Properties

Label 441.3.m.b.19.1
Level $441$
Weight $3$
Character 441.19
Analytic conductor $12.016$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,3,Mod(19,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 441.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0163796583\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 441.19
Dual form 441.3.m.b.325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-3.00000 - 1.73205i) q^{5} -8.00000 q^{8} +(6.00000 - 3.46410i) q^{10} +(5.00000 + 8.66025i) q^{11} +12.1244i q^{13} +(8.00000 - 13.8564i) q^{16} +(-6.00000 + 3.46410i) q^{17} +(-28.5000 - 16.4545i) q^{19} -20.0000 q^{22} +(20.0000 - 34.6410i) q^{23} +(-6.50000 - 11.2583i) q^{25} +(-21.0000 - 12.1244i) q^{26} -16.0000 q^{29} +(-4.50000 + 2.59808i) q^{31} -13.8564i q^{34} +(-2.50000 + 4.33013i) q^{37} +(57.0000 - 32.9090i) q^{38} +(24.0000 + 13.8564i) q^{40} -24.2487i q^{41} -19.0000 q^{43} +(40.0000 + 69.2820i) q^{46} +(-45.0000 - 25.9808i) q^{47} +26.0000 q^{50} +(-16.0000 - 27.7128i) q^{53} -34.6410i q^{55} +(16.0000 - 27.7128i) q^{58} +(36.0000 - 20.7846i) q^{59} +(-18.0000 - 10.3923i) q^{61} -10.3923i q^{62} +64.0000 q^{64} +(21.0000 - 36.3731i) q^{65} +(-29.5000 - 51.0955i) q^{67} +26.0000 q^{71} +(16.5000 - 9.52628i) q^{73} +(-5.00000 - 8.66025i) q^{74} +(-23.5000 + 40.7032i) q^{79} +(-48.0000 + 27.7128i) q^{80} +(42.0000 + 24.2487i) q^{82} +24.2487i q^{83} +24.0000 q^{85} +(19.0000 - 32.9090i) q^{86} +(-40.0000 - 69.2820i) q^{88} +(102.000 + 58.8897i) q^{89} +(90.0000 - 51.9615i) q^{94} +(57.0000 + 98.7269i) q^{95} -48.4974i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 6 q^{5} - 16 q^{8} + 12 q^{10} + 10 q^{11} + 16 q^{16} - 12 q^{17} - 57 q^{19} - 40 q^{22} + 40 q^{23} - 13 q^{25} - 42 q^{26} - 32 q^{29} - 9 q^{31} - 5 q^{37} + 114 q^{38} + 48 q^{40}+ \cdots + 114 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(3\) 0 0
\(4\) 0 0
\(5\) −3.00000 1.73205i −0.600000 0.346410i 0.169042 0.985609i \(-0.445933\pi\)
−0.769042 + 0.639199i \(0.779266\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −8.00000 −1.00000
\(9\) 0 0
\(10\) 6.00000 3.46410i 0.600000 0.346410i
\(11\) 5.00000 + 8.66025i 0.454545 + 0.787296i 0.998662 0.0517139i \(-0.0164684\pi\)
−0.544116 + 0.839010i \(0.683135\pi\)
\(12\) 0 0
\(13\) 12.1244i 0.932643i 0.884615 + 0.466321i \(0.154421\pi\)
−0.884615 + 0.466321i \(0.845579\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 8.00000 13.8564i 0.500000 0.866025i
\(17\) −6.00000 + 3.46410i −0.352941 + 0.203771i −0.665980 0.745970i \(-0.731986\pi\)
0.313039 + 0.949740i \(0.398653\pi\)
\(18\) 0 0
\(19\) −28.5000 16.4545i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −20.0000 −0.909091
\(23\) 20.0000 34.6410i 0.869565 1.50613i 0.00712357 0.999975i \(-0.497732\pi\)
0.862442 0.506157i \(-0.168934\pi\)
\(24\) 0 0
\(25\) −6.50000 11.2583i −0.260000 0.450333i
\(26\) −21.0000 12.1244i −0.807692 0.466321i
\(27\) 0 0
\(28\) 0 0
\(29\) −16.0000 −0.551724 −0.275862 0.961197i \(-0.588963\pi\)
−0.275862 + 0.961197i \(0.588963\pi\)
\(30\) 0 0
\(31\) −4.50000 + 2.59808i −0.145161 + 0.0838089i −0.570822 0.821074i \(-0.693375\pi\)
0.425660 + 0.904883i \(0.360042\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 13.8564i 0.407541i
\(35\) 0 0
\(36\) 0 0
\(37\) −2.50000 + 4.33013i −0.0675676 + 0.117030i −0.897830 0.440342i \(-0.854857\pi\)
0.830262 + 0.557373i \(0.188190\pi\)
\(38\) 57.0000 32.9090i 1.50000 0.866025i
\(39\) 0 0
\(40\) 24.0000 + 13.8564i 0.600000 + 0.346410i
\(41\) 24.2487i 0.591432i −0.955276 0.295716i \(-0.904442\pi\)
0.955276 0.295716i \(-0.0955582\pi\)
\(42\) 0 0
\(43\) −19.0000 −0.441860 −0.220930 0.975290i \(-0.570909\pi\)
−0.220930 + 0.975290i \(0.570909\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 40.0000 + 69.2820i 0.869565 + 1.50613i
\(47\) −45.0000 25.9808i −0.957447 0.552782i −0.0620605 0.998072i \(-0.519767\pi\)
−0.895386 + 0.445290i \(0.853101\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 26.0000 0.520000
\(51\) 0 0
\(52\) 0 0
\(53\) −16.0000 27.7128i −0.301887 0.522883i 0.674677 0.738114i \(-0.264283\pi\)
−0.976563 + 0.215230i \(0.930950\pi\)
\(54\) 0 0
\(55\) 34.6410i 0.629837i
\(56\) 0 0
\(57\) 0 0
\(58\) 16.0000 27.7128i 0.275862 0.477807i
\(59\) 36.0000 20.7846i 0.610169 0.352282i −0.162862 0.986649i \(-0.552073\pi\)
0.773032 + 0.634367i \(0.218739\pi\)
\(60\) 0 0
\(61\) −18.0000 10.3923i −0.295082 0.170366i 0.345149 0.938548i \(-0.387828\pi\)
−0.640231 + 0.768182i \(0.721162\pi\)
\(62\) 10.3923i 0.167618i
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) 21.0000 36.3731i 0.323077 0.559586i
\(66\) 0 0
\(67\) −29.5000 51.0955i −0.440299 0.762619i 0.557413 0.830235i \(-0.311794\pi\)
−0.997711 + 0.0676160i \(0.978461\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 26.0000 0.366197 0.183099 0.983095i \(-0.441387\pi\)
0.183099 + 0.983095i \(0.441387\pi\)
\(72\) 0 0
\(73\) 16.5000 9.52628i 0.226027 0.130497i −0.382711 0.923868i \(-0.625009\pi\)
0.608738 + 0.793371i \(0.291676\pi\)
\(74\) −5.00000 8.66025i −0.0675676 0.117030i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −23.5000 + 40.7032i −0.297468 + 0.515230i −0.975556 0.219751i \(-0.929476\pi\)
0.678088 + 0.734981i \(0.262809\pi\)
\(80\) −48.0000 + 27.7128i −0.600000 + 0.346410i
\(81\) 0 0
\(82\) 42.0000 + 24.2487i 0.512195 + 0.295716i
\(83\) 24.2487i 0.292153i 0.989273 + 0.146077i \(0.0466646\pi\)
−0.989273 + 0.146077i \(0.953335\pi\)
\(84\) 0 0
\(85\) 24.0000 0.282353
\(86\) 19.0000 32.9090i 0.220930 0.382662i
\(87\) 0 0
\(88\) −40.0000 69.2820i −0.454545 0.787296i
\(89\) 102.000 + 58.8897i 1.14607 + 0.661682i 0.947926 0.318491i \(-0.103176\pi\)
0.198142 + 0.980173i \(0.436509\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 90.0000 51.9615i 0.957447 0.552782i
\(95\) 57.0000 + 98.7269i 0.600000 + 1.03923i
\(96\) 0 0
\(97\) 48.4974i 0.499973i −0.968249 0.249987i \(-0.919574\pi\)
0.968249 0.249987i \(-0.0804263\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −111.000 + 64.0859i −1.09901 + 0.634514i −0.935961 0.352104i \(-0.885466\pi\)
−0.163049 + 0.986618i \(0.552133\pi\)
\(102\) 0 0
\(103\) −7.50000 4.33013i −0.0728155 0.0420401i 0.463150 0.886280i \(-0.346719\pi\)
−0.535966 + 0.844240i \(0.680052\pi\)
\(104\) 96.9948i 0.932643i
\(105\) 0 0
\(106\) 64.0000 0.603774
\(107\) −106.000 + 183.597i −0.990654 + 1.71586i −0.377204 + 0.926130i \(0.623114\pi\)
−0.613451 + 0.789733i \(0.710219\pi\)
\(108\) 0 0
\(109\) −8.50000 14.7224i −0.0779817 0.135068i 0.824397 0.566011i \(-0.191514\pi\)
−0.902379 + 0.430943i \(0.858181\pi\)
\(110\) 60.0000 + 34.6410i 0.545455 + 0.314918i
\(111\) 0 0
\(112\) 0 0
\(113\) −142.000 −1.25664 −0.628319 0.777956i \(-0.716257\pi\)
−0.628319 + 0.777956i \(0.716257\pi\)
\(114\) 0 0
\(115\) −120.000 + 69.2820i −1.04348 + 0.602452i
\(116\) 0 0
\(117\) 0 0
\(118\) 83.1384i 0.704563i
\(119\) 0 0
\(120\) 0 0
\(121\) 10.5000 18.1865i 0.0867769 0.150302i
\(122\) 36.0000 20.7846i 0.295082 0.170366i
\(123\) 0 0
\(124\) 0 0
\(125\) 131.636i 1.05309i
\(126\) 0 0
\(127\) −145.000 −1.14173 −0.570866 0.821043i \(-0.693392\pi\)
−0.570866 + 0.821043i \(0.693392\pi\)
\(128\) −64.0000 + 110.851i −0.500000 + 0.866025i
\(129\) 0 0
\(130\) 42.0000 + 72.7461i 0.323077 + 0.559586i
\(131\) −129.000 74.4782i −0.984733 0.568536i −0.0810371 0.996711i \(-0.525823\pi\)
−0.903696 + 0.428175i \(0.859157\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 118.000 0.880597
\(135\) 0 0
\(136\) 48.0000 27.7128i 0.352941 0.203771i
\(137\) −58.0000 100.459i −0.423358 0.733277i 0.572908 0.819620i \(-0.305815\pi\)
−0.996265 + 0.0863428i \(0.972482\pi\)
\(138\) 0 0
\(139\) 84.8705i 0.610579i 0.952260 + 0.305290i \(0.0987532\pi\)
−0.952260 + 0.305290i \(0.901247\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −26.0000 + 45.0333i −0.183099 + 0.317136i
\(143\) −105.000 + 60.6218i −0.734266 + 0.423929i
\(144\) 0 0
\(145\) 48.0000 + 27.7128i 0.331034 + 0.191123i
\(146\) 38.1051i 0.260994i
\(147\) 0 0
\(148\) 0 0
\(149\) 62.0000 107.387i 0.416107 0.720719i −0.579437 0.815017i \(-0.696727\pi\)
0.995544 + 0.0942982i \(0.0300607\pi\)
\(150\) 0 0
\(151\) 23.0000 + 39.8372i 0.152318 + 0.263822i 0.932079 0.362255i \(-0.117993\pi\)
−0.779761 + 0.626077i \(0.784660\pi\)
\(152\) 228.000 + 131.636i 1.50000 + 0.866025i
\(153\) 0 0
\(154\) 0 0
\(155\) 18.0000 0.116129
\(156\) 0 0
\(157\) −162.000 + 93.5307i −1.03185 + 0.595737i −0.917513 0.397705i \(-0.869807\pi\)
−0.114334 + 0.993442i \(0.536473\pi\)
\(158\) −47.0000 81.4064i −0.297468 0.515230i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 29.0000 50.2295i 0.177914 0.308156i −0.763252 0.646101i \(-0.776398\pi\)
0.941166 + 0.337945i \(0.109732\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −42.0000 24.2487i −0.253012 0.146077i
\(167\) 266.736i 1.59722i 0.601849 + 0.798610i \(0.294431\pi\)
−0.601849 + 0.798610i \(0.705569\pi\)
\(168\) 0 0
\(169\) 22.0000 0.130178
\(170\) −24.0000 + 41.5692i −0.141176 + 0.244525i
\(171\) 0 0
\(172\) 0 0
\(173\) −108.000 62.3538i −0.624277 0.360427i 0.154255 0.988031i \(-0.450702\pi\)
−0.778532 + 0.627604i \(0.784036\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 160.000 0.909091
\(177\) 0 0
\(178\) −204.000 + 117.779i −1.14607 + 0.661682i
\(179\) 5.00000 + 8.66025i 0.0279330 + 0.0483813i 0.879654 0.475614i \(-0.157774\pi\)
−0.851721 + 0.523996i \(0.824441\pi\)
\(180\) 0 0
\(181\) 327.358i 1.80861i 0.426892 + 0.904303i \(0.359609\pi\)
−0.426892 + 0.904303i \(0.640391\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −160.000 + 277.128i −0.869565 + 1.50613i
\(185\) 15.0000 8.66025i 0.0810811 0.0468122i
\(186\) 0 0
\(187\) −60.0000 34.6410i −0.320856 0.185246i
\(188\) 0 0
\(189\) 0 0
\(190\) −228.000 −1.20000
\(191\) −1.00000 + 1.73205i −0.00523560 + 0.00906833i −0.868631 0.495459i \(-0.835000\pi\)
0.863396 + 0.504527i \(0.168333\pi\)
\(192\) 0 0
\(193\) 117.500 + 203.516i 0.608808 + 1.05449i 0.991437 + 0.130585i \(0.0416855\pi\)
−0.382629 + 0.923902i \(0.624981\pi\)
\(194\) 84.0000 + 48.4974i 0.432990 + 0.249987i
\(195\) 0 0
\(196\) 0 0
\(197\) −100.000 −0.507614 −0.253807 0.967255i \(-0.581683\pi\)
−0.253807 + 0.967255i \(0.581683\pi\)
\(198\) 0 0
\(199\) 174.000 100.459i 0.874372 0.504819i 0.00557327 0.999984i \(-0.498226\pi\)
0.868799 + 0.495166i \(0.164893\pi\)
\(200\) 52.0000 + 90.0666i 0.260000 + 0.450333i
\(201\) 0 0
\(202\) 256.344i 1.26903i
\(203\) 0 0
\(204\) 0 0
\(205\) −42.0000 + 72.7461i −0.204878 + 0.354859i
\(206\) 15.0000 8.66025i 0.0728155 0.0420401i
\(207\) 0 0
\(208\) 168.000 + 96.9948i 0.807692 + 0.466321i
\(209\) 329.090i 1.57459i
\(210\) 0 0
\(211\) 2.00000 0.00947867 0.00473934 0.999989i \(-0.498491\pi\)
0.00473934 + 0.999989i \(0.498491\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −212.000 367.195i −0.990654 1.71586i
\(215\) 57.0000 + 32.9090i 0.265116 + 0.153065i
\(216\) 0 0
\(217\) 0 0
\(218\) 34.0000 0.155963
\(219\) 0 0
\(220\) 0 0
\(221\) −42.0000 72.7461i −0.190045 0.329168i
\(222\) 0 0
\(223\) 339.482i 1.52234i −0.648552 0.761170i \(-0.724625\pi\)
0.648552 0.761170i \(-0.275375\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 142.000 245.951i 0.628319 1.08828i
\(227\) 141.000 81.4064i 0.621145 0.358618i −0.156169 0.987730i \(-0.549915\pi\)
0.777315 + 0.629112i \(0.216581\pi\)
\(228\) 0 0
\(229\) −7.50000 4.33013i −0.0327511 0.0189089i 0.483535 0.875325i \(-0.339353\pi\)
−0.516286 + 0.856416i \(0.672686\pi\)
\(230\) 277.128i 1.20490i
\(231\) 0 0
\(232\) 128.000 0.551724
\(233\) −85.0000 + 147.224i −0.364807 + 0.631864i −0.988745 0.149610i \(-0.952198\pi\)
0.623938 + 0.781474i \(0.285532\pi\)
\(234\) 0 0
\(235\) 90.0000 + 155.885i 0.382979 + 0.663339i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −142.000 −0.594142 −0.297071 0.954855i \(-0.596010\pi\)
−0.297071 + 0.954855i \(0.596010\pi\)
\(240\) 0 0
\(241\) 132.000 76.2102i 0.547718 0.316225i −0.200483 0.979697i \(-0.564251\pi\)
0.748201 + 0.663472i \(0.230918\pi\)
\(242\) 21.0000 + 36.3731i 0.0867769 + 0.150302i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 199.500 345.544i 0.807692 1.39896i
\(248\) 36.0000 20.7846i 0.145161 0.0838089i
\(249\) 0 0
\(250\) −228.000 131.636i −0.912000 0.526543i
\(251\) 290.985i 1.15930i 0.814865 + 0.579650i \(0.196811\pi\)
−0.814865 + 0.579650i \(0.803189\pi\)
\(252\) 0 0
\(253\) 400.000 1.58103
\(254\) 145.000 251.147i 0.570866 0.988769i
\(255\) 0 0
\(256\) 0 0
\(257\) −381.000 219.970i −1.48249 0.855916i −0.482688 0.875792i \(-0.660339\pi\)
−0.999802 + 0.0198763i \(0.993673\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 258.000 148.956i 0.984733 0.568536i
\(263\) 68.0000 + 117.779i 0.258555 + 0.447831i 0.965855 0.259083i \(-0.0834203\pi\)
−0.707300 + 0.706914i \(0.750087\pi\)
\(264\) 0 0
\(265\) 110.851i 0.418307i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −195.000 + 112.583i −0.724907 + 0.418525i −0.816556 0.577266i \(-0.804120\pi\)
0.0916490 + 0.995791i \(0.470786\pi\)
\(270\) 0 0
\(271\) 318.000 + 183.597i 1.17343 + 0.677481i 0.954486 0.298256i \(-0.0964049\pi\)
0.218946 + 0.975737i \(0.429738\pi\)
\(272\) 110.851i 0.407541i
\(273\) 0 0
\(274\) 232.000 0.846715
\(275\) 65.0000 112.583i 0.236364 0.409394i
\(276\) 0 0
\(277\) −197.500 342.080i −0.712996 1.23495i −0.963727 0.266889i \(-0.914004\pi\)
0.250731 0.968057i \(-0.419329\pi\)
\(278\) −147.000 84.8705i −0.528777 0.305290i
\(279\) 0 0
\(280\) 0 0
\(281\) −100.000 −0.355872 −0.177936 0.984042i \(-0.556942\pi\)
−0.177936 + 0.984042i \(0.556942\pi\)
\(282\) 0 0
\(283\) 310.500 179.267i 1.09717 0.633453i 0.161696 0.986841i \(-0.448304\pi\)
0.935477 + 0.353387i \(0.114970\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 242.487i 0.847857i
\(287\) 0 0
\(288\) 0 0
\(289\) −120.500 + 208.712i −0.416955 + 0.722187i
\(290\) −96.0000 + 55.4256i −0.331034 + 0.191123i
\(291\) 0 0
\(292\) 0 0
\(293\) 242.487i 0.827601i −0.910368 0.413801i \(-0.864201\pi\)
0.910368 0.413801i \(-0.135799\pi\)
\(294\) 0 0
\(295\) −144.000 −0.488136
\(296\) 20.0000 34.6410i 0.0675676 0.117030i
\(297\) 0 0
\(298\) 124.000 + 214.774i 0.416107 + 0.720719i
\(299\) 420.000 + 242.487i 1.40468 + 0.810994i
\(300\) 0 0
\(301\) 0 0
\(302\) −92.0000 −0.304636
\(303\) 0 0
\(304\) −456.000 + 263.272i −1.50000 + 0.866025i
\(305\) 36.0000 + 62.3538i 0.118033 + 0.204439i
\(306\) 0 0
\(307\) 181.865i 0.592395i 0.955127 + 0.296198i \(0.0957187\pi\)
−0.955127 + 0.296198i \(0.904281\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −18.0000 + 31.1769i −0.0580645 + 0.100571i
\(311\) 477.000 275.396i 1.53376 0.885518i 0.534578 0.845119i \(-0.320470\pi\)
0.999184 0.0403991i \(-0.0128629\pi\)
\(312\) 0 0
\(313\) −175.500 101.325i −0.560703 0.323722i 0.192725 0.981253i \(-0.438268\pi\)
−0.753428 + 0.657531i \(0.771601\pi\)
\(314\) 374.123i 1.19147i
\(315\) 0 0
\(316\) 0 0
\(317\) 146.000 252.879i 0.460568 0.797727i −0.538421 0.842676i \(-0.680979\pi\)
0.998989 + 0.0449488i \(0.0143125\pi\)
\(318\) 0 0
\(319\) −80.0000 138.564i −0.250784 0.434370i
\(320\) −192.000 110.851i −0.600000 0.346410i
\(321\) 0 0
\(322\) 0 0
\(323\) 228.000 0.705882
\(324\) 0 0
\(325\) 136.500 78.8083i 0.420000 0.242487i
\(326\) 58.0000 + 100.459i 0.177914 + 0.308156i
\(327\) 0 0
\(328\) 193.990i 0.591432i
\(329\) 0 0
\(330\) 0 0
\(331\) −2.50000 + 4.33013i −0.00755287 + 0.0130820i −0.869777 0.493445i \(-0.835738\pi\)
0.862224 + 0.506527i \(0.169071\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −462.000 266.736i −1.38323 0.798610i
\(335\) 204.382i 0.610096i
\(336\) 0 0
\(337\) −439.000 −1.30267 −0.651335 0.758790i \(-0.725791\pi\)
−0.651335 + 0.758790i \(0.725791\pi\)
\(338\) −22.0000 + 38.1051i −0.0650888 + 0.112737i
\(339\) 0 0
\(340\) 0 0
\(341\) −45.0000 25.9808i −0.131965 0.0761899i
\(342\) 0 0
\(343\) 0 0
\(344\) 152.000 0.441860
\(345\) 0 0
\(346\) 216.000 124.708i 0.624277 0.360427i
\(347\) 110.000 + 190.526i 0.317003 + 0.549065i 0.979861 0.199680i \(-0.0639902\pi\)
−0.662858 + 0.748745i \(0.730657\pi\)
\(348\) 0 0
\(349\) 339.482i 0.972728i −0.873756 0.486364i \(-0.838323\pi\)
0.873756 0.486364i \(-0.161677\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 267.000 154.153i 0.756374 0.436693i −0.0716184 0.997432i \(-0.522816\pi\)
0.827992 + 0.560739i \(0.189483\pi\)
\(354\) 0 0
\(355\) −78.0000 45.0333i −0.219718 0.126854i
\(356\) 0 0
\(357\) 0 0
\(358\) −20.0000 −0.0558659
\(359\) 146.000 252.879i 0.406685 0.704399i −0.587831 0.808984i \(-0.700018\pi\)
0.994516 + 0.104584i \(0.0333512\pi\)
\(360\) 0 0
\(361\) 361.000 + 625.270i 1.00000 + 1.73205i
\(362\) −567.000 327.358i −1.56630 0.904303i
\(363\) 0 0
\(364\) 0 0
\(365\) −66.0000 −0.180822
\(366\) 0 0
\(367\) −466.500 + 269.334i −1.27112 + 0.733880i −0.975198 0.221333i \(-0.928959\pi\)
−0.295919 + 0.955213i \(0.595626\pi\)
\(368\) −320.000 554.256i −0.869565 1.50613i
\(369\) 0 0
\(370\) 34.6410i 0.0936244i
\(371\) 0 0
\(372\) 0 0
\(373\) 102.500 177.535i 0.274799 0.475966i −0.695285 0.718734i \(-0.744722\pi\)
0.970084 + 0.242768i \(0.0780554\pi\)
\(374\) 120.000 69.2820i 0.320856 0.185246i
\(375\) 0 0
\(376\) 360.000 + 207.846i 0.957447 + 0.552782i
\(377\) 193.990i 0.514562i
\(378\) 0 0
\(379\) −523.000 −1.37995 −0.689974 0.723835i \(-0.742378\pi\)
−0.689974 + 0.723835i \(0.742378\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −2.00000 3.46410i −0.00523560 0.00906833i
\(383\) −66.0000 38.1051i −0.172324 0.0994912i 0.411357 0.911474i \(-0.365055\pi\)
−0.583681 + 0.811983i \(0.698388\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −470.000 −1.21762
\(387\) 0 0
\(388\) 0 0
\(389\) −37.0000 64.0859i −0.0951157 0.164745i 0.814541 0.580106i \(-0.196989\pi\)
−0.909657 + 0.415361i \(0.863655\pi\)
\(390\) 0 0
\(391\) 277.128i 0.708768i
\(392\) 0 0
\(393\) 0 0
\(394\) 100.000 173.205i 0.253807 0.439607i
\(395\) 141.000 81.4064i 0.356962 0.206092i
\(396\) 0 0
\(397\) −280.500 161.947i −0.706549 0.407926i 0.103233 0.994657i \(-0.467081\pi\)
−0.809782 + 0.586731i \(0.800415\pi\)
\(398\) 401.836i 1.00964i
\(399\) 0 0
\(400\) −208.000 −0.520000
\(401\) −64.0000 + 110.851i −0.159601 + 0.276437i −0.934725 0.355372i \(-0.884354\pi\)
0.775124 + 0.631809i \(0.217687\pi\)
\(402\) 0 0
\(403\) −31.5000 54.5596i −0.0781638 0.135384i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −50.0000 −0.122850
\(408\) 0 0
\(409\) −256.500 + 148.090i −0.627139 + 0.362079i −0.779643 0.626224i \(-0.784600\pi\)
0.152504 + 0.988303i \(0.451266\pi\)
\(410\) −84.0000 145.492i −0.204878 0.354859i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 42.0000 72.7461i 0.101205 0.175292i
\(416\) 0 0
\(417\) 0 0
\(418\) 570.000 + 329.090i 1.36364 + 0.787296i
\(419\) 412.228i 0.983838i 0.870641 + 0.491919i \(0.163704\pi\)
−0.870641 + 0.491919i \(0.836296\pi\)
\(420\) 0 0
\(421\) 107.000 0.254157 0.127078 0.991893i \(-0.459440\pi\)
0.127078 + 0.991893i \(0.459440\pi\)
\(422\) −2.00000 + 3.46410i −0.00473934 + 0.00820877i
\(423\) 0 0
\(424\) 128.000 + 221.703i 0.301887 + 0.522883i
\(425\) 78.0000 + 45.0333i 0.183529 + 0.105961i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −114.000 + 65.8179i −0.265116 + 0.153065i
\(431\) 131.000 + 226.899i 0.303944 + 0.526447i 0.977026 0.213121i \(-0.0683630\pi\)
−0.673081 + 0.739568i \(0.735030\pi\)
\(432\) 0 0
\(433\) 36.3731i 0.0840025i −0.999118 0.0420012i \(-0.986627\pi\)
0.999118 0.0420012i \(-0.0133733\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1140.00 + 658.179i −2.60870 + 1.50613i
\(438\) 0 0
\(439\) −270.000 155.885i −0.615034 0.355090i 0.159899 0.987133i \(-0.448883\pi\)
−0.774933 + 0.632043i \(0.782216\pi\)
\(440\) 277.128i 0.629837i
\(441\) 0 0
\(442\) 168.000 0.380090
\(443\) −106.000 + 183.597i −0.239278 + 0.414441i −0.960507 0.278255i \(-0.910244\pi\)
0.721230 + 0.692696i \(0.243577\pi\)
\(444\) 0 0
\(445\) −204.000 353.338i −0.458427 0.794019i
\(446\) 588.000 + 339.482i 1.31839 + 0.761170i
\(447\) 0 0
\(448\) 0 0
\(449\) 782.000 1.74165 0.870824 0.491595i \(-0.163586\pi\)
0.870824 + 0.491595i \(0.163586\pi\)
\(450\) 0 0
\(451\) 210.000 121.244i 0.465632 0.268833i
\(452\) 0 0
\(453\) 0 0
\(454\) 325.626i 0.717237i
\(455\) 0 0
\(456\) 0 0
\(457\) −338.500 + 586.299i −0.740700 + 1.28293i 0.211477 + 0.977383i \(0.432173\pi\)
−0.952177 + 0.305547i \(0.901161\pi\)
\(458\) 15.0000 8.66025i 0.0327511 0.0189089i
\(459\) 0 0
\(460\) 0 0
\(461\) 484.974i 1.05200i −0.850483 0.526002i \(-0.823690\pi\)
0.850483 0.526002i \(-0.176310\pi\)
\(462\) 0 0
\(463\) 443.000 0.956803 0.478402 0.878141i \(-0.341216\pi\)
0.478402 + 0.878141i \(0.341216\pi\)
\(464\) −128.000 + 221.703i −0.275862 + 0.477807i
\(465\) 0 0
\(466\) −170.000 294.449i −0.364807 0.631864i
\(467\) 39.0000 + 22.5167i 0.0835118 + 0.0482155i 0.541174 0.840910i \(-0.317980\pi\)
−0.457663 + 0.889126i \(0.651313\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −360.000 −0.765957
\(471\) 0 0
\(472\) −288.000 + 166.277i −0.610169 + 0.352282i
\(473\) −95.0000 164.545i −0.200846 0.347875i
\(474\) 0 0
\(475\) 427.817i 0.900666i
\(476\) 0 0
\(477\) 0 0
\(478\) 142.000 245.951i 0.297071 0.514542i
\(479\) −48.0000 + 27.7128i −0.100209 + 0.0578556i −0.549267 0.835647i \(-0.685093\pi\)
0.449058 + 0.893503i \(0.351760\pi\)
\(480\) 0 0
\(481\) −52.5000 30.3109i −0.109148 0.0630164i
\(482\) 304.841i 0.632450i
\(483\) 0 0
\(484\) 0 0
\(485\) −84.0000 + 145.492i −0.173196 + 0.299984i
\(486\) 0 0
\(487\) 33.5000 + 58.0237i 0.0687885 + 0.119145i 0.898368 0.439243i \(-0.144753\pi\)
−0.829580 + 0.558388i \(0.811420\pi\)
\(488\) 144.000 + 83.1384i 0.295082 + 0.170366i
\(489\) 0 0
\(490\) 0 0
\(491\) 68.0000 0.138493 0.0692464 0.997600i \(-0.477941\pi\)
0.0692464 + 0.997600i \(0.477941\pi\)
\(492\) 0 0
\(493\) 96.0000 55.4256i 0.194726 0.112425i
\(494\) 399.000 + 691.088i 0.807692 + 1.39896i
\(495\) 0 0
\(496\) 83.1384i 0.167618i
\(497\) 0 0
\(498\) 0 0
\(499\) −254.500 + 440.807i −0.510020 + 0.883381i 0.489913 + 0.871772i \(0.337029\pi\)
−0.999933 + 0.0116091i \(0.996305\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −504.000 290.985i −1.00398 0.579650i
\(503\) 654.715i 1.30162i −0.759240 0.650810i \(-0.774429\pi\)
0.759240 0.650810i \(-0.225571\pi\)
\(504\) 0 0
\(505\) 444.000 0.879208
\(506\) −400.000 + 692.820i −0.790514 + 1.36921i
\(507\) 0 0
\(508\) 0 0
\(509\) 753.000 + 434.745i 1.47937 + 0.854115i 0.999727 0.0233478i \(-0.00743251\pi\)
0.479644 + 0.877463i \(0.340766\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −1.00000
\(513\) 0 0
\(514\) 762.000 439.941i 1.48249 0.855916i
\(515\) 15.0000 + 25.9808i 0.0291262 + 0.0504481i
\(516\) 0 0
\(517\) 519.615i 1.00506i
\(518\) 0 0
\(519\) 0 0
\(520\) −168.000 + 290.985i −0.323077 + 0.559586i
\(521\) 372.000 214.774i 0.714012 0.412235i −0.0985331 0.995134i \(-0.531415\pi\)
0.812545 + 0.582899i \(0.198082\pi\)
\(522\) 0 0
\(523\) 853.500 + 492.768i 1.63193 + 0.942196i 0.983497 + 0.180925i \(0.0579092\pi\)
0.648434 + 0.761271i \(0.275424\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −272.000 −0.517110
\(527\) 18.0000 31.1769i 0.0341556 0.0591592i
\(528\) 0 0
\(529\) −535.500 927.513i −1.01229 1.75333i
\(530\) −192.000 110.851i −0.362264 0.209153i
\(531\) 0 0
\(532\) 0 0
\(533\) 294.000 0.551595
\(534\) 0 0
\(535\) 636.000 367.195i 1.18879 0.686345i
\(536\) 236.000 + 408.764i 0.440299 + 0.762619i
\(537\) 0 0
\(538\) 450.333i 0.837051i
\(539\) 0 0
\(540\) 0 0
\(541\) 60.5000 104.789i 0.111830 0.193695i −0.804678 0.593711i \(-0.797662\pi\)
0.916508 + 0.400016i \(0.130995\pi\)
\(542\) −636.000 + 367.195i −1.17343 + 0.677481i
\(543\) 0 0
\(544\) 0 0
\(545\) 58.8897i 0.108055i
\(546\) 0 0
\(547\) 926.000 1.69287 0.846435 0.532492i \(-0.178744\pi\)
0.846435 + 0.532492i \(0.178744\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 130.000 + 225.167i 0.236364 + 0.409394i
\(551\) 456.000 + 263.272i 0.827586 + 0.477807i
\(552\) 0 0
\(553\) 0 0
\(554\) 790.000 1.42599
\(555\) 0 0
\(556\) 0 0
\(557\) −331.000 573.309i −0.594255 1.02928i −0.993652 0.112502i \(-0.964114\pi\)
0.399397 0.916778i \(-0.369220\pi\)
\(558\) 0 0
\(559\) 230.363i 0.412098i
\(560\) 0 0
\(561\) 0 0
\(562\) 100.000 173.205i 0.177936 0.308194i
\(563\) −279.000 + 161.081i −0.495560 + 0.286111i −0.726878 0.686767i \(-0.759029\pi\)
0.231318 + 0.972878i \(0.425696\pi\)
\(564\) 0 0
\(565\) 426.000 + 245.951i 0.753982 + 0.435312i
\(566\) 717.069i 1.26691i
\(567\) 0 0
\(568\) −208.000 −0.366197
\(569\) −379.000 + 656.447i −0.666081 + 1.15369i 0.312910 + 0.949783i \(0.398696\pi\)
−0.978991 + 0.203903i \(0.934637\pi\)
\(570\) 0 0
\(571\) 432.500 + 749.112i 0.757443 + 1.31193i 0.944151 + 0.329514i \(0.106885\pi\)
−0.186707 + 0.982416i \(0.559782\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −520.000 −0.904348
\(576\) 0 0
\(577\) −928.500 + 536.070i −1.60919 + 0.929064i −0.619633 + 0.784892i \(0.712718\pi\)
−0.989553 + 0.144172i \(0.953948\pi\)
\(578\) −241.000 417.424i −0.416955 0.722187i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 160.000 277.128i 0.274443 0.475348i
\(584\) −132.000 + 76.2102i −0.226027 + 0.130497i
\(585\) 0 0
\(586\) 420.000 + 242.487i 0.716724 + 0.413801i
\(587\) 339.482i 0.578334i −0.957279 0.289167i \(-0.906622\pi\)
0.957279 0.289167i \(-0.0933783\pi\)
\(588\) 0 0
\(589\) 171.000 0.290323
\(590\) 144.000 249.415i 0.244068 0.422738i
\(591\) 0 0
\(592\) 40.0000 + 69.2820i 0.0675676 + 0.117030i
\(593\) −213.000 122.976i −0.359191 0.207379i 0.309535 0.950888i \(-0.399827\pi\)
−0.668726 + 0.743509i \(0.733160\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −840.000 + 484.974i −1.40468 + 0.810994i
\(599\) −142.000 245.951i −0.237062 0.410603i 0.722808 0.691049i \(-0.242851\pi\)
−0.959870 + 0.280446i \(0.909518\pi\)
\(600\) 0 0
\(601\) 594.093i 0.988508i −0.869317 0.494254i \(-0.835441\pi\)
0.869317 0.494254i \(-0.164559\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −63.0000 + 36.3731i −0.104132 + 0.0601208i
\(606\) 0 0
\(607\) −7.50000 4.33013i −0.0123558 0.00713365i 0.493809 0.869570i \(-0.335604\pi\)
−0.506165 + 0.862437i \(0.668937\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −144.000 −0.236066
\(611\) 315.000 545.596i 0.515548 0.892956i
\(612\) 0 0
\(613\) −439.000 760.370i −0.716150 1.24041i −0.962514 0.271231i \(-0.912569\pi\)
0.246364 0.969177i \(-0.420764\pi\)
\(614\) −315.000 181.865i −0.513029 0.296198i
\(615\) 0 0
\(616\) 0 0
\(617\) 194.000 0.314425 0.157212 0.987565i \(-0.449749\pi\)
0.157212 + 0.987565i \(0.449749\pi\)
\(618\) 0 0
\(619\) −529.500 + 305.707i −0.855412 + 0.493872i −0.862473 0.506103i \(-0.831086\pi\)
0.00706124 + 0.999975i \(0.497752\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1101.58i 1.77104i
\(623\) 0 0
\(624\) 0 0
\(625\) 65.5000 113.449i 0.104800 0.181519i
\(626\) 351.000 202.650i 0.560703 0.323722i
\(627\) 0 0
\(628\) 0 0
\(629\) 34.6410i 0.0550732i
\(630\) 0 0
\(631\) −250.000 −0.396197 −0.198098 0.980182i \(-0.563477\pi\)
−0.198098 + 0.980182i \(0.563477\pi\)
\(632\) 188.000 325.626i 0.297468 0.515230i
\(633\) 0 0
\(634\) 292.000 + 505.759i 0.460568 + 0.797727i
\(635\) 435.000 + 251.147i 0.685039 + 0.395508i
\(636\) 0 0
\(637\) 0 0
\(638\) 320.000 0.501567
\(639\) 0 0
\(640\) 384.000 221.703i 0.600000 0.346410i
\(641\) −562.000 973.413i −0.876755 1.51858i −0.854881 0.518824i \(-0.826370\pi\)
−0.0218737 0.999761i \(-0.506963\pi\)
\(642\) 0 0
\(643\) 569.845i 0.886228i −0.896465 0.443114i \(-0.853874\pi\)
0.896465 0.443114i \(-0.146126\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −228.000 + 394.908i −0.352941 + 0.611312i
\(647\) 939.000 542.132i 1.45131 0.837916i 0.452758 0.891634i \(-0.350440\pi\)
0.998556 + 0.0537173i \(0.0171070\pi\)
\(648\) 0 0
\(649\) 360.000 + 207.846i 0.554700 + 0.320256i
\(650\) 315.233i 0.484974i
\(651\) 0 0
\(652\) 0 0
\(653\) −505.000 + 874.686i −0.773354 + 1.33949i 0.162361 + 0.986731i \(0.448089\pi\)
−0.935715 + 0.352757i \(0.885244\pi\)
\(654\) 0 0
\(655\) 258.000 + 446.869i 0.393893 + 0.682243i
\(656\) −336.000 193.990i −0.512195 0.295716i
\(657\) 0 0
\(658\) 0 0
\(659\) 908.000 1.37785 0.688923 0.724835i \(-0.258084\pi\)
0.688923 + 0.724835i \(0.258084\pi\)
\(660\) 0 0
\(661\) 625.500 361.133i 0.946293 0.546343i 0.0543659 0.998521i \(-0.482686\pi\)
0.891928 + 0.452178i \(0.149353\pi\)
\(662\) −5.00000 8.66025i −0.00755287 0.0130820i
\(663\) 0 0
\(664\) 193.990i 0.292153i
\(665\) 0 0
\(666\) 0 0
\(667\) −320.000 + 554.256i −0.479760 + 0.830969i
\(668\) 0 0
\(669\) 0 0
\(670\) −354.000 204.382i −0.528358 0.305048i
\(671\) 207.846i 0.309756i
\(672\) 0 0
\(673\) −1027.00 −1.52600 −0.763001 0.646397i \(-0.776275\pi\)
−0.763001 + 0.646397i \(0.776275\pi\)
\(674\) 439.000 760.370i 0.651335 1.12815i
\(675\) 0 0
\(676\) 0 0
\(677\) −486.000 280.592i −0.717873 0.414464i 0.0960963 0.995372i \(-0.469364\pi\)
−0.813969 + 0.580908i \(0.802698\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −192.000 −0.282353
\(681\) 0 0
\(682\) 90.0000 51.9615i 0.131965 0.0761899i
\(683\) 488.000 + 845.241i 0.714495 + 1.23754i 0.963154 + 0.268950i \(0.0866768\pi\)
−0.248659 + 0.968591i \(0.579990\pi\)
\(684\) 0 0
\(685\) 401.836i 0.586622i
\(686\) 0 0
\(687\) 0 0
\(688\) −152.000 + 263.272i −0.220930 + 0.382662i
\(689\) 336.000 193.990i 0.487663 0.281553i
\(690\) 0 0
\(691\) −490.500 283.190i −0.709841 0.409827i 0.101161 0.994870i \(-0.467744\pi\)
−0.811002 + 0.585043i \(0.801078\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −440.000 −0.634006
\(695\) 147.000 254.611i 0.211511 0.366347i
\(696\) 0 0
\(697\) 84.0000 + 145.492i 0.120516 + 0.208741i
\(698\) 588.000 + 339.482i 0.842407 + 0.486364i
\(699\) 0 0
\(700\) 0 0
\(701\) −352.000 −0.502140 −0.251070 0.967969i \(-0.580782\pi\)
−0.251070 + 0.967969i \(0.580782\pi\)
\(702\) 0 0
\(703\) 142.500 82.2724i 0.202703 0.117030i
\(704\) 320.000 + 554.256i 0.454545 + 0.787296i
\(705\) 0 0
\(706\) 616.610i 0.873385i
\(707\) 0 0
\(708\) 0 0
\(709\) 575.000 995.929i 0.811001 1.40470i −0.101162 0.994870i \(-0.532256\pi\)
0.912164 0.409826i \(-0.134410\pi\)
\(710\) 156.000 90.0666i 0.219718 0.126854i
\(711\) 0 0
\(712\) −816.000 471.118i −1.14607 0.661682i
\(713\) 207.846i 0.291509i
\(714\) 0 0
\(715\) 420.000 0.587413
\(716\) 0 0
\(717\) 0 0
\(718\) 292.000 + 505.759i 0.406685 + 0.704399i
\(719\) −843.000 486.706i −1.17246 0.676921i −0.218203 0.975903i \(-0.570020\pi\)
−0.954259 + 0.298982i \(0.903353\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1444.00 −2.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 104.000 + 180.133i 0.143448 + 0.248460i
\(726\) 0 0
\(727\) 206.114i 0.283513i 0.989902 + 0.141757i \(0.0452750\pi\)
−0.989902 + 0.141757i \(0.954725\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 66.0000 114.315i 0.0904110 0.156596i
\(731\) 114.000 65.8179i 0.155951 0.0900382i
\(732\) 0 0
\(733\) −1078.50 622.672i −1.47135 0.849485i −0.471869 0.881669i \(-0.656420\pi\)
−0.999482 + 0.0321842i \(0.989754\pi\)
\(734\) 1077.34i 1.46776i
\(735\) 0 0
\(736\) 0 0
\(737\) 295.000 510.955i 0.400271 0.693290i
\(738\) 0 0
\(739\) −155.500 269.334i −0.210419 0.364457i 0.741426 0.671034i \(-0.234150\pi\)
−0.951846 + 0.306577i \(0.900816\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −394.000 −0.530283 −0.265141 0.964210i \(-0.585419\pi\)
−0.265141 + 0.964210i \(0.585419\pi\)
\(744\) 0 0
\(745\) −372.000 + 214.774i −0.499329 + 0.288288i
\(746\) 205.000 + 355.070i 0.274799 + 0.475966i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 39.5000 68.4160i 0.0525965 0.0910999i −0.838528 0.544858i \(-0.816584\pi\)
0.891125 + 0.453758i \(0.149917\pi\)
\(752\) −720.000 + 415.692i −0.957447 + 0.552782i
\(753\) 0 0
\(754\) 336.000 + 193.990i 0.445623 + 0.257281i
\(755\) 159.349i 0.211058i
\(756\) 0 0
\(757\) −250.000 −0.330251 −0.165125 0.986273i \(-0.552803\pi\)
−0.165125 + 0.986273i \(0.552803\pi\)
\(758\) 523.000 905.863i 0.689974 1.19507i
\(759\) 0 0
\(760\) −456.000 789.815i −0.600000 1.03923i
\(761\) −822.000 474.582i −1.08016 0.623629i −0.149219 0.988804i \(-0.547676\pi\)
−0.930939 + 0.365175i \(0.881009\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 132.000 76.2102i 0.172324 0.0994912i
\(767\) 252.000 + 436.477i 0.328553 + 0.569070i
\(768\) 0 0
\(769\) 860.829i 1.11941i −0.828691 0.559707i \(-0.810914\pi\)
0.828691 0.559707i \(-0.189086\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −195.000 + 112.583i −0.252264 + 0.145645i −0.620800 0.783969i \(-0.713192\pi\)
0.368537 + 0.929613i \(0.379859\pi\)
\(774\) 0 0
\(775\) 58.5000 + 33.7750i 0.0754839 + 0.0435806i
\(776\) 387.979i 0.499973i
\(777\) 0 0
\(778\) 148.000 0.190231
\(779\) −399.000 + 691.088i −0.512195 + 0.887148i
\(780\) 0 0
\(781\) 130.000 + 225.167i 0.166453 + 0.288306i
\(782\) −480.000 277.128i −0.613811 0.354384i
\(783\) 0 0
\(784\) 0 0
\(785\) 648.000 0.825478
\(786\) 0 0
\(787\) 216.000 124.708i 0.274460 0.158460i −0.356453 0.934313i \(-0.616014\pi\)
0.630913 + 0.775854i \(0.282681\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 325.626i 0.412184i
\(791\) 0 0
\(792\) 0 0
\(793\) 126.000 218.238i 0.158890 0.275206i
\(794\) 561.000 323.894i 0.706549 0.407926i
\(795\) 0 0
\(796\) 0 0
\(797\) 1357.93i 1.70380i 0.523705 + 0.851900i \(0.324549\pi\)
−0.523705 + 0.851900i \(0.675451\pi\)
\(798\) 0 0
\(799\) 360.000 0.450563
\(800\) 0 0
\(801\) 0 0
\(802\) −128.000 221.703i −0.159601 0.276437i
\(803\) 165.000 + 95.2628i 0.205479 + 0.118634i
\(804\) 0 0
\(805\) 0 0
\(806\) 126.000 0.156328
\(807\) 0 0
\(808\) 888.000 512.687i 1.09901 0.634514i
\(809\) −709.000 1228.02i −0.876391 1.51795i −0.855274 0.518176i \(-0.826611\pi\)
−0.0211166 0.999777i \(-0.506722\pi\)
\(810\) 0 0
\(811\) 872.954i 1.07639i 0.842820 + 0.538196i \(0.180894\pi\)
−0.842820 + 0.538196i \(0.819106\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 50.0000 86.6025i 0.0614251 0.106391i
\(815\) −174.000 + 100.459i −0.213497 + 0.123263i
\(816\) 0 0
\(817\) 541.500 + 312.635i 0.662791 + 0.382662i
\(818\) 592.361i 0.724158i
\(819\) 0 0
\(820\) 0 0
\(821\) 125.000 216.506i 0.152253 0.263711i −0.779802 0.626026i \(-0.784680\pi\)
0.932056 + 0.362315i \(0.118014\pi\)
\(822\) 0 0
\(823\) −103.000 178.401i −0.125152 0.216769i 0.796640 0.604454i \(-0.206608\pi\)
−0.921792 + 0.387684i \(0.873275\pi\)
\(824\) 60.0000 + 34.6410i 0.0728155 + 0.0420401i
\(825\) 0 0
\(826\) 0 0
\(827\) −1234.00 −1.49214 −0.746070 0.665867i \(-0.768062\pi\)
−0.746070 + 0.665867i \(0.768062\pi\)
\(828\) 0 0
\(829\) −298.500 + 172.339i −0.360072 + 0.207888i −0.669113 0.743161i \(-0.733326\pi\)
0.309040 + 0.951049i \(0.399992\pi\)
\(830\) 84.0000 + 145.492i 0.101205 + 0.175292i
\(831\) 0 0
\(832\) 775.959i 0.932643i
\(833\) 0 0
\(834\) 0 0
\(835\) 462.000 800.207i 0.553293 0.958332i
\(836\) 0 0
\(837\) 0 0
\(838\) −714.000 412.228i −0.852029 0.491919i
\(839\) 484.974i 0.578038i −0.957323 0.289019i \(-0.906671\pi\)
0.957323 0.289019i \(-0.0933291\pi\)
\(840\) 0 0
\(841\) −585.000 −0.695600
\(842\) −107.000 + 185.329i −0.127078 + 0.220106i
\(843\) 0 0
\(844\) 0 0
\(845\) −66.0000 38.1051i −0.0781065 0.0450948i
\(846\) 0 0
\(847\) 0 0
\(848\) −512.000 −0.603774
\(849\) 0 0
\(850\) −156.000 + 90.0666i −0.183529 + 0.105961i
\(851\) 100.000 + 173.205i 0.117509 + 0.203531i
\(852\) 0 0
\(853\) 278.860i 0.326917i 0.986550 + 0.163458i \(0.0522650\pi\)
−0.986550 + 0.163458i \(0.947735\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 848.000 1468.78i 0.990654 1.71586i
\(857\) −552.000 + 318.697i −0.644107 + 0.371876i −0.786195 0.617979i \(-0.787952\pi\)
0.142088 + 0.989854i \(0.454619\pi\)
\(858\) 0 0
\(859\) 528.000 + 304.841i 0.614668 + 0.354879i 0.774790 0.632218i \(-0.217855\pi\)
−0.160122 + 0.987097i \(0.551189\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −524.000 −0.607889
\(863\) 335.000 580.237i 0.388181 0.672349i −0.604024 0.796966i \(-0.706437\pi\)
0.992205 + 0.124617i \(0.0397703\pi\)
\(864\) 0 0
\(865\) 216.000 + 374.123i 0.249711 + 0.432512i
\(866\) 63.0000 + 36.3731i 0.0727483 + 0.0420012i
\(867\) 0 0
\(868\) 0 0
\(869\) −470.000 −0.540852
\(870\) 0 0
\(871\) 619.500 357.668i 0.711251 0.410641i
\(872\) 68.0000 + 117.779i 0.0779817 + 0.135068i
\(873\) 0 0
\(874\) 2632.72i 3.01226i
\(875\) 0 0
\(876\) 0 0
\(877\) 197.000 341.214i 0.224629 0.389070i −0.731579 0.681757i \(-0.761216\pi\)
0.956208 + 0.292687i \(0.0945495\pi\)
\(878\) 540.000 311.769i 0.615034 0.355090i
\(879\) 0 0
\(880\) −480.000 277.128i −0.545455 0.314918i
\(881\) 1163.94i 1.32116i −0.750758 0.660578i \(-0.770311\pi\)
0.750758 0.660578i \(-0.229689\pi\)
\(882\) 0 0
\(883\) 737.000 0.834655 0.417327 0.908756i \(-0.362967\pi\)
0.417327 + 0.908756i \(0.362967\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −212.000 367.195i −0.239278 0.414441i
\(887\) −633.000 365.463i −0.713641 0.412021i 0.0987664 0.995111i \(-0.468510\pi\)
−0.812408 + 0.583090i \(0.801844\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 816.000 0.916854
\(891\) 0 0
\(892\) 0 0
\(893\) 855.000 + 1480.90i 0.957447 + 1.65835i
\(894\) 0 0
\(895\) 34.6410i 0.0387050i
\(896\) 0 0
\(897\) 0 0
\(898\) −782.000 + 1354.46i −0.870824 + 1.50831i
\(899\) 72.0000 41.5692i 0.0800890 0.0462394i
\(900\) 0 0
\(901\) 192.000 + 110.851i 0.213097 + 0.123031i
\(902\) 484.974i 0.537665i
\(903\) 0 0
\(904\) 1136.00 1.25664
\(905\) 567.000 982.073i 0.626519 1.08516i
\(906\) 0 0
\(907\) 117.500 + 203.516i 0.129548 + 0.224384i 0.923502 0.383595i \(-0.125314\pi\)
−0.793954 + 0.607978i \(0.791981\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 740.000 0.812294 0.406147 0.913808i \(-0.366872\pi\)
0.406147 + 0.913808i \(0.366872\pi\)
\(912\) 0 0
\(913\) −210.000 + 121.244i −0.230011 + 0.132797i
\(914\) −677.000 1172.60i −0.740700 1.28293i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −758.500 + 1313.76i −0.825354 + 1.42955i 0.0762951 + 0.997085i \(0.475691\pi\)
−0.901649 + 0.432469i \(0.857642\pi\)
\(920\) 960.000 554.256i 1.04348 0.602452i
\(921\) 0 0
\(922\) 840.000 + 484.974i 0.911063 + 0.526002i
\(923\) 315.233i 0.341531i
\(924\) 0 0
\(925\) 65.0000 0.0702703
\(926\) −443.000 + 767.299i −0.478402 + 0.828616i
\(927\) 0 0
\(928\) 0 0
\(929\) 963.000 + 555.988i 1.03660 + 0.598480i 0.918868 0.394565i \(-0.129105\pi\)
0.117731 + 0.993046i \(0.462438\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −78.0000 + 45.0333i −0.0835118 + 0.0482155i
\(935\) 120.000 + 207.846i 0.128342 + 0.222295i
\(936\) 0 0
\(937\) 836.581i 0.892829i −0.894826 0.446414i \(-0.852701\pi\)
0.894826 0.446414i \(-0.147299\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −342.000 + 197.454i −0.363443 + 0.209834i −0.670590 0.741828i \(-0.733959\pi\)
0.307147 + 0.951662i \(0.400626\pi\)
\(942\) 0 0
\(943\) −840.000 484.974i −0.890774 0.514289i
\(944\) 665.108i 0.704563i
\(945\) 0 0
\(946\) 380.000 0.401691
\(947\) −169.000 + 292.717i −0.178458 + 0.309099i −0.941353 0.337424i \(-0.890444\pi\)
0.762894 + 0.646523i \(0.223778\pi\)
\(948\) 0 0
\(949\) 115.500 + 200.052i 0.121707 + 0.210803i
\(950\) −741.000 427.817i −0.780000 0.450333i
\(951\) 0 0
\(952\) 0 0
\(953\) 1244.00 1.30535 0.652676 0.757637i \(-0.273646\pi\)
0.652676 + 0.757637i \(0.273646\pi\)
\(954\) 0 0
\(955\) 6.00000 3.46410i 0.00628272 0.00362733i
\(956\) 0 0
\(957\) 0 0
\(958\) 110.851i 0.115711i
\(959\) 0 0
\(960\) 0 0
\(961\) −467.000 + 808.868i −0.485952 + 0.841694i
\(962\) 105.000 60.6218i 0.109148 0.0630164i
\(963\) 0 0
\(964\) 0 0
\(965\) 814.064i 0.843590i
\(966\) 0 0
\(967\) −1741.00 −1.80041 −0.900207 0.435463i \(-0.856585\pi\)
−0.900207 + 0.435463i \(0.856585\pi\)
\(968\) −84.0000 + 145.492i −0.0867769 + 0.150302i
\(969\) 0 0
\(970\) −168.000 290.985i −0.173196 0.299984i
\(971\) 1110.00 + 640.859i 1.14315 + 0.659999i 0.947209 0.320617i \(-0.103890\pi\)
0.195942 + 0.980615i \(0.437223\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −134.000 −0.137577
\(975\) 0 0
\(976\) −288.000 + 166.277i −0.295082 + 0.170366i
\(977\) 131.000 + 226.899i 0.134084 + 0.232240i 0.925247 0.379365i \(-0.123857\pi\)
−0.791163 + 0.611605i \(0.790524\pi\)
\(978\) 0 0
\(979\) 1177.79i 1.20306i
\(980\) 0 0
\(981\) 0 0
\(982\) −68.0000 + 117.779i −0.0692464 + 0.119938i
\(983\) 960.000 554.256i 0.976602 0.563842i 0.0753596 0.997156i \(-0.475990\pi\)
0.901243 + 0.433315i \(0.142656\pi\)
\(984\) 0 0
\(985\) 300.000 + 173.205i 0.304569 + 0.175843i
\(986\) 221.703i 0.224850i
\(987\) 0 0
\(988\) 0 0
\(989\) −380.000 + 658.179i −0.384226 + 0.665500i
\(990\) 0 0
\(991\) 33.5000 + 58.0237i 0.0338042 + 0.0585507i 0.882433 0.470439i \(-0.155904\pi\)
−0.848628 + 0.528990i \(0.822571\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −696.000 −0.699497
\(996\) 0 0
\(997\) 856.500 494.501i 0.859077 0.495988i −0.00462594 0.999989i \(-0.501472\pi\)
0.863703 + 0.504001i \(0.168139\pi\)
\(998\) −509.000 881.614i −0.510020 0.883381i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.3.m.b.19.1 2
3.2 odd 2 147.3.f.e.19.1 2
7.2 even 3 441.3.d.d.244.2 2
7.3 odd 6 inner 441.3.m.b.325.1 2
7.4 even 3 63.3.m.a.10.1 2
7.5 odd 6 441.3.d.d.244.1 2
7.6 odd 2 63.3.m.a.19.1 2
21.2 odd 6 147.3.d.a.97.2 2
21.5 even 6 147.3.d.a.97.1 2
21.11 odd 6 21.3.f.c.10.1 2
21.17 even 6 147.3.f.e.31.1 2
21.20 even 2 21.3.f.c.19.1 yes 2
28.11 odd 6 1008.3.cg.f.577.1 2
28.27 even 2 1008.3.cg.f.145.1 2
84.11 even 6 336.3.bh.c.241.1 2
84.23 even 6 2352.3.f.b.97.1 2
84.47 odd 6 2352.3.f.b.97.2 2
84.83 odd 2 336.3.bh.c.145.1 2
105.32 even 12 525.3.s.d.199.1 4
105.53 even 12 525.3.s.d.199.2 4
105.62 odd 4 525.3.s.d.124.2 4
105.74 odd 6 525.3.o.b.451.1 2
105.83 odd 4 525.3.s.d.124.1 4
105.104 even 2 525.3.o.b.376.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.3.f.c.10.1 2 21.11 odd 6
21.3.f.c.19.1 yes 2 21.20 even 2
63.3.m.a.10.1 2 7.4 even 3
63.3.m.a.19.1 2 7.6 odd 2
147.3.d.a.97.1 2 21.5 even 6
147.3.d.a.97.2 2 21.2 odd 6
147.3.f.e.19.1 2 3.2 odd 2
147.3.f.e.31.1 2 21.17 even 6
336.3.bh.c.145.1 2 84.83 odd 2
336.3.bh.c.241.1 2 84.11 even 6
441.3.d.d.244.1 2 7.5 odd 6
441.3.d.d.244.2 2 7.2 even 3
441.3.m.b.19.1 2 1.1 even 1 trivial
441.3.m.b.325.1 2 7.3 odd 6 inner
525.3.o.b.376.1 2 105.104 even 2
525.3.o.b.451.1 2 105.74 odd 6
525.3.s.d.124.1 4 105.83 odd 4
525.3.s.d.124.2 4 105.62 odd 4
525.3.s.d.199.1 4 105.32 even 12
525.3.s.d.199.2 4 105.53 even 12
1008.3.cg.f.145.1 2 28.27 even 2
1008.3.cg.f.577.1 2 28.11 odd 6
2352.3.f.b.97.1 2 84.23 even 6
2352.3.f.b.97.2 2 84.47 odd 6