Properties

Label 63.18.a.d.1.1
Level $63$
Weight $18$
Character 63.1
Self dual yes
Analytic conductor $115.430$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,18,Mod(1,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.429915027\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 401750x^{2} - 42202572x + 5013099432 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3}\cdot 7 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(673.806\) of defining polynomial
Character \(\chi\) \(=\) 63.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-579.806 q^{2} +205104. q^{4} -3275.54 q^{5} -5.76480e6 q^{7} -4.29240e7 q^{8} +O(q^{10})\) \(q-579.806 q^{2} +205104. q^{4} -3275.54 q^{5} -5.76480e6 q^{7} -4.29240e7 q^{8} +1.89918e6 q^{10} +5.18037e8 q^{11} -2.75126e9 q^{13} +3.34247e9 q^{14} -1.99573e9 q^{16} -1.79277e10 q^{17} -9.37067e9 q^{19} -6.71824e8 q^{20} -3.00361e11 q^{22} +2.27276e11 q^{23} -7.62929e11 q^{25} +1.59520e12 q^{26} -1.18238e12 q^{28} +4.34800e12 q^{29} -3.53323e10 q^{31} +6.78327e12 q^{32} +1.03946e13 q^{34} +1.88828e10 q^{35} +1.79145e13 q^{37} +5.43317e12 q^{38} +1.40599e11 q^{40} -5.22632e12 q^{41} -6.97711e13 q^{43} +1.06251e14 q^{44} -1.31776e14 q^{46} +1.91799e13 q^{47} +3.32329e13 q^{49} +4.42351e14 q^{50} -5.64294e14 q^{52} -2.13105e14 q^{53} -1.69685e12 q^{55} +2.47448e14 q^{56} -2.52100e15 q^{58} -1.09480e15 q^{59} -1.01854e15 q^{61} +2.04859e13 q^{62} -3.67140e15 q^{64} +9.01186e12 q^{65} +5.44758e14 q^{67} -3.67703e15 q^{68} -1.09484e13 q^{70} -7.36700e15 q^{71} +7.63541e15 q^{73} -1.03870e16 q^{74} -1.92196e15 q^{76} -2.98638e15 q^{77} -1.89661e16 q^{79} +6.53709e12 q^{80} +3.03025e15 q^{82} +1.88245e16 q^{83} +5.87228e13 q^{85} +4.04538e16 q^{86} -2.22362e16 q^{88} -6.24578e16 q^{89} +1.58605e16 q^{91} +4.66150e16 q^{92} -1.11206e16 q^{94} +3.06940e13 q^{95} -1.04148e14 q^{97} -1.92687e16 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 375 q^{2} + 314369 q^{4} + 154140 q^{5} - 23059204 q^{7} + 3766143 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 375 q^{2} + 314369 q^{4} + 154140 q^{5} - 23059204 q^{7} + 3766143 q^{8} + 23352830 q^{10} + 1452022884 q^{11} + 1793559040 q^{13} - 2161800375 q^{14} + 36719981057 q^{16} - 68581449948 q^{17} - 2578000592 q^{19} - 132998517630 q^{20} + 270530423852 q^{22} - 649239533556 q^{23} - 708242296300 q^{25} + 2508729280746 q^{26} - 1812274725569 q^{28} + 3258162962760 q^{29} + 2414795507136 q^{31} + 18040133068671 q^{32} + 8860338750210 q^{34} - 888586426140 q^{35} + 23164217924208 q^{37} + 67011195804708 q^{38} - 115859765446530 q^{40} + 117516076237164 q^{41} - 175144919320720 q^{43} + 379640394802500 q^{44} - 441875935197000 q^{46} + 392013343869480 q^{47} + 132931722278404 q^{49} + 366102837059625 q^{50} - 647834999852794 q^{52} + 86395731614976 q^{53} - 987784569502880 q^{55} - 21711064932543 q^{56} - 21\!\cdots\!66 q^{58}+ \cdots + 12\!\cdots\!75 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −579.806 −1.60150 −0.800752 0.598996i \(-0.795567\pi\)
−0.800752 + 0.598996i \(0.795567\pi\)
\(3\) 0 0
\(4\) 205104. 1.56482
\(5\) −3275.54 −0.00375005 −0.00187503 0.999998i \(-0.500597\pi\)
−0.00187503 + 0.999998i \(0.500597\pi\)
\(6\) 0 0
\(7\) −5.76480e6 −0.377964
\(8\) −4.29240e7 −0.904555
\(9\) 0 0
\(10\) 1.89918e6 0.00600573
\(11\) 5.18037e8 0.728657 0.364328 0.931271i \(-0.381299\pi\)
0.364328 + 0.931271i \(0.381299\pi\)
\(12\) 0 0
\(13\) −2.75126e9 −0.935435 −0.467717 0.883878i \(-0.654924\pi\)
−0.467717 + 0.883878i \(0.654924\pi\)
\(14\) 3.34247e9 0.605312
\(15\) 0 0
\(16\) −1.99573e9 −0.116167
\(17\) −1.79277e10 −0.623316 −0.311658 0.950194i \(-0.600884\pi\)
−0.311658 + 0.950194i \(0.600884\pi\)
\(18\) 0 0
\(19\) −9.37067e9 −0.126580 −0.0632900 0.997995i \(-0.520159\pi\)
−0.0632900 + 0.997995i \(0.520159\pi\)
\(20\) −6.71824e8 −0.00586814
\(21\) 0 0
\(22\) −3.00361e11 −1.16695
\(23\) 2.27276e11 0.605154 0.302577 0.953125i \(-0.402153\pi\)
0.302577 + 0.953125i \(0.402153\pi\)
\(24\) 0 0
\(25\) −7.62929e11 −0.999986
\(26\) 1.59520e12 1.49810
\(27\) 0 0
\(28\) −1.18238e12 −0.591445
\(29\) 4.34800e12 1.61401 0.807006 0.590544i \(-0.201087\pi\)
0.807006 + 0.590544i \(0.201087\pi\)
\(30\) 0 0
\(31\) −3.53323e10 −0.00744042 −0.00372021 0.999993i \(-0.501184\pi\)
−0.00372021 + 0.999993i \(0.501184\pi\)
\(32\) 6.78327e12 1.09060
\(33\) 0 0
\(34\) 1.03946e13 0.998243
\(35\) 1.88828e10 0.00141739
\(36\) 0 0
\(37\) 1.79145e13 0.838475 0.419238 0.907877i \(-0.362297\pi\)
0.419238 + 0.907877i \(0.362297\pi\)
\(38\) 5.43317e12 0.202718
\(39\) 0 0
\(40\) 1.40599e11 0.00339213
\(41\) −5.22632e12 −0.102219 −0.0511097 0.998693i \(-0.516276\pi\)
−0.0511097 + 0.998693i \(0.516276\pi\)
\(42\) 0 0
\(43\) −6.97711e13 −0.910320 −0.455160 0.890410i \(-0.650418\pi\)
−0.455160 + 0.890410i \(0.650418\pi\)
\(44\) 1.06251e14 1.14021
\(45\) 0 0
\(46\) −1.31776e14 −0.969157
\(47\) 1.91799e13 0.117494 0.0587469 0.998273i \(-0.481290\pi\)
0.0587469 + 0.998273i \(0.481290\pi\)
\(48\) 0 0
\(49\) 3.32329e13 0.142857
\(50\) 4.42351e14 1.60148
\(51\) 0 0
\(52\) −5.64294e14 −1.46378
\(53\) −2.13105e14 −0.470164 −0.235082 0.971976i \(-0.575536\pi\)
−0.235082 + 0.971976i \(0.575536\pi\)
\(54\) 0 0
\(55\) −1.69685e12 −0.00273250
\(56\) 2.47448e14 0.341890
\(57\) 0 0
\(58\) −2.52100e15 −2.58485
\(59\) −1.09480e15 −0.970721 −0.485360 0.874314i \(-0.661312\pi\)
−0.485360 + 0.874314i \(0.661312\pi\)
\(60\) 0 0
\(61\) −1.01854e15 −0.680261 −0.340130 0.940378i \(-0.610471\pi\)
−0.340130 + 0.940378i \(0.610471\pi\)
\(62\) 2.04859e13 0.0119159
\(63\) 0 0
\(64\) −3.67140e15 −1.63043
\(65\) 9.01186e12 0.00350793
\(66\) 0 0
\(67\) 5.44758e14 0.163896 0.0819480 0.996637i \(-0.473886\pi\)
0.0819480 + 0.996637i \(0.473886\pi\)
\(68\) −3.67703e15 −0.975374
\(69\) 0 0
\(70\) −1.09484e13 −0.00226995
\(71\) −7.36700e15 −1.35393 −0.676963 0.736017i \(-0.736704\pi\)
−0.676963 + 0.736017i \(0.736704\pi\)
\(72\) 0 0
\(73\) 7.63541e15 1.10812 0.554061 0.832476i \(-0.313077\pi\)
0.554061 + 0.832476i \(0.313077\pi\)
\(74\) −1.03870e16 −1.34282
\(75\) 0 0
\(76\) −1.92196e15 −0.198074
\(77\) −2.98638e15 −0.275406
\(78\) 0 0
\(79\) −1.89661e16 −1.40653 −0.703264 0.710929i \(-0.748275\pi\)
−0.703264 + 0.710929i \(0.748275\pi\)
\(80\) 6.53709e12 0.000435632 0
\(81\) 0 0
\(82\) 3.03025e15 0.163705
\(83\) 1.88245e16 0.917404 0.458702 0.888590i \(-0.348315\pi\)
0.458702 + 0.888590i \(0.348315\pi\)
\(84\) 0 0
\(85\) 5.87228e13 0.00233747
\(86\) 4.04538e16 1.45788
\(87\) 0 0
\(88\) −2.22362e16 −0.659110
\(89\) −6.24578e16 −1.68179 −0.840894 0.541199i \(-0.817970\pi\)
−0.840894 + 0.541199i \(0.817970\pi\)
\(90\) 0 0
\(91\) 1.58605e16 0.353561
\(92\) 4.66150e16 0.946955
\(93\) 0 0
\(94\) −1.11206e16 −0.188167
\(95\) 3.06940e13 0.000474682 0
\(96\) 0 0
\(97\) −1.04148e14 −0.00134925 −0.000674625 1.00000i \(-0.500215\pi\)
−0.000674625 1.00000i \(0.500215\pi\)
\(98\) −1.92687e16 −0.228786
\(99\) 0 0
\(100\) −1.56479e17 −1.56479
\(101\) −1.12029e17 −1.02943 −0.514717 0.857360i \(-0.672103\pi\)
−0.514717 + 0.857360i \(0.672103\pi\)
\(102\) 0 0
\(103\) 9.18797e16 0.714666 0.357333 0.933977i \(-0.383686\pi\)
0.357333 + 0.933977i \(0.383686\pi\)
\(104\) 1.18095e17 0.846153
\(105\) 0 0
\(106\) 1.23560e17 0.752969
\(107\) −2.21720e16 −0.124751 −0.0623755 0.998053i \(-0.519868\pi\)
−0.0623755 + 0.998053i \(0.519868\pi\)
\(108\) 0 0
\(109\) 1.27584e17 0.613295 0.306648 0.951823i \(-0.400793\pi\)
0.306648 + 0.951823i \(0.400793\pi\)
\(110\) 9.83844e14 0.00437611
\(111\) 0 0
\(112\) 1.15050e16 0.0439070
\(113\) 1.26931e16 0.0449159 0.0224579 0.999748i \(-0.492851\pi\)
0.0224579 + 0.999748i \(0.492851\pi\)
\(114\) 0 0
\(115\) −7.44449e14 −0.00226936
\(116\) 8.91790e17 2.52563
\(117\) 0 0
\(118\) 6.34775e17 1.55461
\(119\) 1.03349e17 0.235591
\(120\) 0 0
\(121\) −2.37085e17 −0.469059
\(122\) 5.90558e17 1.08944
\(123\) 0 0
\(124\) −7.24678e15 −0.0116429
\(125\) 4.99804e15 0.00750005
\(126\) 0 0
\(127\) 8.11706e17 1.06431 0.532154 0.846648i \(-0.321383\pi\)
0.532154 + 0.846648i \(0.321383\pi\)
\(128\) 1.23960e18 1.52054
\(129\) 0 0
\(130\) −5.22514e15 −0.00561797
\(131\) 1.72605e18 1.73879 0.869393 0.494120i \(-0.164510\pi\)
0.869393 + 0.494120i \(0.164510\pi\)
\(132\) 0 0
\(133\) 5.40200e16 0.0478427
\(134\) −3.15854e17 −0.262480
\(135\) 0 0
\(136\) 7.69527e17 0.563824
\(137\) 2.11323e18 1.45486 0.727432 0.686180i \(-0.240714\pi\)
0.727432 + 0.686180i \(0.240714\pi\)
\(138\) 0 0
\(139\) 3.19308e18 1.94349 0.971747 0.236023i \(-0.0758441\pi\)
0.971747 + 0.236023i \(0.0758441\pi\)
\(140\) 3.87293e15 0.00221795
\(141\) 0 0
\(142\) 4.27144e18 2.16832
\(143\) −1.42526e18 −0.681611
\(144\) 0 0
\(145\) −1.42420e16 −0.00605263
\(146\) −4.42706e18 −1.77466
\(147\) 0 0
\(148\) 3.67433e18 1.31206
\(149\) −2.79688e18 −0.943172 −0.471586 0.881820i \(-0.656318\pi\)
−0.471586 + 0.881820i \(0.656318\pi\)
\(150\) 0 0
\(151\) −5.05909e18 −1.52324 −0.761619 0.648025i \(-0.775595\pi\)
−0.761619 + 0.648025i \(0.775595\pi\)
\(152\) 4.02226e17 0.114499
\(153\) 0 0
\(154\) 1.73152e18 0.441065
\(155\) 1.15732e14 2.79020e−5 0
\(156\) 0 0
\(157\) −8.30018e18 −1.79449 −0.897244 0.441535i \(-0.854434\pi\)
−0.897244 + 0.441535i \(0.854434\pi\)
\(158\) 1.09967e19 2.25256
\(159\) 0 0
\(160\) −2.22189e16 −0.00408980
\(161\) −1.31020e18 −0.228727
\(162\) 0 0
\(163\) −1.08404e19 −1.70393 −0.851965 0.523599i \(-0.824589\pi\)
−0.851965 + 0.523599i \(0.824589\pi\)
\(164\) −1.07194e18 −0.159954
\(165\) 0 0
\(166\) −1.09146e19 −1.46923
\(167\) 1.05243e19 1.34618 0.673090 0.739561i \(-0.264967\pi\)
0.673090 + 0.739561i \(0.264967\pi\)
\(168\) 0 0
\(169\) −1.08097e18 −0.124962
\(170\) −3.40478e16 −0.00374346
\(171\) 0 0
\(172\) −1.43103e19 −1.42448
\(173\) 1.08672e19 1.02973 0.514867 0.857270i \(-0.327841\pi\)
0.514867 + 0.857270i \(0.327841\pi\)
\(174\) 0 0
\(175\) 4.39813e18 0.377959
\(176\) −1.03386e18 −0.0846458
\(177\) 0 0
\(178\) 3.62134e19 2.69339
\(179\) 8.72527e18 0.618768 0.309384 0.950937i \(-0.399877\pi\)
0.309384 + 0.950937i \(0.399877\pi\)
\(180\) 0 0
\(181\) 5.32474e18 0.343582 0.171791 0.985133i \(-0.445045\pi\)
0.171791 + 0.985133i \(0.445045\pi\)
\(182\) −9.19601e18 −0.566230
\(183\) 0 0
\(184\) −9.75557e18 −0.547395
\(185\) −5.86796e16 −0.00314433
\(186\) 0 0
\(187\) −9.28720e18 −0.454183
\(188\) 3.93387e18 0.183856
\(189\) 0 0
\(190\) −1.77966e16 −0.000760205 0
\(191\) 3.60001e19 1.47069 0.735343 0.677695i \(-0.237021\pi\)
0.735343 + 0.677695i \(0.237021\pi\)
\(192\) 0 0
\(193\) −8.73885e18 −0.326751 −0.163376 0.986564i \(-0.552238\pi\)
−0.163376 + 0.986564i \(0.552238\pi\)
\(194\) 6.03858e16 0.00216083
\(195\) 0 0
\(196\) 6.81619e18 0.223545
\(197\) −5.93068e18 −0.186270 −0.0931348 0.995654i \(-0.529689\pi\)
−0.0931348 + 0.995654i \(0.529689\pi\)
\(198\) 0 0
\(199\) 4.98122e19 1.43577 0.717884 0.696162i \(-0.245111\pi\)
0.717884 + 0.696162i \(0.245111\pi\)
\(200\) 3.27479e19 0.904543
\(201\) 0 0
\(202\) 6.49551e19 1.64864
\(203\) −2.50654e19 −0.610039
\(204\) 0 0
\(205\) 1.71190e16 0.000383328 0
\(206\) −5.32724e19 −1.14454
\(207\) 0 0
\(208\) 5.49078e18 0.108667
\(209\) −4.85435e18 −0.0922334
\(210\) 0 0
\(211\) −4.19793e19 −0.735587 −0.367793 0.929908i \(-0.619887\pi\)
−0.367793 + 0.929908i \(0.619887\pi\)
\(212\) −4.37086e19 −0.735720
\(213\) 0 0
\(214\) 1.28555e19 0.199789
\(215\) 2.28538e17 0.00341375
\(216\) 0 0
\(217\) 2.03684e17 0.00281221
\(218\) −7.39738e19 −0.982195
\(219\) 0 0
\(220\) −3.48030e17 −0.00427586
\(221\) 4.93237e19 0.583071
\(222\) 0 0
\(223\) 1.40489e20 1.53833 0.769165 0.639050i \(-0.220672\pi\)
0.769165 + 0.639050i \(0.220672\pi\)
\(224\) −3.91042e19 −0.412207
\(225\) 0 0
\(226\) −7.35952e18 −0.0719329
\(227\) 1.34756e20 1.26861 0.634306 0.773082i \(-0.281286\pi\)
0.634306 + 0.773082i \(0.281286\pi\)
\(228\) 0 0
\(229\) 1.16495e19 0.101790 0.0508949 0.998704i \(-0.483793\pi\)
0.0508949 + 0.998704i \(0.483793\pi\)
\(230\) 4.31637e17 0.00363439
\(231\) 0 0
\(232\) −1.86633e20 −1.45996
\(233\) −2.09012e20 −1.57632 −0.788162 0.615467i \(-0.788967\pi\)
−0.788162 + 0.615467i \(0.788967\pi\)
\(234\) 0 0
\(235\) −6.28246e16 −0.000440608 0
\(236\) −2.24548e20 −1.51900
\(237\) 0 0
\(238\) −5.99227e19 −0.377300
\(239\) −1.30388e20 −0.792235 −0.396117 0.918200i \(-0.629643\pi\)
−0.396117 + 0.918200i \(0.629643\pi\)
\(240\) 0 0
\(241\) 9.89039e18 0.0559846 0.0279923 0.999608i \(-0.491089\pi\)
0.0279923 + 0.999608i \(0.491089\pi\)
\(242\) 1.37463e20 0.751200
\(243\) 0 0
\(244\) −2.08907e20 −1.06448
\(245\) −1.08856e17 −0.000535722 0
\(246\) 0 0
\(247\) 2.57812e19 0.118407
\(248\) 1.51660e18 0.00673027
\(249\) 0 0
\(250\) −2.89789e18 −0.0120114
\(251\) 4.45770e20 1.78601 0.893006 0.450044i \(-0.148592\pi\)
0.893006 + 0.450044i \(0.148592\pi\)
\(252\) 0 0
\(253\) 1.17737e20 0.440950
\(254\) −4.70632e20 −1.70449
\(255\) 0 0
\(256\) −2.37513e20 −0.804725
\(257\) −6.48375e19 −0.212518 −0.106259 0.994339i \(-0.533887\pi\)
−0.106259 + 0.994339i \(0.533887\pi\)
\(258\) 0 0
\(259\) −1.03274e20 −0.316914
\(260\) 1.84837e18 0.00548927
\(261\) 0 0
\(262\) −1.00077e21 −2.78467
\(263\) 8.96789e19 0.241583 0.120791 0.992678i \(-0.461457\pi\)
0.120791 + 0.992678i \(0.461457\pi\)
\(264\) 0 0
\(265\) 6.98034e17 0.00176314
\(266\) −3.13212e19 −0.0766203
\(267\) 0 0
\(268\) 1.11732e20 0.256467
\(269\) 7.76453e20 1.72672 0.863358 0.504592i \(-0.168357\pi\)
0.863358 + 0.504592i \(0.168357\pi\)
\(270\) 0 0
\(271\) −4.82686e20 −1.00792 −0.503960 0.863727i \(-0.668124\pi\)
−0.503960 + 0.863727i \(0.668124\pi\)
\(272\) 3.57788e19 0.0724087
\(273\) 0 0
\(274\) −1.22527e21 −2.32997
\(275\) −3.95225e20 −0.728647
\(276\) 0 0
\(277\) 9.59440e20 1.66318 0.831591 0.555388i \(-0.187430\pi\)
0.831591 + 0.555388i \(0.187430\pi\)
\(278\) −1.85137e21 −3.11252
\(279\) 0 0
\(280\) −8.10526e17 −0.00128210
\(281\) −9.16949e19 −0.140715 −0.0703577 0.997522i \(-0.522414\pi\)
−0.0703577 + 0.997522i \(0.522414\pi\)
\(282\) 0 0
\(283\) 8.26069e18 0.0119353 0.00596763 0.999982i \(-0.498100\pi\)
0.00596763 + 0.999982i \(0.498100\pi\)
\(284\) −1.51100e21 −2.11864
\(285\) 0 0
\(286\) 8.26373e20 1.09160
\(287\) 3.01287e19 0.0386353
\(288\) 0 0
\(289\) −5.05839e20 −0.611477
\(290\) 8.25762e18 0.00969331
\(291\) 0 0
\(292\) 1.56605e21 1.73401
\(293\) 4.22662e20 0.454588 0.227294 0.973826i \(-0.427012\pi\)
0.227294 + 0.973826i \(0.427012\pi\)
\(294\) 0 0
\(295\) 3.58607e18 0.00364025
\(296\) −7.68962e20 −0.758447
\(297\) 0 0
\(298\) 1.62165e21 1.51049
\(299\) −6.25295e20 −0.566082
\(300\) 0 0
\(301\) 4.02217e20 0.344069
\(302\) 2.93329e21 2.43947
\(303\) 0 0
\(304\) 1.87013e19 0.0147044
\(305\) 3.33627e18 0.00255101
\(306\) 0 0
\(307\) 6.52210e20 0.471749 0.235874 0.971784i \(-0.424205\pi\)
0.235874 + 0.971784i \(0.424205\pi\)
\(308\) −6.12517e20 −0.430960
\(309\) 0 0
\(310\) −6.71023e16 −4.46851e−5 0
\(311\) 8.44362e20 0.547098 0.273549 0.961858i \(-0.411802\pi\)
0.273549 + 0.961858i \(0.411802\pi\)
\(312\) 0 0
\(313\) 2.89142e21 1.77413 0.887063 0.461648i \(-0.152742\pi\)
0.887063 + 0.461648i \(0.152742\pi\)
\(314\) 4.81250e21 2.87388
\(315\) 0 0
\(316\) −3.89002e21 −2.20096
\(317\) 9.42786e20 0.519290 0.259645 0.965704i \(-0.416395\pi\)
0.259645 + 0.965704i \(0.416395\pi\)
\(318\) 0 0
\(319\) 2.25243e21 1.17606
\(320\) 1.20258e19 0.00611420
\(321\) 0 0
\(322\) 7.59661e20 0.366307
\(323\) 1.67994e20 0.0788993
\(324\) 0 0
\(325\) 2.09902e21 0.935422
\(326\) 6.28535e21 2.72885
\(327\) 0 0
\(328\) 2.24334e20 0.0924631
\(329\) −1.10568e20 −0.0444085
\(330\) 0 0
\(331\) 3.02132e21 1.15255 0.576273 0.817257i \(-0.304507\pi\)
0.576273 + 0.817257i \(0.304507\pi\)
\(332\) 3.86098e21 1.43557
\(333\) 0 0
\(334\) −6.10206e21 −2.15591
\(335\) −1.78438e18 −0.000614618 0
\(336\) 0 0
\(337\) 2.52365e20 0.0826370 0.0413185 0.999146i \(-0.486844\pi\)
0.0413185 + 0.999146i \(0.486844\pi\)
\(338\) 6.26753e20 0.200127
\(339\) 0 0
\(340\) 1.20442e19 0.00365771
\(341\) −1.83034e19 −0.00542151
\(342\) 0 0
\(343\) −1.91581e20 −0.0539949
\(344\) 2.99486e21 0.823435
\(345\) 0 0
\(346\) −6.30087e21 −1.64912
\(347\) 1.00182e21 0.255853 0.127927 0.991784i \(-0.459168\pi\)
0.127927 + 0.991784i \(0.459168\pi\)
\(348\) 0 0
\(349\) 5.01500e21 1.21971 0.609853 0.792515i \(-0.291228\pi\)
0.609853 + 0.792515i \(0.291228\pi\)
\(350\) −2.55007e21 −0.605303
\(351\) 0 0
\(352\) 3.51399e21 0.794671
\(353\) −1.06436e21 −0.234965 −0.117482 0.993075i \(-0.537482\pi\)
−0.117482 + 0.993075i \(0.537482\pi\)
\(354\) 0 0
\(355\) 2.41309e19 0.00507729
\(356\) −1.28103e22 −2.63169
\(357\) 0 0
\(358\) −5.05897e21 −0.990960
\(359\) −5.12127e21 −0.979660 −0.489830 0.871818i \(-0.662941\pi\)
−0.489830 + 0.871818i \(0.662941\pi\)
\(360\) 0 0
\(361\) −5.39258e21 −0.983978
\(362\) −3.08732e21 −0.550249
\(363\) 0 0
\(364\) 3.25304e21 0.553258
\(365\) −2.50101e19 −0.00415552
\(366\) 0 0
\(367\) 9.39704e21 1.49049 0.745246 0.666789i \(-0.232332\pi\)
0.745246 + 0.666789i \(0.232332\pi\)
\(368\) −4.53581e20 −0.0702989
\(369\) 0 0
\(370\) 3.40228e19 0.00503565
\(371\) 1.22851e21 0.177705
\(372\) 0 0
\(373\) 7.91816e21 1.09421 0.547103 0.837065i \(-0.315731\pi\)
0.547103 + 0.837065i \(0.315731\pi\)
\(374\) 5.38478e21 0.727377
\(375\) 0 0
\(376\) −8.23279e20 −0.106280
\(377\) −1.19625e22 −1.50980
\(378\) 0 0
\(379\) −1.41809e22 −1.71108 −0.855538 0.517739i \(-0.826774\pi\)
−0.855538 + 0.517739i \(0.826774\pi\)
\(380\) 6.29544e18 0.000742789 0
\(381\) 0 0
\(382\) −2.08731e22 −2.35531
\(383\) 4.11238e21 0.453841 0.226921 0.973913i \(-0.427134\pi\)
0.226921 + 0.973913i \(0.427134\pi\)
\(384\) 0 0
\(385\) 9.78200e18 0.00103279
\(386\) 5.06684e21 0.523293
\(387\) 0 0
\(388\) −2.13612e19 −0.00211133
\(389\) 1.44560e22 1.39790 0.698949 0.715172i \(-0.253652\pi\)
0.698949 + 0.715172i \(0.253652\pi\)
\(390\) 0 0
\(391\) −4.07452e21 −0.377202
\(392\) −1.42649e21 −0.129222
\(393\) 0 0
\(394\) 3.43865e21 0.298311
\(395\) 6.21242e19 0.00527455
\(396\) 0 0
\(397\) −9.68932e21 −0.788086 −0.394043 0.919092i \(-0.628924\pi\)
−0.394043 + 0.919092i \(0.628924\pi\)
\(398\) −2.88814e22 −2.29939
\(399\) 0 0
\(400\) 1.52260e21 0.116165
\(401\) 1.34295e22 1.00307 0.501536 0.865137i \(-0.332768\pi\)
0.501536 + 0.865137i \(0.332768\pi\)
\(402\) 0 0
\(403\) 9.72084e19 0.00696003
\(404\) −2.29775e22 −1.61087
\(405\) 0 0
\(406\) 1.45331e22 0.976980
\(407\) 9.28038e21 0.610961
\(408\) 0 0
\(409\) −5.39990e19 −0.00340987 −0.00170493 0.999999i \(-0.500543\pi\)
−0.00170493 + 0.999999i \(0.500543\pi\)
\(410\) −9.92571e18 −0.000613902 0
\(411\) 0 0
\(412\) 1.88448e22 1.11832
\(413\) 6.31133e21 0.366898
\(414\) 0 0
\(415\) −6.16605e19 −0.00344031
\(416\) −1.86626e22 −1.02018
\(417\) 0 0
\(418\) 2.81459e21 0.147712
\(419\) −1.07690e22 −0.553805 −0.276902 0.960898i \(-0.589308\pi\)
−0.276902 + 0.960898i \(0.589308\pi\)
\(420\) 0 0
\(421\) 5.68170e21 0.280595 0.140298 0.990109i \(-0.455194\pi\)
0.140298 + 0.990109i \(0.455194\pi\)
\(422\) 2.43398e22 1.17805
\(423\) 0 0
\(424\) 9.14732e21 0.425289
\(425\) 1.36775e22 0.623307
\(426\) 0 0
\(427\) 5.87169e21 0.257114
\(428\) −4.54757e21 −0.195212
\(429\) 0 0
\(430\) −1.32508e20 −0.00546713
\(431\) −9.84323e21 −0.398181 −0.199091 0.979981i \(-0.563799\pi\)
−0.199091 + 0.979981i \(0.563799\pi\)
\(432\) 0 0
\(433\) −2.84959e22 −1.10824 −0.554121 0.832436i \(-0.686946\pi\)
−0.554121 + 0.832436i \(0.686946\pi\)
\(434\) −1.18097e20 −0.00450377
\(435\) 0 0
\(436\) 2.61679e22 0.959694
\(437\) −2.12972e21 −0.0766004
\(438\) 0 0
\(439\) −3.33148e22 −1.15263 −0.576314 0.817229i \(-0.695509\pi\)
−0.576314 + 0.817229i \(0.695509\pi\)
\(440\) 7.28355e19 0.00247170
\(441\) 0 0
\(442\) −2.85982e22 −0.933791
\(443\) 3.01681e22 0.966310 0.483155 0.875535i \(-0.339491\pi\)
0.483155 + 0.875535i \(0.339491\pi\)
\(444\) 0 0
\(445\) 2.04583e20 0.00630680
\(446\) −8.14562e22 −2.46364
\(447\) 0 0
\(448\) 2.11649e22 0.616244
\(449\) 3.27396e22 0.935362 0.467681 0.883897i \(-0.345090\pi\)
0.467681 + 0.883897i \(0.345090\pi\)
\(450\) 0 0
\(451\) −2.70743e21 −0.0744828
\(452\) 2.60339e21 0.0702851
\(453\) 0 0
\(454\) −7.81325e22 −2.03169
\(455\) −5.19516e19 −0.00132587
\(456\) 0 0
\(457\) 5.71904e20 0.0140616 0.00703081 0.999975i \(-0.497762\pi\)
0.00703081 + 0.999975i \(0.497762\pi\)
\(458\) −6.75443e21 −0.163017
\(459\) 0 0
\(460\) −1.52689e20 −0.00355113
\(461\) −4.91378e22 −1.12191 −0.560955 0.827846i \(-0.689566\pi\)
−0.560955 + 0.827846i \(0.689566\pi\)
\(462\) 0 0
\(463\) −2.34238e22 −0.515488 −0.257744 0.966213i \(-0.582979\pi\)
−0.257744 + 0.966213i \(0.582979\pi\)
\(464\) −8.67744e21 −0.187495
\(465\) 0 0
\(466\) 1.21186e23 2.52449
\(467\) 8.59565e21 0.175827 0.0879134 0.996128i \(-0.471980\pi\)
0.0879134 + 0.996128i \(0.471980\pi\)
\(468\) 0 0
\(469\) −3.14042e21 −0.0619468
\(470\) 3.64261e19 0.000705636 0
\(471\) 0 0
\(472\) 4.69934e22 0.878071
\(473\) −3.61440e22 −0.663311
\(474\) 0 0
\(475\) 7.14915e21 0.126578
\(476\) 2.11973e22 0.368657
\(477\) 0 0
\(478\) 7.55995e22 1.26877
\(479\) 7.95581e22 1.31169 0.655847 0.754894i \(-0.272312\pi\)
0.655847 + 0.754894i \(0.272312\pi\)
\(480\) 0 0
\(481\) −4.92875e22 −0.784339
\(482\) −5.73451e21 −0.0896595
\(483\) 0 0
\(484\) −4.86269e22 −0.733991
\(485\) 3.41141e17 5.05976e−6 0
\(486\) 0 0
\(487\) 1.05123e23 1.50558 0.752789 0.658262i \(-0.228708\pi\)
0.752789 + 0.658262i \(0.228708\pi\)
\(488\) 4.37199e22 0.615334
\(489\) 0 0
\(490\) 6.31152e19 0.000857961 0
\(491\) −6.66515e22 −0.890466 −0.445233 0.895415i \(-0.646879\pi\)
−0.445233 + 0.895415i \(0.646879\pi\)
\(492\) 0 0
\(493\) −7.79495e22 −1.00604
\(494\) −1.49481e22 −0.189630
\(495\) 0 0
\(496\) 7.05138e19 0.000864331 0
\(497\) 4.24693e22 0.511736
\(498\) 0 0
\(499\) 6.75512e22 0.786644 0.393322 0.919401i \(-0.371326\pi\)
0.393322 + 0.919401i \(0.371326\pi\)
\(500\) 1.02512e21 0.0117362
\(501\) 0 0
\(502\) −2.58461e23 −2.86031
\(503\) 2.29329e22 0.249535 0.124767 0.992186i \(-0.460182\pi\)
0.124767 + 0.992186i \(0.460182\pi\)
\(504\) 0 0
\(505\) 3.66955e20 0.00386043
\(506\) −6.82648e22 −0.706183
\(507\) 0 0
\(508\) 1.66484e23 1.66544
\(509\) −8.80078e22 −0.865805 −0.432903 0.901441i \(-0.642511\pi\)
−0.432903 + 0.901441i \(0.642511\pi\)
\(510\) 0 0
\(511\) −4.40166e22 −0.418831
\(512\) −2.47658e22 −0.231771
\(513\) 0 0
\(514\) 3.75932e22 0.340348
\(515\) −3.00955e20 −0.00268003
\(516\) 0 0
\(517\) 9.93591e21 0.0856127
\(518\) 5.98787e22 0.507539
\(519\) 0 0
\(520\) −3.86825e20 −0.00317312
\(521\) 1.23833e22 0.0999342 0.0499671 0.998751i \(-0.484088\pi\)
0.0499671 + 0.998751i \(0.484088\pi\)
\(522\) 0 0
\(523\) −2.10907e23 −1.64751 −0.823754 0.566947i \(-0.808124\pi\)
−0.823754 + 0.566947i \(0.808124\pi\)
\(524\) 3.54018e23 2.72088
\(525\) 0 0
\(526\) −5.19964e22 −0.386896
\(527\) 6.33426e20 0.00463773
\(528\) 0 0
\(529\) −8.93959e22 −0.633788
\(530\) −4.04724e20 −0.00282367
\(531\) 0 0
\(532\) 1.10797e22 0.0748651
\(533\) 1.43790e22 0.0956195
\(534\) 0 0
\(535\) 7.26254e19 0.000467823 0
\(536\) −2.33832e22 −0.148253
\(537\) 0 0
\(538\) −4.50193e23 −2.76534
\(539\) 1.72159e22 0.104094
\(540\) 0 0
\(541\) 2.98486e23 1.74883 0.874414 0.485181i \(-0.161246\pi\)
0.874414 + 0.485181i \(0.161246\pi\)
\(542\) 2.79864e23 1.61419
\(543\) 0 0
\(544\) −1.21608e23 −0.679786
\(545\) −4.17905e20 −0.00229989
\(546\) 0 0
\(547\) −1.30331e23 −0.695272 −0.347636 0.937630i \(-0.613016\pi\)
−0.347636 + 0.937630i \(0.613016\pi\)
\(548\) 4.33431e23 2.27659
\(549\) 0 0
\(550\) 2.29154e23 1.16693
\(551\) −4.07437e22 −0.204302
\(552\) 0 0
\(553\) 1.09336e23 0.531618
\(554\) −5.56290e23 −2.66359
\(555\) 0 0
\(556\) 6.54911e23 3.04121
\(557\) 1.64680e23 0.753135 0.376567 0.926389i \(-0.377104\pi\)
0.376567 + 0.926389i \(0.377104\pi\)
\(558\) 0 0
\(559\) 1.91959e23 0.851545
\(560\) −3.76850e19 −0.000164653 0
\(561\) 0 0
\(562\) 5.31653e22 0.225356
\(563\) 1.92575e23 0.804041 0.402020 0.915631i \(-0.368308\pi\)
0.402020 + 0.915631i \(0.368308\pi\)
\(564\) 0 0
\(565\) −4.15766e19 −0.000168437 0
\(566\) −4.78960e21 −0.0191144
\(567\) 0 0
\(568\) 3.16221e23 1.22470
\(569\) 5.49905e22 0.209814 0.104907 0.994482i \(-0.466546\pi\)
0.104907 + 0.994482i \(0.466546\pi\)
\(570\) 0 0
\(571\) 2.78347e23 1.03081 0.515407 0.856945i \(-0.327641\pi\)
0.515407 + 0.856945i \(0.327641\pi\)
\(572\) −2.92325e23 −1.06660
\(573\) 0 0
\(574\) −1.74688e22 −0.0618746
\(575\) −1.73395e23 −0.605146
\(576\) 0 0
\(577\) 4.78014e23 1.61974 0.809872 0.586606i \(-0.199536\pi\)
0.809872 + 0.586606i \(0.199536\pi\)
\(578\) 2.93289e23 0.979284
\(579\) 0 0
\(580\) −2.92109e21 −0.00947125
\(581\) −1.08520e23 −0.346746
\(582\) 0 0
\(583\) −1.10396e23 −0.342588
\(584\) −3.27742e23 −1.00236
\(585\) 0 0
\(586\) −2.45062e23 −0.728025
\(587\) 4.85252e23 1.42083 0.710417 0.703781i \(-0.248506\pi\)
0.710417 + 0.703781i \(0.248506\pi\)
\(588\) 0 0
\(589\) 3.31087e20 0.000941808 0
\(590\) −2.07923e21 −0.00582988
\(591\) 0 0
\(592\) −3.57526e22 −0.0974031
\(593\) 1.11757e23 0.300131 0.150066 0.988676i \(-0.452052\pi\)
0.150066 + 0.988676i \(0.452052\pi\)
\(594\) 0 0
\(595\) −3.38525e20 −0.000883480 0
\(596\) −5.73651e23 −1.47589
\(597\) 0 0
\(598\) 3.62550e23 0.906583
\(599\) 6.39355e23 1.57621 0.788105 0.615541i \(-0.211062\pi\)
0.788105 + 0.615541i \(0.211062\pi\)
\(600\) 0 0
\(601\) 4.25977e23 1.02083 0.510415 0.859928i \(-0.329492\pi\)
0.510415 + 0.859928i \(0.329492\pi\)
\(602\) −2.33208e23 −0.551027
\(603\) 0 0
\(604\) −1.03764e24 −2.38359
\(605\) 7.76579e20 0.00175900
\(606\) 0 0
\(607\) −8.59210e23 −1.89232 −0.946162 0.323692i \(-0.895076\pi\)
−0.946162 + 0.323692i \(0.895076\pi\)
\(608\) −6.35638e22 −0.138048
\(609\) 0 0
\(610\) −1.93439e21 −0.00408546
\(611\) −5.27690e22 −0.109908
\(612\) 0 0
\(613\) 1.71142e23 0.346690 0.173345 0.984861i \(-0.444542\pi\)
0.173345 + 0.984861i \(0.444542\pi\)
\(614\) −3.78155e23 −0.755508
\(615\) 0 0
\(616\) 1.28187e23 0.249120
\(617\) −5.77283e23 −1.10653 −0.553267 0.833004i \(-0.686619\pi\)
−0.553267 + 0.833004i \(0.686619\pi\)
\(618\) 0 0
\(619\) −2.91521e23 −0.543625 −0.271813 0.962350i \(-0.587623\pi\)
−0.271813 + 0.962350i \(0.587623\pi\)
\(620\) 2.37371e19 4.36615e−5 0
\(621\) 0 0
\(622\) −4.89567e23 −0.876180
\(623\) 3.60057e23 0.635656
\(624\) 0 0
\(625\) 5.82052e23 0.999958
\(626\) −1.67646e24 −2.84127
\(627\) 0 0
\(628\) −1.70240e24 −2.80804
\(629\) −3.21166e23 −0.522635
\(630\) 0 0
\(631\) 2.96332e23 0.469385 0.234693 0.972070i \(-0.424592\pi\)
0.234693 + 0.972070i \(0.424592\pi\)
\(632\) 8.14102e23 1.27228
\(633\) 0 0
\(634\) −5.46634e23 −0.831644
\(635\) −2.65877e21 −0.00399121
\(636\) 0 0
\(637\) −9.14325e22 −0.133634
\(638\) −1.30597e24 −1.88347
\(639\) 0 0
\(640\) −4.06037e21 −0.00570211
\(641\) 7.56808e23 1.04880 0.524400 0.851472i \(-0.324290\pi\)
0.524400 + 0.851472i \(0.324290\pi\)
\(642\) 0 0
\(643\) 6.39882e23 0.863588 0.431794 0.901972i \(-0.357881\pi\)
0.431794 + 0.901972i \(0.357881\pi\)
\(644\) −2.68726e23 −0.357915
\(645\) 0 0
\(646\) −9.74042e22 −0.126358
\(647\) 6.61917e23 0.847456 0.423728 0.905789i \(-0.360721\pi\)
0.423728 + 0.905789i \(0.360721\pi\)
\(648\) 0 0
\(649\) −5.67149e23 −0.707322
\(650\) −1.21702e24 −1.49808
\(651\) 0 0
\(652\) −2.22341e24 −2.66634
\(653\) −1.60600e24 −1.90101 −0.950505 0.310710i \(-0.899433\pi\)
−0.950505 + 0.310710i \(0.899433\pi\)
\(654\) 0 0
\(655\) −5.65373e21 −0.00652054
\(656\) 1.04303e22 0.0118745
\(657\) 0 0
\(658\) 6.41083e22 0.0711204
\(659\) 7.03602e23 0.770550 0.385275 0.922802i \(-0.374107\pi\)
0.385275 + 0.922802i \(0.374107\pi\)
\(660\) 0 0
\(661\) −4.71645e23 −0.503388 −0.251694 0.967807i \(-0.580988\pi\)
−0.251694 + 0.967807i \(0.580988\pi\)
\(662\) −1.75178e24 −1.84581
\(663\) 0 0
\(664\) −8.08024e23 −0.829842
\(665\) −1.76945e20 −0.000179413 0
\(666\) 0 0
\(667\) 9.88194e23 0.976726
\(668\) 2.15857e24 2.10652
\(669\) 0 0
\(670\) 1.03459e21 0.000984314 0
\(671\) −5.27643e23 −0.495677
\(672\) 0 0
\(673\) 1.68843e24 1.54652 0.773258 0.634092i \(-0.218626\pi\)
0.773258 + 0.634092i \(0.218626\pi\)
\(674\) −1.46323e23 −0.132344
\(675\) 0 0
\(676\) −2.21711e23 −0.195542
\(677\) 2.17546e24 1.89473 0.947365 0.320155i \(-0.103735\pi\)
0.947365 + 0.320155i \(0.103735\pi\)
\(678\) 0 0
\(679\) 6.00394e20 0.000509968 0
\(680\) −2.52061e21 −0.00211437
\(681\) 0 0
\(682\) 1.06125e22 0.00868258
\(683\) 1.35699e24 1.09648 0.548239 0.836321i \(-0.315298\pi\)
0.548239 + 0.836321i \(0.315298\pi\)
\(684\) 0 0
\(685\) −6.92197e21 −0.00545582
\(686\) 1.11080e23 0.0864731
\(687\) 0 0
\(688\) 1.39245e23 0.105749
\(689\) 5.86308e23 0.439807
\(690\) 0 0
\(691\) 7.81094e23 0.571663 0.285831 0.958280i \(-0.407730\pi\)
0.285831 + 0.958280i \(0.407730\pi\)
\(692\) 2.22890e24 1.61135
\(693\) 0 0
\(694\) −5.80865e23 −0.409750
\(695\) −1.04590e22 −0.00728821
\(696\) 0 0
\(697\) 9.36957e22 0.0637149
\(698\) −2.90773e24 −1.95336
\(699\) 0 0
\(700\) 9.02073e23 0.591437
\(701\) 1.67887e24 1.08746 0.543731 0.839260i \(-0.317011\pi\)
0.543731 + 0.839260i \(0.317011\pi\)
\(702\) 0 0
\(703\) −1.67871e23 −0.106134
\(704\) −1.90192e24 −1.18802
\(705\) 0 0
\(706\) 6.17122e23 0.376297
\(707\) 6.45824e23 0.389089
\(708\) 0 0
\(709\) 2.86412e24 1.68460 0.842302 0.539005i \(-0.181200\pi\)
0.842302 + 0.539005i \(0.181200\pi\)
\(710\) −1.39912e22 −0.00813131
\(711\) 0 0
\(712\) 2.68094e24 1.52127
\(713\) −8.03017e21 −0.00450260
\(714\) 0 0
\(715\) 4.66848e21 0.00255608
\(716\) 1.78958e24 0.968259
\(717\) 0 0
\(718\) 2.96935e24 1.56893
\(719\) 1.02551e24 0.535481 0.267741 0.963491i \(-0.413723\pi\)
0.267741 + 0.963491i \(0.413723\pi\)
\(720\) 0 0
\(721\) −5.29668e23 −0.270118
\(722\) 3.12665e24 1.57584
\(723\) 0 0
\(724\) 1.09212e24 0.537643
\(725\) −3.31721e24 −1.61399
\(726\) 0 0
\(727\) −2.14060e24 −1.01740 −0.508701 0.860943i \(-0.669874\pi\)
−0.508701 + 0.860943i \(0.669874\pi\)
\(728\) −6.80795e23 −0.319816
\(729\) 0 0
\(730\) 1.45010e22 0.00665508
\(731\) 1.25083e24 0.567417
\(732\) 0 0
\(733\) 3.01809e24 1.33767 0.668834 0.743412i \(-0.266794\pi\)
0.668834 + 0.743412i \(0.266794\pi\)
\(734\) −5.44847e24 −2.38703
\(735\) 0 0
\(736\) 1.54167e24 0.659979
\(737\) 2.82205e23 0.119424
\(738\) 0 0
\(739\) −1.27758e24 −0.528335 −0.264167 0.964477i \(-0.585097\pi\)
−0.264167 + 0.964477i \(0.585097\pi\)
\(740\) −1.20354e22 −0.00492029
\(741\) 0 0
\(742\) −7.12297e23 −0.284596
\(743\) 1.74393e23 0.0688850 0.0344425 0.999407i \(-0.489034\pi\)
0.0344425 + 0.999407i \(0.489034\pi\)
\(744\) 0 0
\(745\) 9.16129e21 0.00353695
\(746\) −4.59100e24 −1.75238
\(747\) 0 0
\(748\) −1.90484e24 −0.710713
\(749\) 1.27817e23 0.0471514
\(750\) 0 0
\(751\) −8.19253e23 −0.295446 −0.147723 0.989029i \(-0.547194\pi\)
−0.147723 + 0.989029i \(0.547194\pi\)
\(752\) −3.82780e22 −0.0136489
\(753\) 0 0
\(754\) 6.93593e24 2.41796
\(755\) 1.65712e22 0.00571223
\(756\) 0 0
\(757\) −2.53750e24 −0.855245 −0.427623 0.903957i \(-0.640649\pi\)
−0.427623 + 0.903957i \(0.640649\pi\)
\(758\) 8.22216e24 2.74030
\(759\) 0 0
\(760\) −1.31751e21 −0.000429376 0
\(761\) 5.86180e22 0.0188913 0.00944563 0.999955i \(-0.496993\pi\)
0.00944563 + 0.999955i \(0.496993\pi\)
\(762\) 0 0
\(763\) −7.35494e23 −0.231804
\(764\) 7.38375e24 2.30135
\(765\) 0 0
\(766\) −2.38439e24 −0.726829
\(767\) 3.01209e24 0.908046
\(768\) 0 0
\(769\) −8.24496e23 −0.243117 −0.121558 0.992584i \(-0.538789\pi\)
−0.121558 + 0.992584i \(0.538789\pi\)
\(770\) −5.67167e21 −0.00165402
\(771\) 0 0
\(772\) −1.79237e24 −0.511305
\(773\) 5.94460e24 1.67725 0.838623 0.544712i \(-0.183361\pi\)
0.838623 + 0.544712i \(0.183361\pi\)
\(774\) 0 0
\(775\) 2.69560e22 0.00744032
\(776\) 4.47046e21 0.00122047
\(777\) 0 0
\(778\) −8.38166e24 −2.23874
\(779\) 4.89741e22 0.0129389
\(780\) 0 0
\(781\) −3.81638e24 −0.986547
\(782\) 2.36243e24 0.604091
\(783\) 0 0
\(784\) −6.63240e22 −0.0165953
\(785\) 2.71875e22 0.00672942
\(786\) 0 0
\(787\) −4.77054e24 −1.15553 −0.577766 0.816202i \(-0.696075\pi\)
−0.577766 + 0.816202i \(0.696075\pi\)
\(788\) −1.21640e24 −0.291478
\(789\) 0 0
\(790\) −3.60200e22 −0.00844722
\(791\) −7.31730e22 −0.0169766
\(792\) 0 0
\(793\) 2.80228e24 0.636340
\(794\) 5.61793e24 1.26212
\(795\) 0 0
\(796\) 1.02167e25 2.24671
\(797\) −5.50255e24 −1.19720 −0.598602 0.801046i \(-0.704277\pi\)
−0.598602 + 0.801046i \(0.704277\pi\)
\(798\) 0 0
\(799\) −3.43851e23 −0.0732358
\(800\) −5.17515e24 −1.09058
\(801\) 0 0
\(802\) −7.78651e24 −1.60642
\(803\) 3.95542e24 0.807441
\(804\) 0 0
\(805\) 4.29160e21 0.000857738 0
\(806\) −5.63621e22 −0.0111465
\(807\) 0 0
\(808\) 4.80873e24 0.931180
\(809\) −4.06814e24 −0.779531 −0.389766 0.920914i \(-0.627444\pi\)
−0.389766 + 0.920914i \(0.627444\pi\)
\(810\) 0 0
\(811\) 3.33966e24 0.626650 0.313325 0.949646i \(-0.398557\pi\)
0.313325 + 0.949646i \(0.398557\pi\)
\(812\) −5.14099e24 −0.954599
\(813\) 0 0
\(814\) −5.38083e24 −0.978456
\(815\) 3.55082e22 0.00638983
\(816\) 0 0
\(817\) 6.53802e23 0.115228
\(818\) 3.13089e22 0.00546091
\(819\) 0 0
\(820\) 3.51117e21 0.000599838 0
\(821\) −7.45518e24 −1.26050 −0.630248 0.776394i \(-0.717047\pi\)
−0.630248 + 0.776394i \(0.717047\pi\)
\(822\) 0 0
\(823\) −7.50658e24 −1.24321 −0.621603 0.783332i \(-0.713518\pi\)
−0.621603 + 0.783332i \(0.713518\pi\)
\(824\) −3.94384e24 −0.646455
\(825\) 0 0
\(826\) −3.65935e24 −0.587589
\(827\) −9.32722e24 −1.48237 −0.741183 0.671303i \(-0.765735\pi\)
−0.741183 + 0.671303i \(0.765735\pi\)
\(828\) 0 0
\(829\) −3.74578e24 −0.583215 −0.291607 0.956538i \(-0.594190\pi\)
−0.291607 + 0.956538i \(0.594190\pi\)
\(830\) 3.57511e22 0.00550968
\(831\) 0 0
\(832\) 1.01010e25 1.52516
\(833\) −5.95789e23 −0.0890451
\(834\) 0 0
\(835\) −3.44727e22 −0.00504825
\(836\) −9.95645e23 −0.144328
\(837\) 0 0
\(838\) 6.24394e24 0.886921
\(839\) −6.36275e24 −0.894681 −0.447341 0.894364i \(-0.647629\pi\)
−0.447341 + 0.894364i \(0.647629\pi\)
\(840\) 0 0
\(841\) 1.16480e25 1.60503
\(842\) −3.29429e24 −0.449375
\(843\) 0 0
\(844\) −8.61010e24 −1.15106
\(845\) 3.54076e21 0.000468613 0
\(846\) 0 0
\(847\) 1.36675e24 0.177288
\(848\) 4.25301e23 0.0546175
\(849\) 0 0
\(850\) −7.93032e24 −0.998229
\(851\) 4.07153e24 0.507407
\(852\) 0 0
\(853\) 8.71802e24 1.06500 0.532502 0.846429i \(-0.321252\pi\)
0.532502 + 0.846429i \(0.321252\pi\)
\(854\) −3.40445e24 −0.411770
\(855\) 0 0
\(856\) 9.51713e23 0.112844
\(857\) −1.18825e25 −1.39499 −0.697493 0.716592i \(-0.745701\pi\)
−0.697493 + 0.716592i \(0.745701\pi\)
\(858\) 0 0
\(859\) −6.84957e24 −0.788355 −0.394177 0.919034i \(-0.628970\pi\)
−0.394177 + 0.919034i \(0.628970\pi\)
\(860\) 4.68739e22 0.00534189
\(861\) 0 0
\(862\) 5.70717e24 0.637689
\(863\) −1.02759e25 −1.13691 −0.568457 0.822713i \(-0.692459\pi\)
−0.568457 + 0.822713i \(0.692459\pi\)
\(864\) 0 0
\(865\) −3.55959e22 −0.00386156
\(866\) 1.65221e25 1.77486
\(867\) 0 0
\(868\) 4.17762e22 0.00440060
\(869\) −9.82516e24 −1.02488
\(870\) 0 0
\(871\) −1.49877e24 −0.153314
\(872\) −5.47640e24 −0.554760
\(873\) 0 0
\(874\) 1.23483e24 0.122676
\(875\) −2.88127e22 −0.00283475
\(876\) 0 0
\(877\) 2.38006e24 0.229663 0.114832 0.993385i \(-0.463367\pi\)
0.114832 + 0.993385i \(0.463367\pi\)
\(878\) 1.93161e25 1.84594
\(879\) 0 0
\(880\) 3.38646e21 0.000317426 0
\(881\) 2.05906e24 0.191150 0.0955751 0.995422i \(-0.469531\pi\)
0.0955751 + 0.995422i \(0.469531\pi\)
\(882\) 0 0
\(883\) 3.03043e24 0.275955 0.137978 0.990435i \(-0.455940\pi\)
0.137978 + 0.990435i \(0.455940\pi\)
\(884\) 1.01165e25 0.912399
\(885\) 0 0
\(886\) −1.74917e25 −1.54755
\(887\) 1.88219e24 0.164935 0.0824673 0.996594i \(-0.473720\pi\)
0.0824673 + 0.996594i \(0.473720\pi\)
\(888\) 0 0
\(889\) −4.67932e24 −0.402270
\(890\) −1.18618e23 −0.0101004
\(891\) 0 0
\(892\) 2.88147e25 2.40720
\(893\) −1.79729e23 −0.0148724
\(894\) 0 0
\(895\) −2.85799e22 −0.00232041
\(896\) −7.14607e24 −0.574711
\(897\) 0 0
\(898\) −1.89827e25 −1.49799
\(899\) −1.53625e23 −0.0120089
\(900\) 0 0
\(901\) 3.82048e24 0.293060
\(902\) 1.56978e24 0.119285
\(903\) 0 0
\(904\) −5.44837e23 −0.0406289
\(905\) −1.74414e22 −0.00128845
\(906\) 0 0
\(907\) −1.10566e25 −0.801606 −0.400803 0.916164i \(-0.631269\pi\)
−0.400803 + 0.916164i \(0.631269\pi\)
\(908\) 2.76390e25 1.98514
\(909\) 0 0
\(910\) 3.01219e22 0.00212339
\(911\) 1.23349e25 0.861447 0.430723 0.902484i \(-0.358258\pi\)
0.430723 + 0.902484i \(0.358258\pi\)
\(912\) 0 0
\(913\) 9.75181e24 0.668473
\(914\) −3.31594e23 −0.0225198
\(915\) 0 0
\(916\) 2.38935e24 0.159282
\(917\) −9.95031e24 −0.657200
\(918\) 0 0
\(919\) −2.42568e25 −1.57272 −0.786362 0.617766i \(-0.788038\pi\)
−0.786362 + 0.617766i \(0.788038\pi\)
\(920\) 3.19547e22 0.00205276
\(921\) 0 0
\(922\) 2.84904e25 1.79674
\(923\) 2.02686e25 1.26651
\(924\) 0 0
\(925\) −1.36675e25 −0.838464
\(926\) 1.35813e25 0.825556
\(927\) 0 0
\(928\) 2.94937e25 1.76024
\(929\) −2.00616e25 −1.18640 −0.593201 0.805054i \(-0.702136\pi\)
−0.593201 + 0.805054i \(0.702136\pi\)
\(930\) 0 0
\(931\) −3.11415e23 −0.0180829
\(932\) −4.28691e25 −2.46666
\(933\) 0 0
\(934\) −4.98381e24 −0.281587
\(935\) 3.04206e22 0.00170321
\(936\) 0 0
\(937\) 1.93153e25 1.06198 0.530988 0.847379i \(-0.321821\pi\)
0.530988 + 0.847379i \(0.321821\pi\)
\(938\) 1.82084e24 0.0992081
\(939\) 0 0
\(940\) −1.28855e22 −0.000689471 0
\(941\) −1.11009e24 −0.0588636 −0.0294318 0.999567i \(-0.509370\pi\)
−0.0294318 + 0.999567i \(0.509370\pi\)
\(942\) 0 0
\(943\) −1.18781e24 −0.0618585
\(944\) 2.18494e24 0.112766
\(945\) 0 0
\(946\) 2.09566e25 1.06230
\(947\) 1.08567e25 0.545408 0.272704 0.962098i \(-0.412082\pi\)
0.272704 + 0.962098i \(0.412082\pi\)
\(948\) 0 0
\(949\) −2.10070e25 −1.03658
\(950\) −4.14512e24 −0.202716
\(951\) 0 0
\(952\) −4.43617e24 −0.213105
\(953\) −1.09499e25 −0.521339 −0.260670 0.965428i \(-0.583943\pi\)
−0.260670 + 0.965428i \(0.583943\pi\)
\(954\) 0 0
\(955\) −1.17920e23 −0.00551515
\(956\) −2.67429e25 −1.23970
\(957\) 0 0
\(958\) −4.61283e25 −2.10068
\(959\) −1.21824e25 −0.549887
\(960\) 0 0
\(961\) −2.25489e25 −0.999945
\(962\) 2.85772e25 1.25612
\(963\) 0 0
\(964\) 2.02855e24 0.0876056
\(965\) 2.86244e22 0.00122533
\(966\) 0 0
\(967\) −1.73057e25 −0.727886 −0.363943 0.931421i \(-0.618570\pi\)
−0.363943 + 0.931421i \(0.618570\pi\)
\(968\) 1.01766e25 0.424290
\(969\) 0 0
\(970\) −1.97796e20 −8.10322e−6 0
\(971\) 2.98981e25 1.21417 0.607086 0.794636i \(-0.292338\pi\)
0.607086 + 0.794636i \(0.292338\pi\)
\(972\) 0 0
\(973\) −1.84074e25 −0.734572
\(974\) −6.09512e25 −2.41119
\(975\) 0 0
\(976\) 2.03274e24 0.0790238
\(977\) −3.29242e24 −0.126885 −0.0634426 0.997985i \(-0.520208\pi\)
−0.0634426 + 0.997985i \(0.520208\pi\)
\(978\) 0 0
\(979\) −3.23554e25 −1.22545
\(980\) −2.23267e22 −0.000838306 0
\(981\) 0 0
\(982\) 3.86450e25 1.42608
\(983\) 6.09693e23 0.0223052 0.0111526 0.999938i \(-0.496450\pi\)
0.0111526 + 0.999938i \(0.496450\pi\)
\(984\) 0 0
\(985\) 1.94262e22 0.000698521 0
\(986\) 4.51956e25 1.61118
\(987\) 0 0
\(988\) 5.28781e24 0.185286
\(989\) −1.58573e25 −0.550884
\(990\) 0 0
\(991\) −1.07735e25 −0.367903 −0.183951 0.982935i \(-0.558889\pi\)
−0.183951 + 0.982935i \(0.558889\pi\)
\(992\) −2.39669e23 −0.00811450
\(993\) 0 0
\(994\) −2.46240e25 −0.819547
\(995\) −1.63162e23 −0.00538421
\(996\) 0 0
\(997\) 1.79833e25 0.583392 0.291696 0.956511i \(-0.405780\pi\)
0.291696 + 0.956511i \(0.405780\pi\)
\(998\) −3.91666e25 −1.25981
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.18.a.d.1.1 4
3.2 odd 2 21.18.a.b.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.18.a.b.1.4 4 3.2 odd 2
63.18.a.d.1.1 4 1.1 even 1 trivial