Properties

Label 21.3.f.c.19.1
Level $21$
Weight $3$
Character 21.19
Analytic conductor $0.572$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [21,3,Mod(10,21)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("21.10");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 21.f (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.572208555157\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 21.19
Dual form 21.3.f.c.10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-3.00000 - 1.73205i) q^{5} +3.46410i q^{6} +(-3.50000 + 6.06218i) q^{7} +8.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(-6.00000 + 3.46410i) q^{10} +(-5.00000 - 8.66025i) q^{11} -12.1244i q^{13} +(7.00000 + 12.1244i) q^{14} +6.00000 q^{15} +(8.00000 - 13.8564i) q^{16} +(-6.00000 + 3.46410i) q^{17} +(-3.00000 - 5.19615i) q^{18} +(28.5000 + 16.4545i) q^{19} -12.1244i q^{21} -20.0000 q^{22} +(-20.0000 + 34.6410i) q^{23} +(-12.0000 + 6.92820i) q^{24} +(-6.50000 - 11.2583i) q^{25} +(-21.0000 - 12.1244i) q^{26} +5.19615i q^{27} +16.0000 q^{29} +(6.00000 - 10.3923i) q^{30} +(4.50000 - 2.59808i) q^{31} +(15.0000 + 8.66025i) q^{33} +13.8564i q^{34} +(21.0000 - 12.1244i) q^{35} +(-2.50000 + 4.33013i) q^{37} +(57.0000 - 32.9090i) q^{38} +(10.5000 + 18.1865i) q^{39} +(-24.0000 - 13.8564i) q^{40} -24.2487i q^{41} +(-21.0000 - 12.1244i) q^{42} -19.0000 q^{43} +(-9.00000 + 5.19615i) q^{45} +(40.0000 + 69.2820i) q^{46} +(-45.0000 - 25.9808i) q^{47} +27.7128i q^{48} +(-24.5000 - 42.4352i) q^{49} -26.0000 q^{50} +(6.00000 - 10.3923i) q^{51} +(16.0000 + 27.7128i) q^{53} +(9.00000 + 5.19615i) q^{54} +34.6410i q^{55} +(-28.0000 + 48.4974i) q^{56} -57.0000 q^{57} +(16.0000 - 27.7128i) q^{58} +(36.0000 - 20.7846i) q^{59} +(18.0000 + 10.3923i) q^{61} -10.3923i q^{62} +(10.5000 + 18.1865i) q^{63} +64.0000 q^{64} +(-21.0000 + 36.3731i) q^{65} +(30.0000 - 17.3205i) q^{66} +(-29.5000 - 51.0955i) q^{67} -69.2820i q^{69} -48.4974i q^{70} -26.0000 q^{71} +(12.0000 - 20.7846i) q^{72} +(-16.5000 + 9.52628i) q^{73} +(5.00000 + 8.66025i) q^{74} +(19.5000 + 11.2583i) q^{75} +70.0000 q^{77} +42.0000 q^{78} +(-23.5000 + 40.7032i) q^{79} +(-48.0000 + 27.7128i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-42.0000 - 24.2487i) q^{82} +24.2487i q^{83} +24.0000 q^{85} +(-19.0000 + 32.9090i) q^{86} +(-24.0000 + 13.8564i) q^{87} +(-40.0000 - 69.2820i) q^{88} +(102.000 + 58.8897i) q^{89} +20.7846i q^{90} +(73.5000 + 42.4352i) q^{91} +(-4.50000 + 7.79423i) q^{93} +(-90.0000 + 51.9615i) q^{94} +(-57.0000 - 98.7269i) q^{95} +48.4974i q^{97} -98.0000 q^{98} -30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 3 q^{3} - 6 q^{5} - 7 q^{7} + 16 q^{8} + 3 q^{9} - 12 q^{10} - 10 q^{11} + 14 q^{14} + 12 q^{15} + 16 q^{16} - 12 q^{17} - 6 q^{18} + 57 q^{19} - 40 q^{22} - 40 q^{23} - 24 q^{24} - 13 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(3\) −1.50000 + 0.866025i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) −3.00000 1.73205i −0.600000 0.346410i 0.169042 0.985609i \(-0.445933\pi\)
−0.769042 + 0.639199i \(0.779266\pi\)
\(6\) 3.46410i 0.577350i
\(7\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(8\) 8.00000 1.00000
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) −6.00000 + 3.46410i −0.600000 + 0.346410i
\(11\) −5.00000 8.66025i −0.454545 0.787296i 0.544116 0.839010i \(-0.316865\pi\)
−0.998662 + 0.0517139i \(0.983532\pi\)
\(12\) 0 0
\(13\) 12.1244i 0.932643i −0.884615 0.466321i \(-0.845579\pi\)
0.884615 0.466321i \(-0.154421\pi\)
\(14\) 7.00000 + 12.1244i 0.500000 + 0.866025i
\(15\) 6.00000 0.400000
\(16\) 8.00000 13.8564i 0.500000 0.866025i
\(17\) −6.00000 + 3.46410i −0.352941 + 0.203771i −0.665980 0.745970i \(-0.731986\pi\)
0.313039 + 0.949740i \(0.398653\pi\)
\(18\) −3.00000 5.19615i −0.166667 0.288675i
\(19\) 28.5000 + 16.4545i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0 0
\(21\) 12.1244i 0.577350i
\(22\) −20.0000 −0.909091
\(23\) −20.0000 + 34.6410i −0.869565 + 1.50613i −0.00712357 + 0.999975i \(0.502268\pi\)
−0.862442 + 0.506157i \(0.831066\pi\)
\(24\) −12.0000 + 6.92820i −0.500000 + 0.288675i
\(25\) −6.50000 11.2583i −0.260000 0.450333i
\(26\) −21.0000 12.1244i −0.807692 0.466321i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 16.0000 0.551724 0.275862 0.961197i \(-0.411037\pi\)
0.275862 + 0.961197i \(0.411037\pi\)
\(30\) 6.00000 10.3923i 0.200000 0.346410i
\(31\) 4.50000 2.59808i 0.145161 0.0838089i −0.425660 0.904883i \(-0.639958\pi\)
0.570822 + 0.821074i \(0.306625\pi\)
\(32\) 0 0
\(33\) 15.0000 + 8.66025i 0.454545 + 0.262432i
\(34\) 13.8564i 0.407541i
\(35\) 21.0000 12.1244i 0.600000 0.346410i
\(36\) 0 0
\(37\) −2.50000 + 4.33013i −0.0675676 + 0.117030i −0.897830 0.440342i \(-0.854857\pi\)
0.830262 + 0.557373i \(0.188190\pi\)
\(38\) 57.0000 32.9090i 1.50000 0.866025i
\(39\) 10.5000 + 18.1865i 0.269231 + 0.466321i
\(40\) −24.0000 13.8564i −0.600000 0.346410i
\(41\) 24.2487i 0.591432i −0.955276 0.295716i \(-0.904442\pi\)
0.955276 0.295716i \(-0.0955582\pi\)
\(42\) −21.0000 12.1244i −0.500000 0.288675i
\(43\) −19.0000 −0.441860 −0.220930 0.975290i \(-0.570909\pi\)
−0.220930 + 0.975290i \(0.570909\pi\)
\(44\) 0 0
\(45\) −9.00000 + 5.19615i −0.200000 + 0.115470i
\(46\) 40.0000 + 69.2820i 0.869565 + 1.50613i
\(47\) −45.0000 25.9808i −0.957447 0.552782i −0.0620605 0.998072i \(-0.519767\pi\)
−0.895386 + 0.445290i \(0.853101\pi\)
\(48\) 27.7128i 0.577350i
\(49\) −24.5000 42.4352i −0.500000 0.866025i
\(50\) −26.0000 −0.520000
\(51\) 6.00000 10.3923i 0.117647 0.203771i
\(52\) 0 0
\(53\) 16.0000 + 27.7128i 0.301887 + 0.522883i 0.976563 0.215230i \(-0.0690502\pi\)
−0.674677 + 0.738114i \(0.735717\pi\)
\(54\) 9.00000 + 5.19615i 0.166667 + 0.0962250i
\(55\) 34.6410i 0.629837i
\(56\) −28.0000 + 48.4974i −0.500000 + 0.866025i
\(57\) −57.0000 −1.00000
\(58\) 16.0000 27.7128i 0.275862 0.477807i
\(59\) 36.0000 20.7846i 0.610169 0.352282i −0.162862 0.986649i \(-0.552073\pi\)
0.773032 + 0.634367i \(0.218739\pi\)
\(60\) 0 0
\(61\) 18.0000 + 10.3923i 0.295082 + 0.170366i 0.640231 0.768182i \(-0.278838\pi\)
−0.345149 + 0.938548i \(0.612172\pi\)
\(62\) 10.3923i 0.167618i
\(63\) 10.5000 + 18.1865i 0.166667 + 0.288675i
\(64\) 64.0000 1.00000
\(65\) −21.0000 + 36.3731i −0.323077 + 0.559586i
\(66\) 30.0000 17.3205i 0.454545 0.262432i
\(67\) −29.5000 51.0955i −0.440299 0.762619i 0.557413 0.830235i \(-0.311794\pi\)
−0.997711 + 0.0676160i \(0.978461\pi\)
\(68\) 0 0
\(69\) 69.2820i 1.00409i
\(70\) 48.4974i 0.692820i
\(71\) −26.0000 −0.366197 −0.183099 0.983095i \(-0.558613\pi\)
−0.183099 + 0.983095i \(0.558613\pi\)
\(72\) 12.0000 20.7846i 0.166667 0.288675i
\(73\) −16.5000 + 9.52628i −0.226027 + 0.130497i −0.608738 0.793371i \(-0.708324\pi\)
0.382711 + 0.923868i \(0.374991\pi\)
\(74\) 5.00000 + 8.66025i 0.0675676 + 0.117030i
\(75\) 19.5000 + 11.2583i 0.260000 + 0.150111i
\(76\) 0 0
\(77\) 70.0000 0.909091
\(78\) 42.0000 0.538462
\(79\) −23.5000 + 40.7032i −0.297468 + 0.515230i −0.975556 0.219751i \(-0.929476\pi\)
0.678088 + 0.734981i \(0.262809\pi\)
\(80\) −48.0000 + 27.7128i −0.600000 + 0.346410i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) −42.0000 24.2487i −0.512195 0.295716i
\(83\) 24.2487i 0.292153i 0.989273 + 0.146077i \(0.0466646\pi\)
−0.989273 + 0.146077i \(0.953335\pi\)
\(84\) 0 0
\(85\) 24.0000 0.282353
\(86\) −19.0000 + 32.9090i −0.220930 + 0.382662i
\(87\) −24.0000 + 13.8564i −0.275862 + 0.159269i
\(88\) −40.0000 69.2820i −0.454545 0.787296i
\(89\) 102.000 + 58.8897i 1.14607 + 0.661682i 0.947926 0.318491i \(-0.103176\pi\)
0.198142 + 0.980173i \(0.436509\pi\)
\(90\) 20.7846i 0.230940i
\(91\) 73.5000 + 42.4352i 0.807692 + 0.466321i
\(92\) 0 0
\(93\) −4.50000 + 7.79423i −0.0483871 + 0.0838089i
\(94\) −90.0000 + 51.9615i −0.957447 + 0.552782i
\(95\) −57.0000 98.7269i −0.600000 1.03923i
\(96\) 0 0
\(97\) 48.4974i 0.499973i 0.968249 + 0.249987i \(0.0804263\pi\)
−0.968249 + 0.249987i \(0.919574\pi\)
\(98\) −98.0000 −1.00000
\(99\) −30.0000 −0.303030
\(100\) 0 0
\(101\) −111.000 + 64.0859i −1.09901 + 0.634514i −0.935961 0.352104i \(-0.885466\pi\)
−0.163049 + 0.986618i \(0.552133\pi\)
\(102\) −12.0000 20.7846i −0.117647 0.203771i
\(103\) 7.50000 + 4.33013i 0.0728155 + 0.0420401i 0.535966 0.844240i \(-0.319948\pi\)
−0.463150 + 0.886280i \(0.653281\pi\)
\(104\) 96.9948i 0.932643i
\(105\) −21.0000 + 36.3731i −0.200000 + 0.346410i
\(106\) 64.0000 0.603774
\(107\) 106.000 183.597i 0.990654 1.71586i 0.377204 0.926130i \(-0.376886\pi\)
0.613451 0.789733i \(-0.289781\pi\)
\(108\) 0 0
\(109\) −8.50000 14.7224i −0.0779817 0.135068i 0.824397 0.566011i \(-0.191514\pi\)
−0.902379 + 0.430943i \(0.858181\pi\)
\(110\) 60.0000 + 34.6410i 0.545455 + 0.314918i
\(111\) 8.66025i 0.0780203i
\(112\) 56.0000 + 96.9948i 0.500000 + 0.866025i
\(113\) 142.000 1.25664 0.628319 0.777956i \(-0.283743\pi\)
0.628319 + 0.777956i \(0.283743\pi\)
\(114\) −57.0000 + 98.7269i −0.500000 + 0.866025i
\(115\) 120.000 69.2820i 1.04348 0.602452i
\(116\) 0 0
\(117\) −31.5000 18.1865i −0.269231 0.155440i
\(118\) 83.1384i 0.704563i
\(119\) 48.4974i 0.407541i
\(120\) 48.0000 0.400000
\(121\) 10.5000 18.1865i 0.0867769 0.150302i
\(122\) 36.0000 20.7846i 0.295082 0.170366i
\(123\) 21.0000 + 36.3731i 0.170732 + 0.295716i
\(124\) 0 0
\(125\) 131.636i 1.05309i
\(126\) 42.0000 0.333333
\(127\) −145.000 −1.14173 −0.570866 0.821043i \(-0.693392\pi\)
−0.570866 + 0.821043i \(0.693392\pi\)
\(128\) 64.0000 110.851i 0.500000 0.866025i
\(129\) 28.5000 16.4545i 0.220930 0.127554i
\(130\) 42.0000 + 72.7461i 0.323077 + 0.559586i
\(131\) −129.000 74.4782i −0.984733 0.568536i −0.0810371 0.996711i \(-0.525823\pi\)
−0.903696 + 0.428175i \(0.859157\pi\)
\(132\) 0 0
\(133\) −199.500 + 115.181i −1.50000 + 0.866025i
\(134\) −118.000 −0.880597
\(135\) 9.00000 15.5885i 0.0666667 0.115470i
\(136\) −48.0000 + 27.7128i −0.352941 + 0.203771i
\(137\) 58.0000 + 100.459i 0.423358 + 0.733277i 0.996265 0.0863428i \(-0.0275180\pi\)
−0.572908 + 0.819620i \(0.694185\pi\)
\(138\) −120.000 69.2820i −0.869565 0.502044i
\(139\) 84.8705i 0.610579i −0.952260 0.305290i \(-0.901247\pi\)
0.952260 0.305290i \(-0.0987532\pi\)
\(140\) 0 0
\(141\) 90.0000 0.638298
\(142\) −26.0000 + 45.0333i −0.183099 + 0.317136i
\(143\) −105.000 + 60.6218i −0.734266 + 0.423929i
\(144\) −24.0000 41.5692i −0.166667 0.288675i
\(145\) −48.0000 27.7128i −0.331034 0.191123i
\(146\) 38.1051i 0.260994i
\(147\) 73.5000 + 42.4352i 0.500000 + 0.288675i
\(148\) 0 0
\(149\) −62.0000 + 107.387i −0.416107 + 0.720719i −0.995544 0.0942982i \(-0.969939\pi\)
0.579437 + 0.815017i \(0.303273\pi\)
\(150\) 39.0000 22.5167i 0.260000 0.150111i
\(151\) 23.0000 + 39.8372i 0.152318 + 0.263822i 0.932079 0.362255i \(-0.117993\pi\)
−0.779761 + 0.626077i \(0.784660\pi\)
\(152\) 228.000 + 131.636i 1.50000 + 0.866025i
\(153\) 20.7846i 0.135847i
\(154\) 70.0000 121.244i 0.454545 0.787296i
\(155\) −18.0000 −0.116129
\(156\) 0 0
\(157\) 162.000 93.5307i 1.03185 0.595737i 0.114334 0.993442i \(-0.463527\pi\)
0.917513 + 0.397705i \(0.130193\pi\)
\(158\) 47.0000 + 81.4064i 0.297468 + 0.515230i
\(159\) −48.0000 27.7128i −0.301887 0.174294i
\(160\) 0 0
\(161\) −140.000 242.487i −0.869565 1.50613i
\(162\) −18.0000 −0.111111
\(163\) 29.0000 50.2295i 0.177914 0.308156i −0.763252 0.646101i \(-0.776398\pi\)
0.941166 + 0.337945i \(0.109732\pi\)
\(164\) 0 0
\(165\) −30.0000 51.9615i −0.181818 0.314918i
\(166\) 42.0000 + 24.2487i 0.253012 + 0.146077i
\(167\) 266.736i 1.59722i 0.601849 + 0.798610i \(0.294431\pi\)
−0.601849 + 0.798610i \(0.705569\pi\)
\(168\) 96.9948i 0.577350i
\(169\) 22.0000 0.130178
\(170\) 24.0000 41.5692i 0.141176 0.244525i
\(171\) 85.5000 49.3634i 0.500000 0.288675i
\(172\) 0 0
\(173\) −108.000 62.3538i −0.624277 0.360427i 0.154255 0.988031i \(-0.450702\pi\)
−0.778532 + 0.627604i \(0.784036\pi\)
\(174\) 55.4256i 0.318538i
\(175\) 91.0000 0.520000
\(176\) −160.000 −0.909091
\(177\) −36.0000 + 62.3538i −0.203390 + 0.352282i
\(178\) 204.000 117.779i 1.14607 0.661682i
\(179\) −5.00000 8.66025i −0.0279330 0.0483813i 0.851721 0.523996i \(-0.175559\pi\)
−0.879654 + 0.475614i \(0.842226\pi\)
\(180\) 0 0
\(181\) 327.358i 1.80861i −0.426892 0.904303i \(-0.640391\pi\)
0.426892 0.904303i \(-0.359609\pi\)
\(182\) 147.000 84.8705i 0.807692 0.466321i
\(183\) −36.0000 −0.196721
\(184\) −160.000 + 277.128i −0.869565 + 1.50613i
\(185\) 15.0000 8.66025i 0.0810811 0.0468122i
\(186\) 9.00000 + 15.5885i 0.0483871 + 0.0838089i
\(187\) 60.0000 + 34.6410i 0.320856 + 0.185246i
\(188\) 0 0
\(189\) −31.5000 18.1865i −0.166667 0.0962250i
\(190\) −228.000 −1.20000
\(191\) 1.00000 1.73205i 0.00523560 0.00906833i −0.863396 0.504527i \(-0.831667\pi\)
0.868631 + 0.495459i \(0.165000\pi\)
\(192\) −96.0000 + 55.4256i −0.500000 + 0.288675i
\(193\) 117.500 + 203.516i 0.608808 + 1.05449i 0.991437 + 0.130585i \(0.0416855\pi\)
−0.382629 + 0.923902i \(0.624981\pi\)
\(194\) 84.0000 + 48.4974i 0.432990 + 0.249987i
\(195\) 72.7461i 0.373057i
\(196\) 0 0
\(197\) 100.000 0.507614 0.253807 0.967255i \(-0.418317\pi\)
0.253807 + 0.967255i \(0.418317\pi\)
\(198\) −30.0000 + 51.9615i −0.151515 + 0.262432i
\(199\) −174.000 + 100.459i −0.874372 + 0.504819i −0.868799 0.495166i \(-0.835107\pi\)
−0.00557327 + 0.999984i \(0.501774\pi\)
\(200\) −52.0000 90.0666i −0.260000 0.450333i
\(201\) 88.5000 + 51.0955i 0.440299 + 0.254206i
\(202\) 256.344i 1.26903i
\(203\) −56.0000 + 96.9948i −0.275862 + 0.477807i
\(204\) 0 0
\(205\) −42.0000 + 72.7461i −0.204878 + 0.354859i
\(206\) 15.0000 8.66025i 0.0728155 0.0420401i
\(207\) 60.0000 + 103.923i 0.289855 + 0.502044i
\(208\) −168.000 96.9948i −0.807692 0.466321i
\(209\) 329.090i 1.57459i
\(210\) 42.0000 + 72.7461i 0.200000 + 0.346410i
\(211\) 2.00000 0.00947867 0.00473934 0.999989i \(-0.498491\pi\)
0.00473934 + 0.999989i \(0.498491\pi\)
\(212\) 0 0
\(213\) 39.0000 22.5167i 0.183099 0.105712i
\(214\) −212.000 367.195i −0.990654 1.71586i
\(215\) 57.0000 + 32.9090i 0.265116 + 0.153065i
\(216\) 41.5692i 0.192450i
\(217\) 36.3731i 0.167618i
\(218\) −34.0000 −0.155963
\(219\) 16.5000 28.5788i 0.0753425 0.130497i
\(220\) 0 0
\(221\) 42.0000 + 72.7461i 0.190045 + 0.329168i
\(222\) −15.0000 8.66025i −0.0675676 0.0390102i
\(223\) 339.482i 1.52234i 0.648552 + 0.761170i \(0.275375\pi\)
−0.648552 + 0.761170i \(0.724625\pi\)
\(224\) 0 0
\(225\) −39.0000 −0.173333
\(226\) 142.000 245.951i 0.628319 1.08828i
\(227\) 141.000 81.4064i 0.621145 0.358618i −0.156169 0.987730i \(-0.549915\pi\)
0.777315 + 0.629112i \(0.216581\pi\)
\(228\) 0 0
\(229\) 7.50000 + 4.33013i 0.0327511 + 0.0189089i 0.516286 0.856416i \(-0.327314\pi\)
−0.483535 + 0.875325i \(0.660647\pi\)
\(230\) 277.128i 1.20490i
\(231\) −105.000 + 60.6218i −0.454545 + 0.262432i
\(232\) 128.000 0.551724
\(233\) 85.0000 147.224i 0.364807 0.631864i −0.623938 0.781474i \(-0.714468\pi\)
0.988745 + 0.149610i \(0.0478017\pi\)
\(234\) −63.0000 + 36.3731i −0.269231 + 0.155440i
\(235\) 90.0000 + 155.885i 0.382979 + 0.663339i
\(236\) 0 0
\(237\) 81.4064i 0.343487i
\(238\) −84.0000 48.4974i −0.352941 0.203771i
\(239\) 142.000 0.594142 0.297071 0.954855i \(-0.403990\pi\)
0.297071 + 0.954855i \(0.403990\pi\)
\(240\) 48.0000 83.1384i 0.200000 0.346410i
\(241\) −132.000 + 76.2102i −0.547718 + 0.316225i −0.748201 0.663472i \(-0.769082\pi\)
0.200483 + 0.979697i \(0.435749\pi\)
\(242\) −21.0000 36.3731i −0.0867769 0.150302i
\(243\) 13.5000 + 7.79423i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 169.741i 0.692820i
\(246\) 84.0000 0.341463
\(247\) 199.500 345.544i 0.807692 1.39896i
\(248\) 36.0000 20.7846i 0.145161 0.0838089i
\(249\) −21.0000 36.3731i −0.0843373 0.146077i
\(250\) 228.000 + 131.636i 0.912000 + 0.526543i
\(251\) 290.985i 1.15930i 0.814865 + 0.579650i \(0.196811\pi\)
−0.814865 + 0.579650i \(0.803189\pi\)
\(252\) 0 0
\(253\) 400.000 1.58103
\(254\) −145.000 + 251.147i −0.570866 + 0.988769i
\(255\) −36.0000 + 20.7846i −0.141176 + 0.0815083i
\(256\) 0 0
\(257\) −381.000 219.970i −1.48249 0.855916i −0.482688 0.875792i \(-0.660339\pi\)
−0.999802 + 0.0198763i \(0.993673\pi\)
\(258\) 65.8179i 0.255108i
\(259\) −17.5000 30.3109i −0.0675676 0.117030i
\(260\) 0 0
\(261\) 24.0000 41.5692i 0.0919540 0.159269i
\(262\) −258.000 + 148.956i −0.984733 + 0.568536i
\(263\) −68.0000 117.779i −0.258555 0.447831i 0.707300 0.706914i \(-0.249913\pi\)
−0.965855 + 0.259083i \(0.916580\pi\)
\(264\) 120.000 + 69.2820i 0.454545 + 0.262432i
\(265\) 110.851i 0.418307i
\(266\) 460.726i 1.73205i
\(267\) −204.000 −0.764045
\(268\) 0 0
\(269\) −195.000 + 112.583i −0.724907 + 0.418525i −0.816556 0.577266i \(-0.804120\pi\)
0.0916490 + 0.995791i \(0.470786\pi\)
\(270\) −18.0000 31.1769i −0.0666667 0.115470i
\(271\) −318.000 183.597i −1.17343 0.677481i −0.218946 0.975737i \(-0.570262\pi\)
−0.954486 + 0.298256i \(0.903595\pi\)
\(272\) 110.851i 0.407541i
\(273\) −147.000 −0.538462
\(274\) 232.000 0.846715
\(275\) −65.0000 + 112.583i −0.236364 + 0.409394i
\(276\) 0 0
\(277\) −197.500 342.080i −0.712996 1.23495i −0.963727 0.266889i \(-0.914004\pi\)
0.250731 0.968057i \(-0.419329\pi\)
\(278\) −147.000 84.8705i −0.528777 0.305290i
\(279\) 15.5885i 0.0558726i
\(280\) 168.000 96.9948i 0.600000 0.346410i
\(281\) 100.000 0.355872 0.177936 0.984042i \(-0.443058\pi\)
0.177936 + 0.984042i \(0.443058\pi\)
\(282\) 90.0000 155.885i 0.319149 0.552782i
\(283\) −310.500 + 179.267i −1.09717 + 0.633453i −0.935477 0.353387i \(-0.885030\pi\)
−0.161696 + 0.986841i \(0.551696\pi\)
\(284\) 0 0
\(285\) 171.000 + 98.7269i 0.600000 + 0.346410i
\(286\) 242.487i 0.847857i
\(287\) 147.000 + 84.8705i 0.512195 + 0.295716i
\(288\) 0 0
\(289\) −120.500 + 208.712i −0.416955 + 0.722187i
\(290\) −96.0000 + 55.4256i −0.331034 + 0.191123i
\(291\) −42.0000 72.7461i −0.144330 0.249987i
\(292\) 0 0
\(293\) 242.487i 0.827601i −0.910368 0.413801i \(-0.864201\pi\)
0.910368 0.413801i \(-0.135799\pi\)
\(294\) 147.000 84.8705i 0.500000 0.288675i
\(295\) −144.000 −0.488136
\(296\) −20.0000 + 34.6410i −0.0675676 + 0.117030i
\(297\) 45.0000 25.9808i 0.151515 0.0874773i
\(298\) 124.000 + 214.774i 0.416107 + 0.720719i
\(299\) 420.000 + 242.487i 1.40468 + 0.810994i
\(300\) 0 0
\(301\) 66.5000 115.181i 0.220930 0.382662i
\(302\) 92.0000 0.304636
\(303\) 111.000 192.258i 0.366337 0.634514i
\(304\) 456.000 263.272i 1.50000 0.866025i
\(305\) −36.0000 62.3538i −0.118033 0.204439i
\(306\) 36.0000 + 20.7846i 0.117647 + 0.0679236i
\(307\) 181.865i 0.592395i −0.955127 0.296198i \(-0.904281\pi\)
0.955127 0.296198i \(-0.0957187\pi\)
\(308\) 0 0
\(309\) −15.0000 −0.0485437
\(310\) −18.0000 + 31.1769i −0.0580645 + 0.100571i
\(311\) 477.000 275.396i 1.53376 0.885518i 0.534578 0.845119i \(-0.320470\pi\)
0.999184 0.0403991i \(-0.0128629\pi\)
\(312\) 84.0000 + 145.492i 0.269231 + 0.466321i
\(313\) 175.500 + 101.325i 0.560703 + 0.323722i 0.753428 0.657531i \(-0.228399\pi\)
−0.192725 + 0.981253i \(0.561732\pi\)
\(314\) 374.123i 1.19147i
\(315\) 72.7461i 0.230940i
\(316\) 0 0
\(317\) −146.000 + 252.879i −0.460568 + 0.797727i −0.998989 0.0449488i \(-0.985688\pi\)
0.538421 + 0.842676i \(0.319021\pi\)
\(318\) −96.0000 + 55.4256i −0.301887 + 0.174294i
\(319\) −80.0000 138.564i −0.250784 0.434370i
\(320\) −192.000 110.851i −0.600000 0.346410i
\(321\) 367.195i 1.14391i
\(322\) −560.000 −1.73913
\(323\) −228.000 −0.705882
\(324\) 0 0
\(325\) −136.500 + 78.8083i −0.420000 + 0.242487i
\(326\) −58.0000 100.459i −0.177914 0.308156i
\(327\) 25.5000 + 14.7224i 0.0779817 + 0.0450227i
\(328\) 193.990i 0.591432i
\(329\) 315.000 181.865i 0.957447 0.552782i
\(330\) −120.000 −0.363636
\(331\) −2.50000 + 4.33013i −0.00755287 + 0.0130820i −0.869777 0.493445i \(-0.835738\pi\)
0.862224 + 0.506527i \(0.169071\pi\)
\(332\) 0 0
\(333\) 7.50000 + 12.9904i 0.0225225 + 0.0390102i
\(334\) 462.000 + 266.736i 1.38323 + 0.798610i
\(335\) 204.382i 0.610096i
\(336\) −168.000 96.9948i −0.500000 0.288675i
\(337\) −439.000 −1.30267 −0.651335 0.758790i \(-0.725791\pi\)
−0.651335 + 0.758790i \(0.725791\pi\)
\(338\) 22.0000 38.1051i 0.0650888 0.112737i
\(339\) −213.000 + 122.976i −0.628319 + 0.362760i
\(340\) 0 0
\(341\) −45.0000 25.9808i −0.131965 0.0761899i
\(342\) 197.454i 0.577350i
\(343\) 343.000 1.00000
\(344\) −152.000 −0.441860
\(345\) −120.000 + 207.846i −0.347826 + 0.602452i
\(346\) −216.000 + 124.708i −0.624277 + 0.360427i
\(347\) −110.000 190.526i −0.317003 0.549065i 0.662858 0.748745i \(-0.269343\pi\)
−0.979861 + 0.199680i \(0.936010\pi\)
\(348\) 0 0
\(349\) 339.482i 0.972728i 0.873756 + 0.486364i \(0.161677\pi\)
−0.873756 + 0.486364i \(0.838323\pi\)
\(350\) 91.0000 157.617i 0.260000 0.450333i
\(351\) 63.0000 0.179487
\(352\) 0 0
\(353\) 267.000 154.153i 0.756374 0.436693i −0.0716184 0.997432i \(-0.522816\pi\)
0.827992 + 0.560739i \(0.189483\pi\)
\(354\) 72.0000 + 124.708i 0.203390 + 0.352282i
\(355\) 78.0000 + 45.0333i 0.219718 + 0.126854i
\(356\) 0 0
\(357\) 42.0000 + 72.7461i 0.117647 + 0.203771i
\(358\) −20.0000 −0.0558659
\(359\) −146.000 + 252.879i −0.406685 + 0.704399i −0.994516 0.104584i \(-0.966649\pi\)
0.587831 + 0.808984i \(0.299982\pi\)
\(360\) −72.0000 + 41.5692i −0.200000 + 0.115470i
\(361\) 361.000 + 625.270i 1.00000 + 1.73205i
\(362\) −567.000 327.358i −1.56630 0.904303i
\(363\) 36.3731i 0.100201i
\(364\) 0 0
\(365\) 66.0000 0.180822
\(366\) −36.0000 + 62.3538i −0.0983607 + 0.170366i
\(367\) 466.500 269.334i 1.27112 0.733880i 0.295919 0.955213i \(-0.404374\pi\)
0.975198 + 0.221333i \(0.0710408\pi\)
\(368\) 320.000 + 554.256i 0.869565 + 1.50613i
\(369\) −63.0000 36.3731i −0.170732 0.0985720i
\(370\) 34.6410i 0.0936244i
\(371\) −224.000 −0.603774
\(372\) 0 0
\(373\) 102.500 177.535i 0.274799 0.475966i −0.695285 0.718734i \(-0.744722\pi\)
0.970084 + 0.242768i \(0.0780554\pi\)
\(374\) 120.000 69.2820i 0.320856 0.185246i
\(375\) −114.000 197.454i −0.304000 0.526543i
\(376\) −360.000 207.846i −0.957447 0.552782i
\(377\) 193.990i 0.514562i
\(378\) −63.0000 + 36.3731i −0.166667 + 0.0962250i
\(379\) −523.000 −1.37995 −0.689974 0.723835i \(-0.742378\pi\)
−0.689974 + 0.723835i \(0.742378\pi\)
\(380\) 0 0
\(381\) 217.500 125.574i 0.570866 0.329590i
\(382\) −2.00000 3.46410i −0.00523560 0.00906833i
\(383\) −66.0000 38.1051i −0.172324 0.0994912i 0.411357 0.911474i \(-0.365055\pi\)
−0.583681 + 0.811983i \(0.698388\pi\)
\(384\) 221.703i 0.577350i
\(385\) −210.000 121.244i −0.545455 0.314918i
\(386\) 470.000 1.21762
\(387\) −28.5000 + 49.3634i −0.0736434 + 0.127554i
\(388\) 0 0
\(389\) 37.0000 + 64.0859i 0.0951157 + 0.164745i 0.909657 0.415361i \(-0.136345\pi\)
−0.814541 + 0.580106i \(0.803011\pi\)
\(390\) −126.000 72.7461i −0.323077 0.186529i
\(391\) 277.128i 0.708768i
\(392\) −196.000 339.482i −0.500000 0.866025i
\(393\) 258.000 0.656489
\(394\) 100.000 173.205i 0.253807 0.439607i
\(395\) 141.000 81.4064i 0.356962 0.206092i
\(396\) 0 0
\(397\) 280.500 + 161.947i 0.706549 + 0.407926i 0.809782 0.586731i \(-0.199585\pi\)
−0.103233 + 0.994657i \(0.532919\pi\)
\(398\) 401.836i 1.00964i
\(399\) 199.500 345.544i 0.500000 0.866025i
\(400\) −208.000 −0.520000
\(401\) 64.0000 110.851i 0.159601 0.276437i −0.775124 0.631809i \(-0.782313\pi\)
0.934725 + 0.355372i \(0.115646\pi\)
\(402\) 177.000 102.191i 0.440299 0.254206i
\(403\) −31.5000 54.5596i −0.0781638 0.135384i
\(404\) 0 0
\(405\) 31.1769i 0.0769800i
\(406\) 112.000 + 193.990i 0.275862 + 0.477807i
\(407\) 50.0000 0.122850
\(408\) 48.0000 83.1384i 0.117647 0.203771i
\(409\) 256.500 148.090i 0.627139 0.362079i −0.152504 0.988303i \(-0.548734\pi\)
0.779643 + 0.626224i \(0.215400\pi\)
\(410\) 84.0000 + 145.492i 0.204878 + 0.354859i
\(411\) −174.000 100.459i −0.423358 0.244426i
\(412\) 0 0
\(413\) 290.985i 0.704563i
\(414\) 240.000 0.579710
\(415\) 42.0000 72.7461i 0.101205 0.175292i
\(416\) 0 0
\(417\) 73.5000 + 127.306i 0.176259 + 0.305290i
\(418\) −570.000 329.090i −1.36364 0.787296i
\(419\) 412.228i 0.983838i 0.870641 + 0.491919i \(0.163704\pi\)
−0.870641 + 0.491919i \(0.836296\pi\)
\(420\) 0 0
\(421\) 107.000 0.254157 0.127078 0.991893i \(-0.459440\pi\)
0.127078 + 0.991893i \(0.459440\pi\)
\(422\) 2.00000 3.46410i 0.00473934 0.00820877i
\(423\) −135.000 + 77.9423i −0.319149 + 0.184261i
\(424\) 128.000 + 221.703i 0.301887 + 0.522883i
\(425\) 78.0000 + 45.0333i 0.183529 + 0.105961i
\(426\) 90.0666i 0.211424i
\(427\) −126.000 + 72.7461i −0.295082 + 0.170366i
\(428\) 0 0
\(429\) 105.000 181.865i 0.244755 0.423929i
\(430\) 114.000 65.8179i 0.265116 0.153065i
\(431\) −131.000 226.899i −0.303944 0.526447i 0.673081 0.739568i \(-0.264970\pi\)
−0.977026 + 0.213121i \(0.931637\pi\)
\(432\) 72.0000 + 41.5692i 0.166667 + 0.0962250i
\(433\) 36.3731i 0.0840025i 0.999118 + 0.0420012i \(0.0133733\pi\)
−0.999118 + 0.0420012i \(0.986627\pi\)
\(434\) 63.0000 + 36.3731i 0.145161 + 0.0838089i
\(435\) 96.0000 0.220690
\(436\) 0 0
\(437\) −1140.00 + 658.179i −2.60870 + 1.50613i
\(438\) −33.0000 57.1577i −0.0753425 0.130497i
\(439\) 270.000 + 155.885i 0.615034 + 0.355090i 0.774933 0.632043i \(-0.217784\pi\)
−0.159899 + 0.987133i \(0.551117\pi\)
\(440\) 277.128i 0.629837i
\(441\) −147.000 −0.333333
\(442\) 168.000 0.380090
\(443\) 106.000 183.597i 0.239278 0.414441i −0.721230 0.692696i \(-0.756423\pi\)
0.960507 + 0.278255i \(0.0897561\pi\)
\(444\) 0 0
\(445\) −204.000 353.338i −0.458427 0.794019i
\(446\) 588.000 + 339.482i 1.31839 + 0.761170i
\(447\) 214.774i 0.480479i
\(448\) −224.000 + 387.979i −0.500000 + 0.866025i
\(449\) −782.000 −1.74165 −0.870824 0.491595i \(-0.836414\pi\)
−0.870824 + 0.491595i \(0.836414\pi\)
\(450\) −39.0000 + 67.5500i −0.0866667 + 0.150111i
\(451\) −210.000 + 121.244i −0.465632 + 0.268833i
\(452\) 0 0
\(453\) −69.0000 39.8372i −0.152318 0.0879408i
\(454\) 325.626i 0.717237i
\(455\) −147.000 254.611i −0.323077 0.559586i
\(456\) −456.000 −1.00000
\(457\) −338.500 + 586.299i −0.740700 + 1.28293i 0.211477 + 0.977383i \(0.432173\pi\)
−0.952177 + 0.305547i \(0.901161\pi\)
\(458\) 15.0000 8.66025i 0.0327511 0.0189089i
\(459\) −18.0000 31.1769i −0.0392157 0.0679236i
\(460\) 0 0
\(461\) 484.974i 1.05200i −0.850483 0.526002i \(-0.823690\pi\)
0.850483 0.526002i \(-0.176310\pi\)
\(462\) 242.487i 0.524864i
\(463\) 443.000 0.956803 0.478402 0.878141i \(-0.341216\pi\)
0.478402 + 0.878141i \(0.341216\pi\)
\(464\) 128.000 221.703i 0.275862 0.477807i
\(465\) 27.0000 15.5885i 0.0580645 0.0335236i
\(466\) −170.000 294.449i −0.364807 0.631864i
\(467\) 39.0000 + 22.5167i 0.0835118 + 0.0482155i 0.541174 0.840910i \(-0.317980\pi\)
−0.457663 + 0.889126i \(0.651313\pi\)
\(468\) 0 0
\(469\) 413.000 0.880597
\(470\) 360.000 0.765957
\(471\) −162.000 + 280.592i −0.343949 + 0.595737i
\(472\) 288.000 166.277i 0.610169 0.352282i
\(473\) 95.0000 + 164.545i 0.200846 + 0.347875i
\(474\) −141.000 81.4064i −0.297468 0.171743i
\(475\) 427.817i 0.900666i
\(476\) 0 0
\(477\) 96.0000 0.201258
\(478\) 142.000 245.951i 0.297071 0.514542i
\(479\) −48.0000 + 27.7128i −0.100209 + 0.0578556i −0.549267 0.835647i \(-0.685093\pi\)
0.449058 + 0.893503i \(0.351760\pi\)
\(480\) 0 0
\(481\) 52.5000 + 30.3109i 0.109148 + 0.0630164i
\(482\) 304.841i 0.632450i
\(483\) 420.000 + 242.487i 0.869565 + 0.502044i
\(484\) 0 0
\(485\) 84.0000 145.492i 0.173196 0.299984i
\(486\) 27.0000 15.5885i 0.0555556 0.0320750i
\(487\) 33.5000 + 58.0237i 0.0687885 + 0.119145i 0.898368 0.439243i \(-0.144753\pi\)
−0.829580 + 0.558388i \(0.811420\pi\)
\(488\) 144.000 + 83.1384i 0.295082 + 0.170366i
\(489\) 100.459i 0.205438i
\(490\) 294.000 + 169.741i 0.600000 + 0.346410i
\(491\) −68.0000 −0.138493 −0.0692464 0.997600i \(-0.522059\pi\)
−0.0692464 + 0.997600i \(0.522059\pi\)
\(492\) 0 0
\(493\) −96.0000 + 55.4256i −0.194726 + 0.112425i
\(494\) −399.000 691.088i −0.807692 1.39896i
\(495\) 90.0000 + 51.9615i 0.181818 + 0.104973i
\(496\) 83.1384i 0.167618i
\(497\) 91.0000 157.617i 0.183099 0.317136i
\(498\) −84.0000 −0.168675
\(499\) −254.500 + 440.807i −0.510020 + 0.883381i 0.489913 + 0.871772i \(0.337029\pi\)
−0.999933 + 0.0116091i \(0.996305\pi\)
\(500\) 0 0
\(501\) −231.000 400.104i −0.461078 0.798610i
\(502\) 504.000 + 290.985i 1.00398 + 0.579650i
\(503\) 654.715i 1.30162i −0.759240 0.650810i \(-0.774429\pi\)
0.759240 0.650810i \(-0.225571\pi\)
\(504\) 84.0000 + 145.492i 0.166667 + 0.288675i
\(505\) 444.000 0.879208
\(506\) 400.000 692.820i 0.790514 1.36921i
\(507\) −33.0000 + 19.0526i −0.0650888 + 0.0375790i
\(508\) 0 0
\(509\) 753.000 + 434.745i 1.47937 + 0.854115i 0.999727 0.0233478i \(-0.00743251\pi\)
0.479644 + 0.877463i \(0.340766\pi\)
\(510\) 83.1384i 0.163017i
\(511\) 133.368i 0.260994i
\(512\) 512.000 1.00000
\(513\) −85.5000 + 148.090i −0.166667 + 0.288675i
\(514\) −762.000 + 439.941i −1.48249 + 0.855916i
\(515\) −15.0000 25.9808i −0.0291262 0.0504481i
\(516\) 0 0
\(517\) 519.615i 1.00506i
\(518\) −70.0000 −0.135135
\(519\) 216.000 0.416185
\(520\) −168.000 + 290.985i −0.323077 + 0.559586i
\(521\) 372.000 214.774i 0.714012 0.412235i −0.0985331 0.995134i \(-0.531415\pi\)
0.812545 + 0.582899i \(0.198082\pi\)
\(522\) −48.0000 83.1384i −0.0919540 0.159269i
\(523\) −853.500 492.768i −1.63193 0.942196i −0.983497 0.180925i \(-0.942091\pi\)
−0.648434 0.761271i \(-0.724576\pi\)
\(524\) 0 0
\(525\) −136.500 + 78.8083i −0.260000 + 0.150111i
\(526\) −272.000 −0.517110
\(527\) −18.0000 + 31.1769i −0.0341556 + 0.0591592i
\(528\) 240.000 138.564i 0.454545 0.262432i
\(529\) −535.500 927.513i −1.01229 1.75333i
\(530\) −192.000 110.851i −0.362264 0.209153i
\(531\) 124.708i 0.234854i
\(532\) 0 0
\(533\) −294.000 −0.551595
\(534\) −204.000 + 353.338i −0.382022 + 0.661682i
\(535\) −636.000 + 367.195i −1.18879 + 0.686345i
\(536\) −236.000 408.764i −0.440299 0.762619i
\(537\) 15.0000 + 8.66025i 0.0279330 + 0.0161271i
\(538\) 450.333i 0.837051i
\(539\) −245.000 + 424.352i −0.454545 + 0.787296i
\(540\) 0 0
\(541\) 60.5000 104.789i 0.111830 0.193695i −0.804678 0.593711i \(-0.797662\pi\)
0.916508 + 0.400016i \(0.130995\pi\)
\(542\) −636.000 + 367.195i −1.17343 + 0.677481i
\(543\) 283.500 + 491.036i 0.522099 + 0.904303i
\(544\) 0 0
\(545\) 58.8897i 0.108055i
\(546\) −147.000 + 254.611i −0.269231 + 0.466321i
\(547\) 926.000 1.69287 0.846435 0.532492i \(-0.178744\pi\)
0.846435 + 0.532492i \(0.178744\pi\)
\(548\) 0 0
\(549\) 54.0000 31.1769i 0.0983607 0.0567886i
\(550\) 130.000 + 225.167i 0.236364 + 0.409394i
\(551\) 456.000 + 263.272i 0.827586 + 0.477807i
\(552\) 554.256i 1.00409i
\(553\) −164.500 284.922i −0.297468 0.515230i
\(554\) −790.000 −1.42599
\(555\) −15.0000 + 25.9808i −0.0270270 + 0.0468122i
\(556\) 0 0
\(557\) 331.000 + 573.309i 0.594255 + 1.02928i 0.993652 + 0.112502i \(0.0358863\pi\)
−0.399397 + 0.916778i \(0.630780\pi\)
\(558\) −27.0000 15.5885i −0.0483871 0.0279363i
\(559\) 230.363i 0.412098i
\(560\) 387.979i 0.692820i
\(561\) −120.000 −0.213904
\(562\) 100.000 173.205i 0.177936 0.308194i
\(563\) −279.000 + 161.081i −0.495560 + 0.286111i −0.726878 0.686767i \(-0.759029\pi\)
0.231318 + 0.972878i \(0.425696\pi\)
\(564\) 0 0
\(565\) −426.000 245.951i −0.753982 0.435312i
\(566\) 717.069i 1.26691i
\(567\) 63.0000 0.111111
\(568\) −208.000 −0.366197
\(569\) 379.000 656.447i 0.666081 1.15369i −0.312910 0.949783i \(-0.601304\pi\)
0.978991 0.203903i \(-0.0653628\pi\)
\(570\) 342.000 197.454i 0.600000 0.346410i
\(571\) 432.500 + 749.112i 0.757443 + 1.31193i 0.944151 + 0.329514i \(0.106885\pi\)
−0.186707 + 0.982416i \(0.559782\pi\)
\(572\) 0 0
\(573\) 3.46410i 0.00604555i
\(574\) 294.000 169.741i 0.512195 0.295716i
\(575\) 520.000 0.904348
\(576\) 96.0000 166.277i 0.166667 0.288675i
\(577\) 928.500 536.070i 1.60919 0.929064i 0.619633 0.784892i \(-0.287282\pi\)
0.989553 0.144172i \(-0.0460518\pi\)
\(578\) 241.000 + 417.424i 0.416955 + 0.722187i
\(579\) −352.500 203.516i −0.608808 0.351496i
\(580\) 0 0
\(581\) −147.000 84.8705i −0.253012 0.146077i
\(582\) −168.000 −0.288660
\(583\) 160.000 277.128i 0.274443 0.475348i
\(584\) −132.000 + 76.2102i −0.226027 + 0.130497i
\(585\) 63.0000 + 109.119i 0.107692 + 0.186529i
\(586\) −420.000 242.487i −0.716724 0.413801i
\(587\) 339.482i 0.578334i −0.957279 0.289167i \(-0.906622\pi\)
0.957279 0.289167i \(-0.0933783\pi\)
\(588\) 0 0
\(589\) 171.000 0.290323
\(590\) −144.000 + 249.415i −0.244068 + 0.422738i
\(591\) −150.000 + 86.6025i −0.253807 + 0.146536i
\(592\) 40.0000 + 69.2820i 0.0675676 + 0.117030i
\(593\) −213.000 122.976i −0.359191 0.207379i 0.309535 0.950888i \(-0.399827\pi\)
−0.668726 + 0.743509i \(0.733160\pi\)
\(594\) 103.923i 0.174955i
\(595\) −84.0000 + 145.492i −0.141176 + 0.244525i
\(596\) 0 0
\(597\) 174.000 301.377i 0.291457 0.504819i
\(598\) 840.000 484.974i 1.40468 0.810994i
\(599\) 142.000 + 245.951i 0.237062 + 0.410603i 0.959870 0.280446i \(-0.0904823\pi\)
−0.722808 + 0.691049i \(0.757149\pi\)
\(600\) 156.000 + 90.0666i 0.260000 + 0.150111i
\(601\) 594.093i 0.988508i 0.869317 + 0.494254i \(0.164559\pi\)
−0.869317 + 0.494254i \(0.835441\pi\)
\(602\) −133.000 230.363i −0.220930 0.382662i
\(603\) −177.000 −0.293532
\(604\) 0 0
\(605\) −63.0000 + 36.3731i −0.104132 + 0.0601208i
\(606\) −222.000 384.515i −0.366337 0.634514i
\(607\) 7.50000 + 4.33013i 0.0123558 + 0.00713365i 0.506165 0.862437i \(-0.331063\pi\)
−0.493809 + 0.869570i \(0.664396\pi\)
\(608\) 0 0
\(609\) 193.990i 0.318538i
\(610\) −144.000 −0.236066
\(611\) −315.000 + 545.596i −0.515548 + 0.892956i
\(612\) 0 0
\(613\) −439.000 760.370i −0.716150 1.24041i −0.962514 0.271231i \(-0.912569\pi\)
0.246364 0.969177i \(-0.420764\pi\)
\(614\) −315.000 181.865i −0.513029 0.296198i
\(615\) 145.492i 0.236573i
\(616\) 560.000 0.909091
\(617\) −194.000 −0.314425 −0.157212 0.987565i \(-0.550251\pi\)
−0.157212 + 0.987565i \(0.550251\pi\)
\(618\) −15.0000 + 25.9808i −0.0242718 + 0.0420401i
\(619\) 529.500 305.707i 0.855412 0.493872i −0.00706124 0.999975i \(-0.502248\pi\)
0.862473 + 0.506103i \(0.168914\pi\)
\(620\) 0 0
\(621\) −180.000 103.923i −0.289855 0.167348i
\(622\) 1101.58i 1.77104i
\(623\) −714.000 + 412.228i −1.14607 + 0.661682i
\(624\) 336.000 0.538462
\(625\) 65.5000 113.449i 0.104800 0.181519i
\(626\) 351.000 202.650i 0.560703 0.323722i
\(627\) 285.000 + 493.634i 0.454545 + 0.787296i
\(628\) 0 0
\(629\) 34.6410i 0.0550732i
\(630\) −126.000 72.7461i −0.200000 0.115470i
\(631\) −250.000 −0.396197 −0.198098 0.980182i \(-0.563477\pi\)
−0.198098 + 0.980182i \(0.563477\pi\)
\(632\) −188.000 + 325.626i −0.297468 + 0.515230i
\(633\) −3.00000 + 1.73205i −0.00473934 + 0.00273626i
\(634\) 292.000 + 505.759i 0.460568 + 0.797727i
\(635\) 435.000 + 251.147i 0.685039 + 0.395508i
\(636\) 0 0
\(637\) −514.500 + 297.047i −0.807692 + 0.466321i
\(638\) −320.000 −0.501567
\(639\) −39.0000 + 67.5500i −0.0610329 + 0.105712i
\(640\) −384.000 + 221.703i −0.600000 + 0.346410i
\(641\) 562.000 + 973.413i 0.876755 + 1.51858i 0.854881 + 0.518824i \(0.173630\pi\)
0.0218737 + 0.999761i \(0.493037\pi\)
\(642\) 636.000 + 367.195i 0.990654 + 0.571954i
\(643\) 569.845i 0.886228i 0.896465 + 0.443114i \(0.146126\pi\)
−0.896465 + 0.443114i \(0.853874\pi\)
\(644\) 0 0
\(645\) −114.000 −0.176744
\(646\) −228.000 + 394.908i −0.352941 + 0.611312i
\(647\) 939.000 542.132i 1.45131 0.837916i 0.452758 0.891634i \(-0.350440\pi\)
0.998556 + 0.0537173i \(0.0171070\pi\)
\(648\) −36.0000 62.3538i −0.0555556 0.0962250i
\(649\) −360.000 207.846i −0.554700 0.320256i
\(650\) 315.233i 0.484974i
\(651\) −31.5000 54.5596i −0.0483871 0.0838089i
\(652\) 0 0
\(653\) 505.000 874.686i 0.773354 1.33949i −0.162361 0.986731i \(-0.551911\pi\)
0.935715 0.352757i \(-0.114756\pi\)
\(654\) 51.0000 29.4449i 0.0779817 0.0450227i
\(655\) 258.000 + 446.869i 0.393893 + 0.682243i
\(656\) −336.000 193.990i −0.512195 0.295716i
\(657\) 57.1577i 0.0869980i
\(658\) 727.461i 1.10556i
\(659\) −908.000 −1.37785 −0.688923 0.724835i \(-0.741916\pi\)
−0.688923 + 0.724835i \(0.741916\pi\)
\(660\) 0 0
\(661\) −625.500 + 361.133i −0.946293 + 0.546343i −0.891928 0.452178i \(-0.850647\pi\)
−0.0543659 + 0.998521i \(0.517314\pi\)
\(662\) 5.00000 + 8.66025i 0.00755287 + 0.0130820i
\(663\) −126.000 72.7461i −0.190045 0.109723i
\(664\) 193.990i 0.292153i
\(665\) 798.000 1.20000
\(666\) 30.0000 0.0450450
\(667\) −320.000 + 554.256i −0.479760 + 0.830969i
\(668\) 0 0
\(669\) −294.000 509.223i −0.439462 0.761170i
\(670\) 354.000 + 204.382i 0.528358 + 0.305048i
\(671\) 207.846i 0.309756i
\(672\) 0 0
\(673\) −1027.00 −1.52600 −0.763001 0.646397i \(-0.776275\pi\)
−0.763001 + 0.646397i \(0.776275\pi\)
\(674\) −439.000 + 760.370i −0.651335 + 1.12815i
\(675\) 58.5000 33.7750i 0.0866667 0.0500370i
\(676\) 0 0
\(677\) −486.000 280.592i −0.717873 0.414464i 0.0960963 0.995372i \(-0.469364\pi\)
−0.813969 + 0.580908i \(0.802698\pi\)
\(678\) 491.902i 0.725520i
\(679\) −294.000 169.741i −0.432990 0.249987i
\(680\) 192.000 0.282353
\(681\) −141.000 + 244.219i −0.207048 + 0.358618i
\(682\) −90.0000 + 51.9615i −0.131965 + 0.0761899i
\(683\) −488.000 845.241i −0.714495 1.23754i −0.963154 0.268950i \(-0.913323\pi\)
0.248659 0.968591i \(-0.420010\pi\)
\(684\) 0 0
\(685\) 401.836i 0.586622i
\(686\) 343.000 594.093i 0.500000 0.866025i
\(687\) −15.0000 −0.0218341
\(688\) −152.000 + 263.272i −0.220930 + 0.382662i
\(689\) 336.000 193.990i 0.487663 0.281553i
\(690\) 240.000 + 415.692i 0.347826 + 0.602452i
\(691\) 490.500 + 283.190i 0.709841 + 0.409827i 0.811002 0.585043i \(-0.198922\pi\)
−0.101161 + 0.994870i \(0.532256\pi\)
\(692\) 0 0
\(693\) 105.000 181.865i 0.151515 0.262432i
\(694\) −440.000 −0.634006
\(695\) −147.000 + 254.611i −0.211511 + 0.366347i
\(696\) −192.000 + 110.851i −0.275862 + 0.159269i
\(697\) 84.0000 + 145.492i 0.120516 + 0.208741i
\(698\) 588.000 + 339.482i 0.842407 + 0.486364i
\(699\) 294.449i 0.421243i
\(700\) 0 0
\(701\) 352.000 0.502140 0.251070 0.967969i \(-0.419218\pi\)
0.251070 + 0.967969i \(0.419218\pi\)
\(702\) 63.0000 109.119i 0.0897436 0.155440i
\(703\) −142.500 + 82.2724i −0.202703 + 0.117030i
\(704\) −320.000 554.256i −0.454545 0.787296i
\(705\) −270.000 155.885i −0.382979 0.221113i
\(706\) 616.610i 0.873385i
\(707\) 897.202i 1.26903i
\(708\) 0 0
\(709\) 575.000 995.929i 0.811001 1.40470i −0.101162 0.994870i \(-0.532256\pi\)
0.912164 0.409826i \(-0.134410\pi\)
\(710\) 156.000 90.0666i 0.219718 0.126854i
\(711\) 70.5000 + 122.110i 0.0991561 + 0.171743i
\(712\) 816.000 + 471.118i 1.14607 + 0.661682i
\(713\) 207.846i 0.291509i
\(714\) 168.000 0.235294
\(715\) 420.000 0.587413
\(716\) 0 0
\(717\) −213.000 + 122.976i −0.297071 + 0.171514i
\(718\) 292.000 + 505.759i 0.406685 + 0.704399i
\(719\) −843.000 486.706i −1.17246 0.676921i −0.218203 0.975903i \(-0.570020\pi\)
−0.954259 + 0.298982i \(0.903353\pi\)
\(720\) 166.277i 0.230940i
\(721\) −52.5000 + 30.3109i −0.0728155 + 0.0420401i
\(722\) 1444.00 2.00000
\(723\) 132.000 228.631i 0.182573 0.316225i
\(724\) 0 0
\(725\) −104.000 180.133i −0.143448 0.248460i
\(726\) 63.0000 + 36.3731i 0.0867769 + 0.0501006i
\(727\) 206.114i 0.283513i −0.989902 0.141757i \(-0.954725\pi\)
0.989902 0.141757i \(-0.0452750\pi\)
\(728\) 588.000 + 339.482i 0.807692 + 0.466321i
\(729\) −27.0000 −0.0370370
\(730\) 66.0000 114.315i 0.0904110 0.156596i
\(731\) 114.000 65.8179i 0.155951 0.0900382i
\(732\) 0 0
\(733\) 1078.50 + 622.672i 1.47135 + 0.849485i 0.999482 0.0321842i \(-0.0102463\pi\)
0.471869 + 0.881669i \(0.343580\pi\)
\(734\) 1077.34i 1.46776i
\(735\) −147.000 254.611i −0.200000 0.346410i
\(736\) 0 0
\(737\) −295.000 + 510.955i −0.400271 + 0.693290i
\(738\) −126.000 + 72.7461i −0.170732 + 0.0985720i
\(739\) −155.500 269.334i −0.210419 0.364457i 0.741426 0.671034i \(-0.234150\pi\)
−0.951846 + 0.306577i \(0.900816\pi\)
\(740\) 0 0
\(741\) 691.088i 0.932643i
\(742\) −224.000 + 387.979i −0.301887 + 0.522883i
\(743\) 394.000 0.530283 0.265141 0.964210i \(-0.414581\pi\)
0.265141 + 0.964210i \(0.414581\pi\)
\(744\) −36.0000 + 62.3538i −0.0483871 + 0.0838089i
\(745\) 372.000 214.774i 0.499329 0.288288i
\(746\) −205.000 355.070i −0.274799 0.475966i
\(747\) 63.0000 + 36.3731i 0.0843373 + 0.0486922i
\(748\) 0 0
\(749\) 742.000 + 1285.18i 0.990654 + 1.71586i
\(750\) −456.000 −0.608000
\(751\) 39.5000 68.4160i 0.0525965 0.0910999i −0.838528 0.544858i \(-0.816584\pi\)
0.891125 + 0.453758i \(0.149917\pi\)
\(752\) −720.000 + 415.692i −0.957447 + 0.552782i
\(753\) −252.000 436.477i −0.334661 0.579650i
\(754\) −336.000 193.990i −0.445623 0.257281i
\(755\) 159.349i 0.211058i
\(756\) 0 0
\(757\) −250.000 −0.330251 −0.165125 0.986273i \(-0.552803\pi\)
−0.165125 + 0.986273i \(0.552803\pi\)
\(758\) −523.000 + 905.863i −0.689974 + 1.19507i
\(759\) −600.000 + 346.410i −0.790514 + 0.456403i
\(760\) −456.000 789.815i −0.600000 1.03923i
\(761\) −822.000 474.582i −1.08016 0.623629i −0.149219 0.988804i \(-0.547676\pi\)
−0.930939 + 0.365175i \(0.881009\pi\)
\(762\) 502.295i 0.659179i
\(763\) 119.000 0.155963
\(764\) 0 0
\(765\) 36.0000 62.3538i 0.0470588 0.0815083i
\(766\) −132.000 + 76.2102i −0.172324 + 0.0994912i
\(767\) −252.000 436.477i −0.328553 0.569070i
\(768\) 0 0
\(769\) 860.829i 1.11941i 0.828691 + 0.559707i \(0.189086\pi\)
−0.828691 + 0.559707i \(0.810914\pi\)
\(770\) −420.000 + 242.487i −0.545455 + 0.314918i
\(771\) 762.000 0.988327
\(772\) 0 0
\(773\) −195.000 + 112.583i −0.252264 + 0.145645i −0.620800 0.783969i \(-0.713192\pi\)
0.368537 + 0.929613i \(0.379859\pi\)
\(774\) 57.0000 + 98.7269i 0.0736434 + 0.127554i
\(775\) −58.5000 33.7750i −0.0754839 0.0435806i
\(776\) 387.979i 0.499973i
\(777\) 52.5000 + 30.3109i 0.0675676 + 0.0390102i
\(778\) 148.000 0.190231
\(779\) 399.000 691.088i 0.512195 0.887148i
\(780\) 0 0
\(781\) 130.000 + 225.167i 0.166453 + 0.288306i
\(782\) −480.000 277.128i −0.613811 0.354384i
\(783\) 83.1384i 0.106179i
\(784\) −784.000 −1.00000
\(785\) −648.000 −0.825478
\(786\) 258.000 446.869i 0.328244 0.568536i
\(787\) −216.000 + 124.708i −0.274460 + 0.158460i −0.630913 0.775854i \(-0.717319\pi\)
0.356453 + 0.934313i \(0.383986\pi\)
\(788\) 0 0
\(789\) 204.000 + 117.779i 0.258555 + 0.149277i
\(790\) 325.626i 0.412184i
\(791\) −497.000 + 860.829i −0.628319 + 1.08828i
\(792\) −240.000 −0.303030
\(793\) 126.000 218.238i 0.158890 0.275206i
\(794\) 561.000 323.894i 0.706549 0.407926i
\(795\) 96.0000 + 166.277i 0.120755 + 0.209153i
\(796\) 0 0
\(797\) 1357.93i 1.70380i 0.523705 + 0.851900i \(0.324549\pi\)
−0.523705 + 0.851900i \(0.675451\pi\)
\(798\) −399.000 691.088i −0.500000 0.866025i
\(799\) 360.000 0.450563
\(800\) 0 0
\(801\) 306.000 176.669i 0.382022 0.220561i
\(802\) −128.000 221.703i −0.159601 0.276437i
\(803\) 165.000 + 95.2628i 0.205479 + 0.118634i
\(804\) 0 0
\(805\) 969.948i 1.20490i
\(806\) −126.000 −0.156328
\(807\) 195.000 337.750i 0.241636 0.418525i
\(808\) −888.000 + 512.687i −1.09901 + 0.634514i
\(809\) 709.000 + 1228.02i 0.876391 + 1.51795i 0.855274 + 0.518176i \(0.173389\pi\)
0.0211166 + 0.999777i \(0.493278\pi\)
\(810\) 54.0000 + 31.1769i 0.0666667 + 0.0384900i
\(811\) 872.954i 1.07639i −0.842820 0.538196i \(-0.819106\pi\)
0.842820 0.538196i \(-0.180894\pi\)
\(812\) 0 0
\(813\) 636.000 0.782288
\(814\) 50.0000 86.6025i 0.0614251 0.106391i
\(815\) −174.000 + 100.459i −0.213497 + 0.123263i
\(816\) −96.0000 166.277i −0.117647 0.203771i
\(817\) −541.500 312.635i −0.662791 0.382662i
\(818\) 592.361i 0.724158i
\(819\) 220.500 127.306i 0.269231 0.155440i
\(820\) 0 0
\(821\) −125.000 + 216.506i −0.152253 + 0.263711i −0.932056 0.362315i \(-0.881986\pi\)
0.779802 + 0.626026i \(0.215320\pi\)
\(822\) −348.000 + 200.918i −0.423358 + 0.244426i
\(823\) −103.000 178.401i −0.125152 0.216769i 0.796640 0.604454i \(-0.206608\pi\)
−0.921792 + 0.387684i \(0.873275\pi\)
\(824\) 60.0000 + 34.6410i 0.0728155 + 0.0420401i
\(825\) 225.167i 0.272929i
\(826\) 504.000 + 290.985i 0.610169 + 0.352282i
\(827\) 1234.00 1.49214 0.746070 0.665867i \(-0.231938\pi\)
0.746070 + 0.665867i \(0.231938\pi\)
\(828\) 0 0
\(829\) 298.500 172.339i 0.360072 0.207888i −0.309040 0.951049i \(-0.600008\pi\)
0.669113 + 0.743161i \(0.266674\pi\)
\(830\) −84.0000 145.492i −0.101205 0.175292i
\(831\) 592.500 + 342.080i 0.712996 + 0.411649i
\(832\) 775.959i 0.932643i
\(833\) 294.000 + 169.741i 0.352941 + 0.203771i
\(834\) 294.000 0.352518
\(835\) 462.000 800.207i 0.553293 0.958332i
\(836\) 0 0
\(837\) 13.5000 + 23.3827i 0.0161290 + 0.0279363i
\(838\) 714.000 + 412.228i 0.852029 + 0.491919i
\(839\) 484.974i 0.578038i −0.957323 0.289019i \(-0.906671\pi\)
0.957323 0.289019i \(-0.0933291\pi\)
\(840\) −168.000 + 290.985i −0.200000 + 0.346410i
\(841\) −585.000 −0.695600
\(842\) 107.000 185.329i 0.127078 0.220106i
\(843\) −150.000 + 86.6025i −0.177936 + 0.102731i
\(844\) 0 0
\(845\) −66.0000 38.1051i −0.0781065 0.0450948i
\(846\) 311.769i 0.368521i
\(847\) 73.5000 + 127.306i 0.0867769 + 0.150302i
\(848\) 512.000 0.603774
\(849\) 310.500 537.802i 0.365724 0.633453i
\(850\) 156.000 90.0666i 0.183529 0.105961i
\(851\) −100.000 173.205i −0.117509 0.203531i
\(852\) 0 0
\(853\) 278.860i 0.326917i −0.986550 0.163458i \(-0.947735\pi\)
0.986550 0.163458i \(-0.0522650\pi\)
\(854\) 290.985i 0.340731i
\(855\) −342.000 −0.400000
\(856\) 848.000 1468.78i 0.990654 1.71586i
\(857\) −552.000 + 318.697i −0.644107 + 0.371876i −0.786195 0.617979i \(-0.787952\pi\)
0.142088 + 0.989854i \(0.454619\pi\)
\(858\) −210.000 363.731i −0.244755 0.423929i
\(859\) −528.000 304.841i −0.614668 0.354879i 0.160122 0.987097i \(-0.448811\pi\)
−0.774790 + 0.632218i \(0.782145\pi\)
\(860\) 0 0
\(861\) −294.000 −0.341463
\(862\) −524.000 −0.607889
\(863\) −335.000 + 580.237i −0.388181 + 0.672349i −0.992205 0.124617i \(-0.960230\pi\)
0.604024 + 0.796966i \(0.293563\pi\)
\(864\) 0 0
\(865\) 216.000 + 374.123i 0.249711 + 0.432512i
\(866\) 63.0000 + 36.3731i 0.0727483 + 0.0420012i
\(867\) 417.424i 0.481458i
\(868\) 0 0
\(869\) 470.000 0.540852
\(870\) 96.0000 166.277i 0.110345 0.191123i
\(871\) −619.500 + 357.668i −0.711251 + 0.410641i
\(872\) −68.0000 117.779i −0.0779817 0.135068i
\(873\) 126.000 + 72.7461i 0.144330 + 0.0833289i
\(874\) 2632.72i 3.01226i
\(875\) −798.000 460.726i −0.912000 0.526543i
\(876\) 0 0
\(877\) 197.000 341.214i 0.224629 0.389070i −0.731579 0.681757i \(-0.761216\pi\)
0.956208 + 0.292687i \(0.0945495\pi\)
\(878\) 540.000 311.769i 0.615034 0.355090i
\(879\) 210.000 + 363.731i 0.238908 + 0.413801i
\(880\) 480.000 + 277.128i 0.545455 + 0.314918i
\(881\) 1163.94i 1.32116i −0.750758 0.660578i \(-0.770311\pi\)
0.750758 0.660578i \(-0.229689\pi\)
\(882\) −147.000 + 254.611i −0.166667 + 0.288675i
\(883\) 737.000 0.834655 0.417327 0.908756i \(-0.362967\pi\)
0.417327 + 0.908756i \(0.362967\pi\)
\(884\) 0 0
\(885\) 216.000 124.708i 0.244068 0.140913i
\(886\) −212.000 367.195i −0.239278 0.414441i
\(887\) −633.000 365.463i −0.713641 0.412021i 0.0987664 0.995111i \(-0.468510\pi\)
−0.812408 + 0.583090i \(0.801844\pi\)
\(888\) 69.2820i 0.0780203i
\(889\) 507.500 879.016i 0.570866 0.988769i
\(890\) −816.000 −0.916854
\(891\) −45.0000 + 77.9423i −0.0505051 + 0.0874773i
\(892\) 0 0
\(893\) −855.000 1480.90i −0.957447 1.65835i
\(894\) −372.000 214.774i −0.416107 0.240240i
\(895\) 34.6410i 0.0387050i
\(896\) 448.000 + 775.959i 0.500000 + 0.866025i
\(897\) −840.000 −0.936455
\(898\) −782.000 + 1354.46i −0.870824 + 1.50831i
\(899\) 72.0000 41.5692i 0.0800890 0.0462394i
\(900\) 0 0
\(901\) −192.000 110.851i −0.213097 0.123031i
\(902\) 484.974i 0.537665i
\(903\) 230.363i 0.255108i
\(904\) 1136.00 1.25664
\(905\) −567.000 + 982.073i −0.626519 + 1.08516i
\(906\) −138.000 + 79.6743i −0.152318 + 0.0879408i
\(907\) 117.500 + 203.516i 0.129548 + 0.224384i 0.923502 0.383595i \(-0.125314\pi\)
−0.793954 + 0.607978i \(0.791981\pi\)
\(908\) 0 0
\(909\) 384.515i 0.423009i
\(910\) −588.000 −0.646154
\(911\) −740.000 −0.812294 −0.406147 0.913808i \(-0.633128\pi\)
−0.406147 + 0.913808i \(0.633128\pi\)
\(912\) −456.000 + 789.815i −0.500000 + 0.866025i
\(913\) 210.000 121.244i 0.230011 0.132797i
\(914\) 677.000 + 1172.60i 0.740700 + 1.28293i
\(915\) 108.000 + 62.3538i 0.118033 + 0.0681463i
\(916\) 0 0
\(917\) 903.000 521.347i 0.984733 0.568536i
\(918\) −72.0000 −0.0784314
\(919\) −758.500 + 1313.76i −0.825354 + 1.42955i 0.0762951 + 0.997085i \(0.475691\pi\)
−0.901649 + 0.432469i \(0.857642\pi\)
\(920\) 960.000 554.256i 1.04348 0.602452i
\(921\) 157.500 + 272.798i 0.171010 + 0.296198i
\(922\) −840.000 484.974i −0.911063 0.526002i
\(923\) 315.233i 0.341531i
\(924\) 0 0
\(925\) 65.0000 0.0702703
\(926\) 443.000 767.299i 0.478402 0.828616i
\(927\) 22.5000 12.9904i 0.0242718 0.0140134i
\(928\) 0 0
\(929\) 963.000 + 555.988i 1.03660 + 0.598480i 0.918868 0.394565i \(-0.129105\pi\)
0.117731 + 0.993046i \(0.462438\pi\)
\(930\) 62.3538i 0.0670471i
\(931\) 1612.54i 1.73205i
\(932\) 0 0
\(933\) −477.000 + 826.188i −0.511254 + 0.885518i
\(934\) 78.0000 45.0333i 0.0835118 0.0482155i
\(935\) −120.000 207.846i −0.128342 0.222295i
\(936\) −252.000 145.492i −0.269231 0.155440i
\(937\) 836.581i 0.892829i 0.894826 + 0.446414i \(0.147299\pi\)
−0.894826 + 0.446414i \(0.852701\pi\)
\(938\) 413.000 715.337i 0.440299 0.762619i
\(939\) −351.000 −0.373802
\(940\) 0 0
\(941\) −342.000 + 197.454i −0.363443 + 0.209834i −0.670590 0.741828i \(-0.733959\pi\)
0.307147 + 0.951662i \(0.400626\pi\)
\(942\) 324.000 + 561.184i 0.343949 + 0.595737i
\(943\) 840.000 + 484.974i 0.890774 + 0.514289i
\(944\) 665.108i 0.704563i
\(945\) 63.0000 + 109.119i 0.0666667 + 0.115470i
\(946\) 380.000 0.401691
\(947\) 169.000 292.717i 0.178458 0.309099i −0.762894 0.646523i \(-0.776222\pi\)
0.941353 + 0.337424i \(0.109556\pi\)
\(948\) 0 0
\(949\) 115.500 + 200.052i 0.121707 + 0.210803i
\(950\) −741.000 427.817i −0.780000 0.450333i
\(951\) 505.759i 0.531818i
\(952\) 387.979i 0.407541i
\(953\) −1244.00 −1.30535 −0.652676 0.757637i \(-0.726354\pi\)
−0.652676 + 0.757637i \(0.726354\pi\)
\(954\) 96.0000 166.277i 0.100629 0.174294i
\(955\) −6.00000 + 3.46410i −0.00628272 + 0.00362733i
\(956\) 0 0
\(957\) 240.000 + 138.564i 0.250784 + 0.144790i
\(958\) 110.851i 0.115711i
\(959\) −812.000 −0.846715
\(960\) 384.000 0.400000
\(961\) −467.000 + 808.868i −0.485952 + 0.841694i
\(962\) 105.000 60.6218i 0.109148 0.0630164i
\(963\) −318.000 550.792i −0.330218 0.571954i
\(964\) 0 0
\(965\) 814.064i 0.843590i
\(966\) 840.000 484.974i 0.869565 0.502044i
\(967\) −1741.00 −1.80041 −0.900207 0.435463i \(-0.856585\pi\)
−0.900207 + 0.435463i \(0.856585\pi\)
\(968\) 84.0000 145.492i 0.0867769 0.150302i
\(969\) 342.000 197.454i 0.352941 0.203771i
\(970\) −168.000 290.985i −0.173196 0.299984i
\(971\) 1110.00 + 640.859i 1.14315 + 0.659999i 0.947209 0.320617i \(-0.103890\pi\)
0.195942 + 0.980615i \(0.437223\pi\)
\(972\) 0 0
\(973\) 514.500 + 297.047i 0.528777 + 0.305290i
\(974\) 134.000 0.137577
\(975\) 136.500 236.425i 0.140000 0.242487i
\(976\) 288.000 166.277i 0.295082 0.170366i
\(977\) −131.000 226.899i −0.134084 0.232240i 0.791163 0.611605i \(-0.209476\pi\)
−0.925247 + 0.379365i \(0.876143\pi\)
\(978\) 174.000 + 100.459i 0.177914 + 0.102719i
\(979\) 1177.79i 1.20306i
\(980\) 0 0
\(981\) −51.0000 −0.0519878
\(982\) −68.0000 + 117.779i −0.0692464 + 0.119938i
\(983\) 960.000 554.256i 0.976602 0.563842i 0.0753596 0.997156i \(-0.475990\pi\)
0.901243 + 0.433315i \(0.142656\pi\)
\(984\) 168.000 + 290.985i 0.170732 + 0.295716i
\(985\) −300.000 173.205i −0.304569 0.175843i
\(986\) 221.703i 0.224850i
\(987\) −315.000 + 545.596i −0.319149 + 0.552782i
\(988\) 0 0
\(989\) 380.000 658.179i 0.384226 0.665500i
\(990\) 180.000 103.923i 0.181818 0.104973i
\(991\) 33.5000 + 58.0237i 0.0338042 + 0.0585507i 0.882433 0.470439i \(-0.155904\pi\)
−0.848628 + 0.528990i \(0.822571\pi\)
\(992\) 0 0
\(993\) 8.66025i 0.00872130i
\(994\) −182.000 315.233i −0.183099 0.317136i
\(995\) 696.000 0.699497
\(996\) 0 0
\(997\) −856.500 + 494.501i −0.859077 + 0.495988i −0.863703 0.504001i \(-0.831861\pi\)
0.00462594 + 0.999989i \(0.498528\pi\)
\(998\) 509.000 + 881.614i 0.510020 + 0.883381i
\(999\) −22.5000 12.9904i −0.0225225 0.0130034i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 21.3.f.c.19.1 yes 2
3.2 odd 2 63.3.m.a.19.1 2
4.3 odd 2 336.3.bh.c.145.1 2
5.2 odd 4 525.3.s.d.124.2 4
5.3 odd 4 525.3.s.d.124.1 4
5.4 even 2 525.3.o.b.376.1 2
7.2 even 3 147.3.d.a.97.1 2
7.3 odd 6 inner 21.3.f.c.10.1 2
7.4 even 3 147.3.f.e.31.1 2
7.5 odd 6 147.3.d.a.97.2 2
7.6 odd 2 147.3.f.e.19.1 2
12.11 even 2 1008.3.cg.f.145.1 2
21.2 odd 6 441.3.d.d.244.1 2
21.5 even 6 441.3.d.d.244.2 2
21.11 odd 6 441.3.m.b.325.1 2
21.17 even 6 63.3.m.a.10.1 2
21.20 even 2 441.3.m.b.19.1 2
28.3 even 6 336.3.bh.c.241.1 2
28.19 even 6 2352.3.f.b.97.1 2
28.23 odd 6 2352.3.f.b.97.2 2
35.3 even 12 525.3.s.d.199.2 4
35.17 even 12 525.3.s.d.199.1 4
35.24 odd 6 525.3.o.b.451.1 2
84.59 odd 6 1008.3.cg.f.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.3.f.c.10.1 2 7.3 odd 6 inner
21.3.f.c.19.1 yes 2 1.1 even 1 trivial
63.3.m.a.10.1 2 21.17 even 6
63.3.m.a.19.1 2 3.2 odd 2
147.3.d.a.97.1 2 7.2 even 3
147.3.d.a.97.2 2 7.5 odd 6
147.3.f.e.19.1 2 7.6 odd 2
147.3.f.e.31.1 2 7.4 even 3
336.3.bh.c.145.1 2 4.3 odd 2
336.3.bh.c.241.1 2 28.3 even 6
441.3.d.d.244.1 2 21.2 odd 6
441.3.d.d.244.2 2 21.5 even 6
441.3.m.b.19.1 2 21.20 even 2
441.3.m.b.325.1 2 21.11 odd 6
525.3.o.b.376.1 2 5.4 even 2
525.3.o.b.451.1 2 35.24 odd 6
525.3.s.d.124.1 4 5.3 odd 4
525.3.s.d.124.2 4 5.2 odd 4
525.3.s.d.199.1 4 35.17 even 12
525.3.s.d.199.2 4 35.3 even 12
1008.3.cg.f.145.1 2 12.11 even 2
1008.3.cg.f.577.1 2 84.59 odd 6
2352.3.f.b.97.1 2 28.19 even 6
2352.3.f.b.97.2 2 28.23 odd 6