019
\(358\) −5.05897e21 −0.990960
\(359\) 5.12127e21 0.979660 0.489830 0.871818i \(-0.337059\pi\)
0.489830 + 0.871818i \(0.337059\pi\)
\(360\) 6.05233e18 0.00113071
\(361\) −5.39258e21 −0.983978
\(362\) 3.08732e21 0.550249
\(363\) 1.55551e21 0.270811
\(364\) 3.25304e21 0.553258
\(365\) 2.50101e19 0.00415552
\(366\) 3.87465e21 0.628989
\(367\) 9.39704e21 1.49049 0.745246 0.666789i \(-0.232332\pi\)
0.745246 + 0.666789i \(0.232332\pi\)
\(368\) 4.53581e20 0.0702989
\(369\) 2.24976e20 0.0340731
\(370\) 3.40228e19 0.00503565
\(371\) −1.22851e21 −0.177705
\(372\) 4.75461e19 0.00672202
\(373\) 7.91816e21 1.09421 0.547103 0.837065i \(-0.315731\pi\)
0.547103 + 0.837065i \(0.315731\pi\)
\(374\) −5.38478e21 −0.727377
\(375\) 3.27921e19 0.00433016
\(376\) −8.23279e20 −0.106280
\(377\) 1.19625e22 1.50980
\(378\) 9.44012e20 0.116492
\(379\) −1.41809e22 −1.71108 −0.855538 0.517739i \(-0.826774\pi\)
−0.855538 + 0.517739i \(0.826774\pi\)
\(380\) −6.29544e18 −0.000742789 0
\(381\) −5.32560e21 −0.614478
\(382\) −2.08731e22 −2.35531
\(383\) −4.11238e21 −0.453841 −0.226921 0.973913i \(-0.572866\pi\)
−0.226921 + 0.973913i \(0.572866\pi\)
\(384\) 8.13304e21 0.877885
\(385\) 9.78200e18 0.00103279
\(386\) −5.06684e21 −0.523293
\(387\) −3.00342e21 −0.303440
\(388\) −2.13612e19 −0.00211133
\(389\) −1.44560e22 −1.39790 −0.698949 0.715172i \(-0.746348\pi\)
−0.698949 + 0.715172i \(0.746348\pi\)
\(390\) 3.42821e19 0.00324353
\(391\) −4.07452e21 −0.377202
\(392\) 1.42649e21 0.129222
\(393\) 1.13246e22 1.00389
\(394\) 3.43865e21 0.298311
\(395\) −6.21242e19 −0.00527455
\(396\) −4.57377e21 −0.380071
\(397\) −9.68932e21 −0.788086 −0.394043 0.919092i \(-0.628924\pi\)
−0.394043 + 0.919092i \(0.628924\pi\)
\(398\) 2.88814e22 2.29939
\(399\) −3.54425e20 −0.0276220
\(400\) 1.52260e21 0.116165
\(401\) −1.34295e22 −1.00307 −0.501536 0.865137i \(-0.667232\pi\)
−0.501536 + 0.865137i \(0.667232\pi\)
\(402\) −2.07232e21 −0.151543
\(403\) 9.72084e19 0.00696003
\(404\) 2.29775e22 1.61087
\(405\) 6.06964e18 0.000416673 0
\(406\) 1.45331e22 0.976980
\(407\) −9.28038e21 −0.610961
\(408\) −5.04887e21 −0.325524
\(409\) −5.39990e19 −0.00340987 −0.00170493 0.999999i \(-0.500543\pi\)
−0.00170493 + 0.999999i \(0.500543\pi\)
\(410\) 9.92571e18 0.000613902 0
\(411\) 1.38649e22 0.839966
\(412\) 1.88448e22 1.11832
\(413\) −6.31133e21 −0.366898
\(414\) −5.67252e21 −0.323052
\(415\) −6.16605e19 −0.00344031
\(416\) 1.86626e22 1.02018
\(417\) −2.09498e22 −1.12208
\(418\) 2.81459e21 0.147712
\(419\) 1.07690e22 0.553805 0.276902 0.960898i \(-0.410692\pi\)
0.276902 + 0.960898i \(0.410692\pi\)
\(420\) 2.54103e19 0.00128053
\(421\) 5.68170e21 0.280595 0.140298 0.990109i \(-0.455194\pi\)
0.140298 + 0.990109i \(0.455194\pi\)
\(422\) −2.43398e22 −1.17805
\(423\) −8.25633e20 −0.0391646
\(424\) 9.14732e21 0.425289
\(425\) −1.36775e22 −0.623307
\(426\) −2.80249e22 −1.25188
\(427\) 5.87169e21 0.257114
\(428\) 4.54757e21 0.195212
\(429\) −9.35111e21 −0.393528
\(430\) −1.32508e20 −0.00546713
\(431\) 9.84323e21 0.398181 0.199091 0.979981i \(-0.436201\pi\)
0.199091 + 0.979981i \(0.436201\pi\)
\(432\) 5.63654e20 0.0223563
\(433\) −2.84959e22 −1.10824 −0.554121 0.832436i \(-0.686946\pi\)
−0.554121 + 0.832436i \(0.686946\pi\)
\(434\) 1.18097e20 0.00450377
\(435\) 9.34420e19 0.00349449
\(436\) 2.61679e22 0.959694
\(437\) 2.12972e21 0.0766004
\(438\) −2.90459e22 −1.02460
\(439\) −3.33148e22 −1.15263 −0.576314 0.817229i \(-0.695509\pi\)
−0.576314 + 0.817229i \(0.695509\pi\)
\(440\) −7.28355e19 −0.00247170
\(441\) 1.43057e21 0.0476190
\(442\) −2.85982e22 −0.933791
\(443\) −3.01681e22 −0.966310 −0.483155 0.875535i \(-0.660509\pi\)
−0.483155 + 0.875535i \(0.660509\pi\)
\(444\) −2.41073e22 −0.757518
\(445\) 2.04583e20 0.00630680
\(446\) 8.14562e22 2.46364
\(447\) −1.83503e22 −0.544541
\(448\) 2.11649e22 0.616244
\(449\) −3.27396e22 −0.935362 −0.467681 0.883897i \(-0.654910\pi\)
−0.467681 + 0.883897i \(0.654910\pi\)
\(450\) −1.90418e22 −0.533827
\(451\) −2.70743e21 −0.0744828
\(452\) −2.60339e21 −0.0702851
\(453\) 3.31927e22 0.879442
\(454\) −7.81325e22 −2.03169
\(455\) 5.19516e19 0.00132587
\(456\) 2.63901e21 0.0661058
\(457\) 5.71904e20 0.0140616 0.00703081 0.999975i \(-0.497762\pi\)
0.00703081 + 0.999975i \(0.497762\pi\)
\(458\) 6.75443e21 0.163017
\(459\) −5.06330e21 −0.119957
\(460\) −1.52689e20 −0.00355113
\(461\) 4.91378e22 1.12191 0.560955 0.827846i \(-0.310434\pi\)
0.560955 + 0.827846i \(0.310434\pi\)
\(462\) −1.13605e22 −0.254649
\(463\) −2.34238e22 −0.515488 −0.257744 0.966213i \(-0.582979\pi\)
−0.257744 + 0.966213i \(0.582979\pi\)
\(464\) 8.67744e21 0.187495
\(465\) 7.59319e17 1.61092e−5 0
\(466\) 1.21186e23 2.52449
\(467\) −8.59565e21 −0.175827 −0.0879134 0.996128i \(-0.528020\pi\)
−0.0879134 + 0.996128i \(0.528020\pi\)
\(468\) −2.42910e22 −0.487928
\(469\) −3.14042e21 −0.0619468
\(470\) −3.64261e19 −0.000705636 0
\(471\) 5.44575e22 1.03605
\(472\) 4.69934e22 0.878071
\(473\) 3.61440e22 0.663311
\(474\) 7.21492e22 1.30052
\(475\) 7.14915e21 0.126578
\(476\) −2.11973e22 −0.368657
\(477\) 9.17348e21 0.156721
\(478\) 7.55995e22 1.26877
\(479\) −7.95581e22 −1.31169 −0.655847 0.754894i \(-0.727688\pi\)
−0.655847 + 0.754894i \(0.727688\pi\)
\(480\) 1.45778e20 0.00236125
\(481\) −4.92875e22 −0.784339
\(482\) 5.73451e21 0.0896595
\(483\) −8.59621e21 −0.132055
\(484\) −4.86269e22 −0.733991
\(485\) −3.41141e17 −5.05976e−6 0
\(486\) −7.04909e21 −0.102737
\(487\) 1.05123e23 1.50558 0.752789 0.658262i \(-0.228708\pi\)
0.752789 + 0.658262i \(0.228708\pi\)
\(488\) −4.37199e22 −0.615334
\(489\) 7.11240e22 0.983764
\(490\) 6.31152e19 0.000857961 0
\(491\) 6.66515e22 0.890466 0.445233 0.895415i \(-0.353121\pi\)
0.445233 + 0.895415i \(0.353121\pi\)
\(492\) −7.03298e21 −0.0923498
\(493\) −7.79495e22 −1.00604
\(494\) 1.49481e22 0.189630
\(495\) −7.30438e19 −0.000910834 0
\(496\) 7.05138e19 0.000864331 0
\(497\) −4.24693e22 −0.511736
\(498\) 7.16106e22 0.848258
\(499\) 6.75512e22 0.786644 0.393322 0.919401i \(-0.371326\pi\)
0.393322 + 0.919401i \(0.371326\pi\)
\(500\) −1.02512e21 −0.0117362
\(501\) 6.90499e22 0.777217
\(502\) −2.58461e23 −2.86031
\(503\) −2.29329e22 −0.249535 −0.124767 0.992186i \(-0.539818\pi\)
−0.124767 + 0.992186i \(0.539818\pi\)
\(504\) −1.06518e22 −0.113963
\(505\) 3.66955e20 0.00386043
\(506\) 6.82648e22 0.706183
\(507\) 7.09224e21 0.0721466
\(508\) 1.66484e23 1.66544
\(509\) 8.80078e22 0.865805 0.432903 0.901441i \(-0.357489\pi\)
0.432903 + 0.901441i \(0.357489\pi\)
\(510\) −2.23388e20 −0.00216129
\(511\) −4.40166e22 −0.418831
\(512\) 2.47658e22 0.231771
\(513\) 2.64655e21 0.0243603
\(514\) 3.75932e22 0.340348
\(515\) 3.00955e20 0.00268003
\(516\) 9.38899e22 0.822426
\(517\) 9.93591e21 0.0856127
\(518\) −5.98787e22 −0.507539
\(519\) 7.12996e22 0.594518
\(520\) −3.86825e20 −0.00317312
\(521\) −1.23833e22 −0.0999342 −0.0499671 0.998751i \(-0.515912\pi\)
−0.0499671 + 0.998751i \(0.515912\pi\)
\(522\) −1.08521e23 −0.861615
\(523\) −2.10907e23 −1.64751 −0.823754 0.566947i \(-0.808124\pi\)
−0.823754 + 0.566947i \(0.808124\pi\)
\(524\) −3.54018e23 −2.72088
\(525\) −2.88561e22 −0.218215
\(526\) −5.19964e22 −0.386896
\(527\) −6.33426e20 −0.00463773
\(528\) −6.78318e21 −0.0488703
\(529\) −8.93959e22 −0.633788
\(530\) 4.04724e20 0.00282367
\(531\) 4.71277e22 0.323574
\(532\) 1.10797e22 0.0748651
\(533\) −1.43790e22 −0.0956195
\(534\) −2.37596e23 −1.55503
\(535\) 7.26254e19 0.000467823 0
\(536\) 2.33832e22 0.148253
\(537\) 5.72465e22 0.357246
\(538\) −4.50193e23 −2.76534
\(539\) −1.72159e22 −0.104094
\(540\) −1.89743e20 −0.00112932
\(541\) 2.98486e23 1.74883 0.874414 0.485181i \(-0.161246\pi\)
0.874414 + 0.485181i \(0.161246\pi\)
\(542\) −2.79864e23 −1.61419
\(543\) −3.49356e22 −0.198367
\(544\) −1.21608e23 −0.679786
\(545\) 4.17905e20 0.00229989
\(546\) −6.03350e22 −0.326913
\(547\) −1.30331e23 −0.695272 −0.347636 0.937630i \(-0.613016\pi\)
−0.347636 + 0.937630i \(0.613016\pi\)
\(548\) −4.33431e23 −2.27659
\(549\) −4.38449e22 −0.226754
\(550\) 2.29154e23 1.16693
\(551\) 4.07437e22 0.204302
\(552\) 6.40063e22 0.316039
\(553\) 1.09336e23 0.531618
\(554\) 5.56290e23 2.66359
\(555\) −3.84997e20 −0.00181538
\(556\) 6.54911e23 3.04121
\(557\) −1.64680e23 −0.753135 −0.376567 0.926389i \(-0.622896\pi\)
−0.376567 + 0.926389i \(0.622896\pi\)
\(558\) −8.81851e20 −0.00397195
\(559\) 1.91959e23 0.851545
\(560\) 3.76850e19 0.000164653 0
\(561\) 6.09333e22 0.262223
\(562\) 5.31653e22 0.225356
\(563\) −1.92575e23 −0.804041 −0.402020 0.915631i \(-0.631692\pi\)
−0.402020 + 0.915631i \(0.631692\pi\)
\(564\) 2.58101e22 0.106149
\(565\) −4.15766e19 −0.000168437 0
\(566\) 4.78960e21 0.0191144
\(567\) −1.06823e22 −0.0419961
\(568\) 3.16221e23 1.22470
\(569\) −5.49905e22 −0.209814 −0.104907 0.994482i \(-0.533454\pi\)
−0.104907 + 0.994482i \(0.533454\pi\)
\(570\) 1.16763e20 0.000438904 0
\(571\) 2.78347e23 1.03081 0.515407 0.856945i \(-0.327641\pi\)
0.515407 + 0.856945i \(0.327641\pi\)
\(572\) 2.92325e23 1.06660
\(573\) 2.36197e23 0.849101
\(574\) −1.74688e22 −0.0618746
\(575\) 1.73395e23 0.605146
\(576\) −1.58042e23 −0.543476
\(577\) 4.78014e23 1.61974 0.809872 0.586606i \(-0.199536\pi\)
0.809872 + 0.586606i \(0.199536\pi\)
\(578\) −2.93289e23 −0.979284
\(579\) 5.73356e22 0.188650
\(580\) −2.92109e21 −0.00947125
\(581\) 1.08520e23 0.346746
\(582\) 3.96191e20 0.00124756
\(583\) −1.10396e23 −0.342588
\(584\) 3.27742e23 1.00236
\(585\) −3.87931e20 −0.00116931
\(586\) −2.45062e23 −0.728025
\(587\) −4.85252e23 −1.42083 −0.710417 0.703781i \(-0.751494\pi\)
−0.710417 + 0.703781i \(0.751494\pi\)
\(588\) −4.47210e22 −0.129064
\(589\) 3.31087e20 0.000941808 0
\(590\) 2.07923e21 0.00582988
\(591\) −3.89112e22 −0.107543
\(592\) −3.57526e22 −0.0974031
\(593\) −1.11757e23 −0.300131 −0.150066 0.988676i \(-0.547948\pi\)
−0.150066 + 0.988676i \(0.547948\pi\)
\(594\) 8.48309e22 0.224579
\(595\) −3.38525e20 −0.000883480 0
\(596\) 5.73651e23 1.47589
\(597\) −3.26818e23 −0.828942
\(598\) 3.62550e23 0.906583
\(599\) −6.39355e23 −1.57621 −0.788105 0.615541i \(-0.788938\pi\)
−0.788105 + 0.615541i \(0.788938\pi\)
\(600\) 2.14859e23 0.522238
\(601\) 4.25977e23 1.02083 0.510415 0.859928i \(-0.329492\pi\)
0.510415 + 0.859928i \(0.329492\pi\)
\(602\) 2.33208e23 0.551027
\(603\) 2.34501e22 0.0546320
\(604\) −1.03764e24 −2.38359
\(605\) −7.76579e20 −0.00175900
\(606\) −4.26170e23 −0.951844
\(607\) −8.59210e23 −1.89232 −0.946162 0.323692i \(-0.895076\pi\)
−0.946162 + 0.323692i \(0.895076\pi\)
\(608\) 6.35638e22 0.138048
\(609\) −1.64454e23 −0.352206
\(610\) −1.93439e21 −0.00408546
\(611\) 5.27690e22 0.109908
\(612\) 1.58284e23 0.325125
\(613\) 1.71142e23 0.346690 0.173345 0.984861i \(-0.444542\pi\)
0.173345 + 0.984861i \(0.444542\pi\)
\(614\) 3.78155e23 0.755508
\(615\) −1.12318e20 −0.000221315 0
\(616\) 1.28187e23 0.249120
\(617\) 5.77283e23 1.10653 0.553267 0.833004i \(-0.313381\pi\)
0.553267 + 0.833004i \(0.313381\pi\)
\(618\) −3.49520e23 −0.660801
\(619\) −2.91521e23 −0.543625 −0.271813 0.962350i \(-0.587623\pi\)
−0.271813 + 0.962350i \(0.587623\pi\)
\(620\) −2.37371e19 −4.36615e−5 0
\(621\) 6.41893e22 0.116462
\(622\) −4.89567e23 −0.876180
\(623\) −3.60057e23 −0.635656
\(624\) −3.60250e22 −0.0627387
\(625\) 5.82052e23 0.999958
\(626\) 1.67646e24 2.84127
\(627\) −3.18494e22 −0.0532510
\(628\) −1.70240e24 −2.80804
\(629\) 3.21166e23 0.522635
\(630\) −4.71292e20 −0.000756650 0
\(631\) 2.96332e23 0.469385 0.234693 0.972070i \(-0.424592\pi\)
0.234693 + 0.972070i \(0.424592\pi\)
\(632\) −8.14102e23 −1.27228
\(633\) 2.75426e23 0.424691
\(634\) −5.46634e23 −0.831644
\(635\) 2.65877e21 0.00399121
\(636\) −2.86772e23 −0.424768
\(637\) −9.14325e22 −0.133634
\(638\) 1.30597e24 1.88347
\(639\) 3.17125e23 0.451309
\(640\) −4.06037e21 −0.00570211
\(641\) −7.56808e23 −1.04880 −0.524400 0.851472i \(-0.675710\pi\)
−0.524400 + 0.851472i \(0.675710\pi\)
\(642\) −8.43449e22 −0.115348
\(643\) 6.39882e23 0.863588 0.431794 0.901972i \(-0.357881\pi\)
0.431794 + 0.901972i \(0.357881\pi\)
\(644\) 2.68726e23 0.357915
\(645\) 1.49944e21 0.00197093
\(646\) −9.74042e22 −0.126358
\(647\) −6.61917e23 −0.847456 −0.423728 0.905789i \(-0.639279\pi\)
−0.423728 + 0.905789i \(0.639279\pi\)
\(648\) 7.95390e22 0.100506
\(649\) −5.67149e23 −0.707322
\(650\) 1.21702e24 1.49808
\(651\) −1.33637e21 −0.00162363
\(652\) −2.22341e24 −2.66634
\(653\) 1.60600e24 1.90101 0.950505 0.310710i \(-0.100567\pi\)
0.950505 + 0.310710i \(0.100567\pi\)
\(654\) −4.85342e23 −0.567071
\(655\) −5.65373e21 −0.00652054
\(656\) −1.04303e22 −0.0118745
\(657\) 3.28679e23 0.369374
\(658\) 6.41083e22 0.0711204
\(659\) −7.03602e23 −0.770550 −0.385275 0.922802i \(-0.625893\pi\)
−0.385275 + 0.922802i \(0.625893\pi\)
\(660\) 2.28342e21 0.00246867
\(661\) −4.71645e23 −0.503388 −0.251694 0.967807i \(-0.580988\pi\)
−0.251694 + 0.967807i \(0.580988\pi\)
\(662\) 1.75178e24 1.84581
\(663\) 3.23613e23 0.336636
\(664\) −8.08024e23 −0.829842
\(665\) 1.76945e20 0.000179413 0
\(666\) 4.47124e23 0.447607
\(667\) 9.88194e23 0.976726
\(668\) −2.15857e24 −2.10652
\(669\) −9.21746e23 −0.888156
\(670\) 1.03459e21 0.000984314 0
\(671\) 5.27643e23 0.495677
\(672\) −2.56563e23 −0.237988
\(673\) 1.68843e24 1.54652 0.773258 0.634092i \(-0.218626\pi\)
0.773258 + 0.634092i \(0.218626\pi\)
\(674\) 1.46323e23 0.132344
\(675\) 2.15474e23 0.192447
\(676\) −2.21711e23 −0.195542
\(677\) −2.17546e24 −1.89473 −0.947365 0.320155i \(-0.896265\pi\)
−0.947365 + 0.320155i \(0.896265\pi\)
\(678\) 4.82858e22 0.0415305
\(679\) 6.00394e20 0.000509968 0
\(680\) 2.52061e21 0.00211437
\(681\) 8.84135e23 0.732434
\(682\) 1.06125e22 0.00868258
\(683\) −1.35699e24 −1.09648 −0.548239 0.836321i \(-0.684702\pi\)
−0.548239 + 0.836321i \(0.684702\pi\)
\(684\) −8.27340e22 −0.0660248
\(685\) −6.92197e21 −0.00545582
\(686\) −1.11080e23 −0.0864731
\(687\) −7.64321e22 −0.0587684
\(688\) 1.39245e23 0.105749
\(689\) −5.86308e23 −0.439807
\(690\) 2.83197e21 0.00209832
\(691\) 7.81094e23 0.571663 0.285831 0.958280i \(-0.407730\pi\)
0.285831 + 0.958280i \(0.407730\pi\)
\(692\) −2.22890e24 −1.61135
\(693\) 1.28554e23 0.0918021
\(694\) −5.80865e23 −0.409750
\(695\) 1.04590e22 0.00728821
\(696\) 1.22450e24 0.842910
\(697\) 9.36957e22 0.0637149
\(698\) 2.90773e24 1.95336
\(699\) −1.37133e24 −0.910092
\(700\) 9.02073e23 0.591437
\(701\) −1.67887e24 −1.08746 −0.543731 0.839260i \(-0.682989\pi\)
−0.543731 + 0.839260i \(0.682989\pi\)
\(702\) 4.50532e23 0.288310
\(703\) −1.67871e23 −0.106134
\(704\) 1.90192e24 1.18802
\(705\) 4.12192e20 0.000254385 0
\(706\) 6.17122e23 0.376297
\(707\) −6.45824e23 −0.389089
\(708\) −1.47326e24 −0.876995
\(709\) 2.86412e24 1.68460 0.842302 0.539005i \(-0.181200\pi\)
0.842302 + 0.539005i \(0.181200\pi\)
\(710\) 1.39912e22 0.00813131
\(711\) −8.16429e23 −0.468843
\(712\) 2.68094e24 1.52127
\(713\) 8.03017e21 0.00450260
\(714\) 3.93153e23 0.217834
\(715\) 4.66848e21 0.00255608
\(716\) −1.78958e24 −0.968259
\(717\) −8.55472e23 −0.457397
\(718\) 2.96935e24 1.56893
\(719\) −1.02551e24 −0.535481 −0.267741 0.963491i \(-0.586277\pi\)
−0.267741 + 0.963491i \(0.586277\pi\)
\(720\) −2.81400e20 −0.000145211 0
\(721\) −5.29668e23 −0.270118
\(722\) −3.12665e24 −1.57584
\(723\) −6.48908e22 −0.0323227
\(724\) 1.09212e24 0.537643
\(725\) 3.31721e24 1.61399
\(726\) 9.01896e23 0.433706
\(727\) −2.14060e24 −1.01740 −0.508701 0.860943i \(-0.669874\pi\)
−0.508701 + 0.860943i \(0.669874\pi\)
\(728\) 6.80795e23 0.319816
\(729\) 7.97664e22 0.0370370
\(730\) 1.45010e22 0.00665508
\(731\) −1.25083e24 −0.567417
\(732\) 1.37064e24 0.614580
\(733\) 3.01809e24 1.33767 0.668834 0.743412i \(-0.266794\pi\)
0.668834 + 0.743412i \(0.266794\pi\)
\(734\) 5.44847e24 2.38703
\(735\) −7.14202e20 −0.000309299 0
\(736\) 1.54167e24 0.659979
\(737\) −2.82205e23 −0.119424
\(738\) 1.30442e23 0.0545682
\(739\) −1.27758e24 −0.528335 −0.264167 0.964477i \(-0.585097\pi\)
−0.264167 + 0.964477i \(0.585097\pi\)
\(740\) 1.20354e22 0.00492029
\(741\) −1.69150e23 −0.0683625
\(742\) −7.12297e23 −0.284596
\(743\) −1.74393e23 −0.0688850 −0.0344425 0.999407i \(-0.510966\pi\)
−0.0344425 + 0.999407i \(0.510966\pi\)
\(744\) 9.95043e21 0.00388572
\(745\) 9.16129e21 0.00353695
\(746\) 4.59100e24 1.75238
\(747\) −8.10335e23 −0.305801
\(748\) −1.90484e24 −0.710713
\(749\) −1.27817e23 −0.0471514
\(750\) 1.90131e22 0.00693477
\(751\) −8.19253e23 −0.295446 −0.147723 0.989029i \(-0.547194\pi\)
−0.147723 + 0.989029i \(0.547194\pi\)
\(752\) 3.82780e22 0.0136489
\(753\) 2.92470e24 1.03115
\(754\) 6.93593e24 2.41796
\(755\) −1.65712e22 −0.00571223
\(756\) 3.33939e23 0.113824
\(757\) −2.53750e24 −0.855245 −0.427623 0.903957i \(-0.640649\pi\)
−0.427623 + 0.903957i \(0.640649\pi\)
\(758\) −8.22216e24 −2.74030
\(759\) −7.72474e23 −0.254582
\(760\) −1.31751e21 −0.000429376 0
\(761\) −5.86180e22 −0.0188913 −0.00944563 0.999955i \(-0.503007\pi\)
−0.00944563 + 0.999955i \(0.503007\pi\)
\(762\) −3.08782e24 −0.984089
\(763\) −7.35494e23 −0.231804
\(764\) −7.38375e24 −2.30135
\(765\) 2.52782e21 0.000779156 0
\(766\) −2.38439e24 −0.726829
\(767\) −3.01209e24 −0.908046
\(768\) 1.55832e24 0.464608
\(769\) −8.24496e23 −0.243117 −0.121558 0.992584i \(-0.538789\pi\)
−0.121558 + 0.992584i \(0.538789\pi\)
\(770\) 5.67167e21 0.00165402
\(771\) −4.25399e23 −0.122697
\(772\) −1.79237e24 −0.511305
\(773\) −5.94460e24 −1.67725 −0.838623 0.544712i \(-0.816639\pi\)
−0.838623 + 0.544712i \(0.816639\pi\)
\(774\) −1.74140e24 −0.485960
\(775\) 2.69560e22 0.00744032
\(776\) −4.47046e21 −0.00122047
\(777\) 6.77578e23 0.182970
\(778\) −8.38166e24 −2.23874
\(779\) −4.89741e22 −0.0129389
\(780\) 1.21271e22 0.00316923
\(781\) −3.81638e24 −0.986547
\(782\) −2.36243e24 −0.604091
\(783\) 1.22800e24 0.310617
\(784\) −6.63240e22 −0.0165953
\(785\) −2.71875e22 −0.00672942
\(786\) 6.56607e24 1.60773
\(787\) −4.77054e24 −1.15553 −0.577766 0.816202i \(-0.696075\pi\)
−0.577766 + 0.816202i \(0.696075\pi\)
\(788\) 1.21640e24 0.291478
\(789\) 5.88383e23 0.139478
\(790\) −3.60200e22 −0.00844722
\(791\) 7.31730e22 0.0169766
\(792\) −9.57196e23 −0.219703
\(793\) 2.80228e24 0.636340
\(794\) −5.61793e24 −1.26212
\(795\) −4.57980e21 −0.00101795
\(796\) 1.02167e25 2.24671
\(797\) 5.50255e24 1.19720 0.598602 0.801046i \(-0.295723\pi\)
0.598602 + 0.801046i \(0.295723\pi\)
\(798\) −2.05498e23 −0.0442368
\(799\) −3.43851e23 −0.0732358
\(800\) 5.17515e24 1.09058
\(801\) 2.68860e24 0.560596
\(802\) −7.78651e24 −1.60642
\(803\) −3.95542e24 −0.807441
\(804\) −7.33073e23 −0.148071
\(805\) 4.29160e21 0.000857738 0
\(806\) 5.63621e22 0.0111465
\(807\) 5.09431e24 0.996920
\(808\) 4.80873e24 0.931180
\(809\) 4.06814e24 0.779531 0.389766 0.920914i \(-0.372556\pi\)
0.389766 + 0.920914i \(0.372556\pi\)
\(810\) 3.51921e21 0.000667303 0
\(811\) 3.33966e24 0.626650 0.313325 0.949646i \(-0.398557\pi\)
0.313325 + 0.949646i \(0.398557\pi\)
\(812\) 5.14099e24 0.954599
\(813\) 3.16690e24 0.581922
\(814\) −5.38083e24 −0.978456
\(815\) −3.55082e22 −0.00638983
\(816\) 2.34745e23 0.0418052
\(817\) 6.53802e23 0.115228
\(818\) −3.13089e22 −0.00546091
\(819\) 6.82742e23 0.117854
\(820\) 3.51117e21 0.000599838 0
\(821\) 7.45518e24 1.26050 0.630248 0.776394i \(-0.282953\pi\)
0.630248 + 0.776394i \(0.282953\pi\)
\(822\) 8.03897e24 1.34521
\(823\) −7.50658e24 −1.24321 −0.621603 0.783332i \(-0.713518\pi\)
−0.621603 + 0.783332i \(0.713518\pi\)
\(824\) 3.94384e24 0.646455
\(825\) −2.59307e24 −0.420684
\(826\) −3.65935e24 −0.587589
\(827\) 9.32722e24 1.48237 0.741183 0.671303i \(-0.234265\pi\)
0.741183 + 0.671303i \(0.234265\pi\)
\(828\) −2.00662e24 −0.315652
\(829\) −3.74578e24 −0.583215 −0.291607 0.956538i \(-0.594190\pi\)
−0.291607 + 0.956538i \(0.594190\pi\)
\(830\) −3.57511e22 −0.00550968
\(831\) −6.29489e24 −0.960239
\(832\) 1.01010e25 1.52516
\(833\) 5.95789e23 0.0890451
\(834\) −1.21468e25 −1.79701
\(835\) −3.44727e22 −0.00504825
\(836\) 9.95645e23 0.144328
\(837\) 9.97888e21 0.00143191
\(838\) 6.24394e24 0.886921
\(839\) 6.36275e24 0.894681 0.447341 0.894364i \(-0.352371\pi\)
0.447341 + 0.894364i \(0.352371\pi\)
\(840\) 5.31786e21 0.000740224 0
\(841\) 1.16480e25 1.60503
\(842\) 3.29429e24 0.449375
\(843\) −6.01610e23 −0.0812421
\(844\) −8.61010e24 −1.15106
\(845\) −3.54076e21 −0.000468613 0
\(846\) −4.78707e23 −0.0627223
\(847\) 1.36675e24 0.177288
\(848\) −4.25301e23 −0.0546175
\(849\) −5.41984e22 −0.00689082
\(850\) −7.93032e24 −0.998229
\(851\) −4.07153e24 −0.507407
\(852\) −9.91366e24 −1.22320
\(853\) 8.71802e24 1.06500 0.532502 0.846429i \(-0.321252\pi\)
0.532502 + 0.846429i \(0.321252\pi\)
\(854\) 3.40445e24 0.411770
\(855\) −1.32127e21 −0.000158227 0
\(856\) 9.51713e23 0.112844
\(857\) 1.18825e25 1.39499 0.697493 0.716592i \(-0.254299\pi\)
0.697493 + 0.716592i \(0.254299\pi\)
\(858\) −5.42183e24 −0.630237
\(859\) −6.84957e24 −0.788355 −0.394177 0.919034i \(-0.628970\pi\)
−0.394177 + 0.919034i \(0.628970\pi\)
\(860\) −4.68739e22 −0.00534189
\(861\) 1.97674e23 0.0223061
\(862\) 5.70717e24 0.637689
\(863\) 1.02759e25 1.13691 0.568457 0.822713i \(-0.307541\pi\)
0.568457 + 0.822713i \(0.307541\pi\)
\(864\) 1.91580e24 0.209885
\(865\) −3.55959e22 −0.00386156
\(866\) −1.65221e25 −1.77486
\(867\) 3.31881e24 0.353037
\(868\) 4.17762e22 0.00440060
\(869\) 9.82516e24 1.02488
\(870\) 5.41783e22 0.00559644
\(871\) −1.49877e24 −0.153314
\(872\) 5.47640e24 0.554760
\(873\) −4.48324e21 −0.000449750 0
\(874\) 1.23483e24 0.122676
\(875\) 2.88127e22 0.00283475
\(876\) −1.02748e25 −1.00113
\(877\) 2.38006e24 0.229663 0.114832 0.993385i \(-0.463367\pi\)
0.114832 + 0.993385i \(0.463367\pi\)
\(878\) −1.93161e25 −1.84594
\(879\) 2.77308e24 0.262457
\(880\) 3.38646e21 0.000317426 0
\(881\) −2.05906e24 −0.191150 −0.0955751 0.995422i \(-0.530469\pi\)
−0.0955751 + 0.995422i \(0.530469\pi\)
\(882\) 8.29453e23 0.0762621
\(883\) 3.03043e24 0.275955 0.137978 0.990435i \(-0.455940\pi\)
0.137978 + 0.990435i \(0.455940\pi\)
\(884\) −1.01165e25 −0.912399
\(885\) −2.35282e22 −0.00210170
\(886\) −1.74917e25 −1.54755
\(887\) −1.88219e24 −0.164935 −0.0824673 0.996594i \(-0.526280\pi\)
−0.0824673 + 0.996594i \(0.526280\pi\)
\(888\) −5.04516e24 −0.437890
\(889\) −4.67932e24 −0.402270
\(890\) 1.18618e23 0.0101004
\(891\) −9.59933e23 −0.0809619
\(892\) 2.88147e25 2.40720
\(893\) 1.79729e23 0.0148724
\(894\) −1.06397e25 −0.872084
\(895\) −2.85799e22 −0.00232041
\(896\) 7.14607e24 0.574711
\(897\) −4.10256e24 −0.326828
\(898\) −1.89827e25 −1.49799
\(899\) 1.53625e23 0.0120089
\(900\) −6.73593e24 −0.521598
\(901\) 3.82048e24 0.293060
\(902\) −1.56978e24 −0.119285
\(903\) −2.63894e24 −0.198648
\(904\) −5.44837e23 −0.0406289
\(905\) 1.74414e22 0.00128845
\(906\) 1.92453e25 1.40843
\(907\) −1.10566e25 −0.801606 −0.400803 0.916164i \(-0.631269\pi\)
−0.400803 + 0.916164i \(0.631269\pi\)
\(908\) −2.76390e25 −1.98514
\(909\) 4.82248e24 0.343145
\(910\) 3.01219e22 0.00212339
\(911\) −1.23349e25 −0.861447 −0.430723 0.902484i \(-0.641742\pi\)
−0.430723 + 0.902484i \(0.641742\pi\)
\(912\) −1.22700e23 −0.00848959
\(913\) 9.75181e24 0.668473
\(914\) 3.31594e23 0.0225198
\(915\) 2.18893e22 0.00147283
\(916\) 2.38935e24 0.159282
\(917\) 9.95031e24 0.657200
\(918\) −2.93574e24 −0.192112
\(919\) −2.42568e25 −1.57272 −0.786362 0.617766i \(-0.788038\pi\)
−0.786362 + 0.617766i \(0.788038\pi\)
\(920\) −3.19547e22 −0.00205276
\(921\) −4.27915e24 −0.272364
\(922\) 2.84904e25 1.79674
\(923\) −2.02686e25 −1.26651
\(924\) −4.01873e24 −0.248815
\(925\) −1.36675e25 −0.838464
\(926\) −1.35813e25 −0.825556
\(927\) 3.95512e24 0.238222
\(928\) 2.94937e25 1.76024
\(929\) 2.00616e25 1.18640 0.593201 0.805054i \(-0.297864\pi\)
0.593201 + 0.805054i \(0.297864\pi\)
\(930\) 4.40258e20 2.57990e−5 0
\(931\) −3.11415e23 −0.0180829
\(932\) 4.28691e25 2.46666
\(933\) 5.53986e24 0.315867
\(934\) −4.98381e24 −0.281587
\(935\) −3.04206e22 −0.00170321
\(936\) −5.08361e24 −0.282051
\(937\) 1.93153e25 1.06198 0.530988 0.847379i \(-0.321821\pi\)
0.530988 + 0.847379i \(0.321821\pi\)
\(938\) −1.82084e24 −0.0992081
\(939\) −1.89706e25 −1.02429
\(940\) −1.28855e22 −0.000689471 0
\(941\) 1.11009e24 0.0588636 0.0294318 0.999567i \(-0.490630\pi\)
0.0294318 + 0.999567i \(0.490630\pi\)
\(942\) 3.15748e25 1.65924
\(943\) −1.18781e24 −0.0618585
\(944\) −2.18494e24 −0.112766
\(945\) 5.33307e21 0.000272776 0
\(946\) 2.09566e25 1.06230
\(947\) −1.08567e25 −0.545408 −0.272704 0.962098i \(-0.587918\pi\)
−0.272704 + 0.962098i \(0.587918\pi\)
\(948\) 2.55224e25 1.27072
\(949\) −2.10070e25 −1.03658
\(950\) 4.14512e24 0.202716
\(951\) 6.18562e24 0.299812
\(952\) −4.43617e24 −0.213105
\(953\) 1.09499e25 0.521339 0.260670 0.965428i \(-0.416057\pi\)
0.260670 + 0.965428i \(0.416057\pi\)
\(954\) 5.31884e24 0.250990
\(955\) −1.17920e23 −0.00551515
\(956\) 2.67429e25 1.23970
\(957\) −1.47782e25 −0.678999
\(958\) −4.61283e25 −2.10068
\(959\) 1.21824e25 0.549887
\(960\) 7.89013e22 0.00353003
\(961\) −2.25489e25 −0.999945
\(962\) −2.85772e25 −1.25612
\(963\) 9.54434e23 0.0415836
\(964\) 2.02855e24 0.0876056
\(965\) −2.86244e22 −0.00122533
\(966\) −4.98414e24 −0.211487
\(967\) −1.73057e25 −0.727886 −0.363943 0.931421i \(-0.618570\pi\)
−0.363943 + 0.931421i \(0.618570\pi\)
\(968\) −1.01766e25 −0.424290
\(969\) 1.10221e24 0.0455525
\(970\) −1.97796e20 −8.10322e−6 0
\(971\) −2.98981e25 −1.21417 −0.607086 0.794636i \(-0.707662\pi\)
−0.607086 + 0.794636i \(0.707662\pi\)
\(972\) −2.49358e24 −0.100383
\(973\) −1.84074e25 −0.734572
\(974\) 6.09512e25 2.41119
\(975\) −1.37717e25 −0.540066
\(976\) 2.03274e24 0.0790238
\(977\) 3.29242e24 0.126885 0.0634426 0.997985i \(-0.479792\pi\)
0.0634426 + 0.997985i \(0.479792\pi\)
\(978\) 4.12382e25 1.57550
\(979\) −3.23554e25 −1.22545
\(980\) 2.23267e22 0.000838306 0
\(981\) 5.49206e24 0.204432
\(982\) 3.86450e25 1.42608
\(983\) −6.09693e23 −0.0223052 −0.0111526 0.999938i \(-0.503550\pi\)
−0.0111526 + 0.999938i \(0.503550\pi\)
\(984\) −1.47186e24 −0.0533836
\(985\) 1.94262e22 0.000698521 0
\(986\) −4.51956e25 −1.61118
\(987\) −7.25440e23 −0.0256393
\(988\) 5.28781e24 0.185286
\(989\) 1.58573e25 0.550884
\(990\) −4.23513e22 −0.00145870
\(991\) −1.07735e25 −0.367903 −0.183951 0.982935i \(-0.558889\pi\)
−0.183951 + 0.982935i \(0.558889\pi\)
\(992\) 2.39669e23 0.00811450
\(993\) −1.98229e25 −0.665423
\(994\) −2.46240e25 −0.819547
\(995\) 1.63162e23 0.00538421
\(996\) 2.53319e25 0.828826
\(997\) 1.79833e25 0.583392 0.291696 0.956511i \(-0.405780\pi\)
0.291696 + 0.956511i \(0.405780\pi\)
\(998\) 3.91666e25 1.25981
\(999\) −5.05959e24 −0.161365
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 21.18.a.b.1.4 4
3.2 odd 2 63.18.a.d.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.18.a.b.1.4 4 1.1 even 1 trivial
63.18.a.d.1.1 4 3.2 odd 2