Properties

Label 21.4.e.b.16.3
Level $21$
Weight $4$
Character 21.16
Analytic conductor $1.239$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [21,4,Mod(4,21)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("21.4");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 21.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.23904011012\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.9924270768.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 25x^{4} + 12x^{3} + 582x^{2} - 144x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 16.3
Root \(-2.27818 + 3.94593i\) of defining polynomial
Character \(\chi\) \(=\) 21.16
Dual form 21.4.e.b.4.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.27818 - 3.94593i) q^{2} +(1.50000 + 2.59808i) q^{3} +(-6.38024 - 11.0509i) q^{4} +(-8.93660 + 15.4786i) q^{5} +13.6691 q^{6} +(2.26047 - 18.3818i) q^{7} -21.6905 q^{8} +(-4.50000 + 7.79423i) q^{9} +(40.7184 + 70.5264i) q^{10} +(5.69708 + 9.86762i) q^{11} +(19.1407 - 33.1527i) q^{12} -13.0987 q^{13} +(-67.3835 - 50.7968i) q^{14} -53.6196 q^{15} +(1.62706 - 2.81815i) q^{16} +(-26.6337 - 46.1309i) q^{17} +(20.5036 + 35.5134i) q^{18} +(21.2111 - 36.7388i) q^{19} +228.071 q^{20} +(51.1480 - 21.6998i) q^{21} +51.9159 q^{22} +(-76.0427 + 131.710i) q^{23} +(-32.5357 - 56.3535i) q^{24} +(-97.2257 - 168.400i) q^{25} +(-29.8412 + 51.6864i) q^{26} -27.0000 q^{27} +(-217.558 + 92.2999i) q^{28} +186.493 q^{29} +(-122.155 + 211.579i) q^{30} +(78.9369 + 136.723i) q^{31} +(-94.1753 - 163.116i) q^{32} +(-17.0912 + 29.6029i) q^{33} -242.706 q^{34} +(264.324 + 199.260i) q^{35} +114.844 q^{36} +(-1.87294 + 3.24403i) q^{37} +(-96.6457 - 167.395i) q^{38} +(-19.6480 - 34.0313i) q^{39} +(193.839 - 335.739i) q^{40} -39.3230 q^{41} +(30.8986 - 251.263i) q^{42} +429.439 q^{43} +(72.6974 - 125.916i) q^{44} +(-80.4294 - 139.308i) q^{45} +(346.478 + 600.118i) q^{46} +(-10.5934 + 18.3484i) q^{47} +9.76236 q^{48} +(-332.781 - 83.1031i) q^{49} -885.992 q^{50} +(79.9010 - 138.393i) q^{51} +(83.5726 + 144.752i) q^{52} +(-182.952 - 316.882i) q^{53} +(-61.5109 + 106.540i) q^{54} -203.650 q^{55} +(-49.0307 + 398.709i) q^{56} +127.267 q^{57} +(424.866 - 735.889i) q^{58} +(113.289 + 196.222i) q^{59} +(342.106 + 592.545i) q^{60} +(-325.987 + 564.626i) q^{61} +719.331 q^{62} +(133.100 + 100.337i) q^{63} -832.161 q^{64} +(117.058 - 202.750i) q^{65} +(77.8739 + 134.882i) q^{66} +(-72.7166 - 125.949i) q^{67} +(-339.858 + 588.652i) q^{68} -456.256 q^{69} +(1388.44 - 589.055i) q^{70} -368.962 q^{71} +(97.6071 - 169.060i) q^{72} +(-304.453 - 527.328i) q^{73} +(8.53380 + 14.7810i) q^{74} +(291.677 - 505.200i) q^{75} -541.328 q^{76} +(194.263 - 82.4170i) q^{77} -179.047 q^{78} +(-455.119 + 788.289i) q^{79} +(29.0808 + 50.3694i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(-89.5850 + 155.166i) q^{82} -327.929 q^{83} +(-566.139 - 426.781i) q^{84} +952.058 q^{85} +(978.340 - 1694.53i) q^{86} +(279.740 + 484.524i) q^{87} +(-123.572 - 214.033i) q^{88} +(18.8059 - 32.5728i) q^{89} -732.932 q^{90} +(-29.6092 + 240.777i) q^{91} +1940.68 q^{92} +(-236.811 + 410.168i) q^{93} +(48.2676 + 83.6019i) q^{94} +(379.111 + 656.640i) q^{95} +(282.526 - 489.349i) q^{96} +722.013 q^{97} +(-1086.05 + 1123.80i) q^{98} -102.547 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + 9 q^{3} - 25 q^{4} - 11 q^{5} - 6 q^{6} - 13 q^{7} + 78 q^{8} - 27 q^{9} + 55 q^{10} - 35 q^{11} + 75 q^{12} + 124 q^{13} - 326 q^{14} - 66 q^{15} - 241 q^{16} - 48 q^{17} - 9 q^{18} + 202 q^{19}+ \cdots + 630 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27818 3.94593i 0.805459 1.39510i −0.110521 0.993874i \(-0.535252\pi\)
0.915981 0.401223i \(-0.131415\pi\)
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) −6.38024 11.0509i −0.797530 1.38136i
\(5\) −8.93660 + 15.4786i −0.799314 + 1.38445i 0.120749 + 0.992683i \(0.461470\pi\)
−0.920063 + 0.391769i \(0.871863\pi\)
\(6\) 13.6691 0.930064
\(7\) 2.26047 18.3818i 0.122054 0.992523i
\(8\) −21.6905 −0.958592
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 40.7184 + 70.5264i 1.28763 + 2.23024i
\(11\) 5.69708 + 9.86762i 0.156158 + 0.270473i 0.933480 0.358630i \(-0.116756\pi\)
−0.777322 + 0.629102i \(0.783423\pi\)
\(12\) 19.1407 33.1527i 0.460454 0.797530i
\(13\) −13.0987 −0.279455 −0.139728 0.990190i \(-0.544623\pi\)
−0.139728 + 0.990190i \(0.544623\pi\)
\(14\) −67.3835 50.7968i −1.28636 0.969714i
\(15\) −53.6196 −0.922968
\(16\) 1.62706 2.81815i 0.0254228 0.0440336i
\(17\) −26.6337 46.1309i −0.379977 0.658140i 0.611081 0.791568i \(-0.290735\pi\)
−0.991059 + 0.133428i \(0.957402\pi\)
\(18\) 20.5036 + 35.5134i 0.268486 + 0.465032i
\(19\) 21.2111 36.7388i 0.256114 0.443603i −0.709083 0.705125i \(-0.750891\pi\)
0.965198 + 0.261522i \(0.0842244\pi\)
\(20\) 228.071 2.54991
\(21\) 51.1480 21.6998i 0.531496 0.225490i
\(22\) 51.9159 0.503114
\(23\) −76.0427 + 131.710i −0.689391 + 1.19406i 0.282644 + 0.959225i \(0.408789\pi\)
−0.972035 + 0.234836i \(0.924545\pi\)
\(24\) −32.5357 56.3535i −0.276722 0.479296i
\(25\) −97.2257 168.400i −0.777806 1.34720i
\(26\) −29.8412 + 51.6864i −0.225090 + 0.389867i
\(27\) −27.0000 −0.192450
\(28\) −217.558 + 92.2999i −1.46838 + 0.622966i
\(29\) 186.493 1.19417 0.597085 0.802178i \(-0.296325\pi\)
0.597085 + 0.802178i \(0.296325\pi\)
\(30\) −122.155 + 211.579i −0.743413 + 1.28763i
\(31\) 78.9369 + 136.723i 0.457338 + 0.792133i 0.998819 0.0485801i \(-0.0154696\pi\)
−0.541481 + 0.840713i \(0.682136\pi\)
\(32\) −94.1753 163.116i −0.520250 0.901099i
\(33\) −17.0912 + 29.6029i −0.0901576 + 0.156158i
\(34\) −242.706 −1.22423
\(35\) 264.324 + 199.260i 1.27654 + 0.962316i
\(36\) 114.844 0.531686
\(37\) −1.87294 + 3.24403i −0.00832188 + 0.0144139i −0.870156 0.492776i \(-0.835982\pi\)
0.861834 + 0.507190i \(0.169316\pi\)
\(38\) −96.6457 167.395i −0.412579 0.714608i
\(39\) −19.6480 34.0313i −0.0806718 0.139728i
\(40\) 193.839 335.739i 0.766216 1.32712i
\(41\) −39.3230 −0.149786 −0.0748930 0.997192i \(-0.523862\pi\)
−0.0748930 + 0.997192i \(0.523862\pi\)
\(42\) 30.8986 251.263i 0.113518 0.923111i
\(43\) 429.439 1.52300 0.761498 0.648168i \(-0.224464\pi\)
0.761498 + 0.648168i \(0.224464\pi\)
\(44\) 72.6974 125.916i 0.249080 0.431420i
\(45\) −80.4294 139.308i −0.266438 0.461484i
\(46\) 346.478 + 600.118i 1.11055 + 1.92354i
\(47\) −10.5934 + 18.3484i −0.0328768 + 0.0569444i −0.881996 0.471258i \(-0.843800\pi\)
0.849119 + 0.528202i \(0.177134\pi\)
\(48\) 9.76236 0.0293557
\(49\) −332.781 83.1031i −0.970206 0.242283i
\(50\) −885.992 −2.50596
\(51\) 79.9010 138.393i 0.219380 0.379977i
\(52\) 83.5726 + 144.752i 0.222874 + 0.386029i
\(53\) −182.952 316.882i −0.474158 0.821266i 0.525404 0.850853i \(-0.323914\pi\)
−0.999562 + 0.0295866i \(0.990581\pi\)
\(54\) −61.5109 + 106.540i −0.155011 + 0.268486i
\(55\) −203.650 −0.499276
\(56\) −49.0307 + 398.709i −0.117000 + 0.951425i
\(57\) 127.267 0.295735
\(58\) 424.866 735.889i 0.961856 1.66598i
\(59\) 113.289 + 196.222i 0.249982 + 0.432982i 0.963521 0.267634i \(-0.0862419\pi\)
−0.713538 + 0.700616i \(0.752909\pi\)
\(60\) 342.106 + 592.545i 0.736095 + 1.27495i
\(61\) −325.987 + 564.626i −0.684235 + 1.18513i 0.289442 + 0.957196i \(0.406530\pi\)
−0.973677 + 0.227934i \(0.926803\pi\)
\(62\) 719.331 1.47347
\(63\) 133.100 + 100.337i 0.266174 + 0.200655i
\(64\) −832.161 −1.62532
\(65\) 117.058 202.750i 0.223372 0.386892i
\(66\) 77.8739 + 134.882i 0.145237 + 0.251557i
\(67\) −72.7166 125.949i −0.132593 0.229658i 0.792082 0.610414i \(-0.208997\pi\)
−0.924675 + 0.380756i \(0.875664\pi\)
\(68\) −339.858 + 588.652i −0.606086 + 1.04977i
\(69\) −456.256 −0.796041
\(70\) 1388.44 589.055i 2.37073 1.00579i
\(71\) −368.962 −0.616728 −0.308364 0.951268i \(-0.599782\pi\)
−0.308364 + 0.951268i \(0.599782\pi\)
\(72\) 97.6071 169.060i 0.159765 0.276722i
\(73\) −304.453 527.328i −0.488130 0.845466i 0.511777 0.859119i \(-0.328988\pi\)
−0.999907 + 0.0136522i \(0.995654\pi\)
\(74\) 8.53380 + 14.7810i 0.0134059 + 0.0232197i
\(75\) 291.677 505.200i 0.449066 0.777806i
\(76\) −541.328 −0.817034
\(77\) 194.263 82.4170i 0.287510 0.121978i
\(78\) −179.047 −0.259911
\(79\) −455.119 + 788.289i −0.648163 + 1.12265i 0.335399 + 0.942076i \(0.391129\pi\)
−0.983561 + 0.180574i \(0.942204\pi\)
\(80\) 29.0808 + 50.3694i 0.0406416 + 0.0703933i
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) −89.5850 + 155.166i −0.120646 + 0.208966i
\(83\) −327.929 −0.433674 −0.216837 0.976208i \(-0.569574\pi\)
−0.216837 + 0.976208i \(0.569574\pi\)
\(84\) −566.139 426.781i −0.735367 0.554353i
\(85\) 952.058 1.21489
\(86\) 978.340 1694.53i 1.22671 2.12473i
\(87\) 279.740 + 484.524i 0.344727 + 0.597085i
\(88\) −123.572 214.033i −0.149691 0.259273i
\(89\) 18.8059 32.5728i 0.0223980 0.0387945i −0.854609 0.519272i \(-0.826203\pi\)
0.877007 + 0.480477i \(0.159537\pi\)
\(90\) −732.932 −0.858420
\(91\) −29.6092 + 240.777i −0.0341086 + 0.277366i
\(92\) 1940.68 2.19924
\(93\) −236.811 + 410.168i −0.264044 + 0.457338i
\(94\) 48.2676 + 83.6019i 0.0529619 + 0.0917327i
\(95\) 379.111 + 656.640i 0.409431 + 0.709156i
\(96\) 282.526 489.349i 0.300366 0.520250i
\(97\) 722.013 0.755766 0.377883 0.925853i \(-0.376652\pi\)
0.377883 + 0.925853i \(0.376652\pi\)
\(98\) −1086.05 + 1123.80i −1.11947 + 1.15838i
\(99\) −102.547 −0.104105
\(100\) −1240.65 + 2148.86i −1.24065 + 2.14886i
\(101\) −759.336 1315.21i −0.748087 1.29572i −0.948739 0.316062i \(-0.897639\pi\)
0.200652 0.979663i \(-0.435694\pi\)
\(102\) −364.058 630.568i −0.353403 0.612113i
\(103\) 525.942 910.957i 0.503132 0.871450i −0.496862 0.867830i \(-0.665514\pi\)
0.999993 0.00361990i \(-0.00115225\pi\)
\(104\) 284.116 0.267883
\(105\) −121.206 + 985.625i −0.112652 + 0.916068i
\(106\) −1667.19 −1.52766
\(107\) −383.260 + 663.826i −0.346273 + 0.599762i −0.985584 0.169186i \(-0.945886\pi\)
0.639312 + 0.768948i \(0.279219\pi\)
\(108\) 172.266 + 298.374i 0.153485 + 0.265843i
\(109\) 713.524 + 1235.86i 0.627002 + 1.08600i 0.988150 + 0.153491i \(0.0490516\pi\)
−0.361148 + 0.932509i \(0.617615\pi\)
\(110\) −463.952 + 803.588i −0.402146 + 0.696538i
\(111\) −11.2376 −0.00960928
\(112\) −48.1247 36.2786i −0.0406014 0.0306072i
\(113\) 362.564 0.301833 0.150917 0.988546i \(-0.451778\pi\)
0.150917 + 0.988546i \(0.451778\pi\)
\(114\) 289.937 502.186i 0.238203 0.412579i
\(115\) −1359.13 2354.08i −1.10208 1.90886i
\(116\) −1189.87 2060.92i −0.952386 1.64958i
\(117\) 58.9440 102.094i 0.0465759 0.0806718i
\(118\) 1032.37 0.805402
\(119\) −908.173 + 385.297i −0.699597 + 0.296808i
\(120\) 1163.03 0.884750
\(121\) 600.587 1040.25i 0.451230 0.781553i
\(122\) 1485.31 + 2572.64i 1.10225 + 1.90915i
\(123\) −58.9845 102.164i −0.0432395 0.0748930i
\(124\) 1007.27 1744.65i 0.729481 1.26350i
\(125\) 1241.32 0.888216
\(126\) 699.147 296.617i 0.494325 0.209720i
\(127\) 974.777 0.681082 0.340541 0.940230i \(-0.389390\pi\)
0.340541 + 0.940230i \(0.389390\pi\)
\(128\) −1142.41 + 1978.72i −0.788875 + 1.36637i
\(129\) 644.158 + 1115.71i 0.439651 + 0.761498i
\(130\) −533.357 923.802i −0.359835 0.623252i
\(131\) 896.351 1552.53i 0.597821 1.03546i −0.395321 0.918543i \(-0.629367\pi\)
0.993142 0.116914i \(-0.0373001\pi\)
\(132\) 436.184 0.287613
\(133\) −627.377 472.946i −0.409026 0.308343i
\(134\) −662.647 −0.427194
\(135\) 241.288 417.924i 0.153828 0.266438i
\(136\) 577.697 + 1000.60i 0.364243 + 0.630888i
\(137\) −842.208 1458.75i −0.525217 0.909702i −0.999569 0.0293665i \(-0.990651\pi\)
0.474352 0.880335i \(-0.342682\pi\)
\(138\) −1039.44 + 1800.35i −0.641178 + 1.11055i
\(139\) 315.089 0.192270 0.0961350 0.995368i \(-0.469352\pi\)
0.0961350 + 0.995368i \(0.469352\pi\)
\(140\) 515.547 4192.35i 0.311226 2.53084i
\(141\) −63.5606 −0.0379629
\(142\) −840.563 + 1455.90i −0.496750 + 0.860396i
\(143\) −74.6241 129.253i −0.0436390 0.0755850i
\(144\) 14.6435 + 25.3633i 0.00847427 + 0.0146779i
\(145\) −1666.62 + 2886.67i −0.954517 + 1.65327i
\(146\) −2774.40 −1.57268
\(147\) −283.263 989.244i −0.158933 0.555044i
\(148\) 47.7992 0.0265478
\(149\) −946.887 + 1640.06i −0.520617 + 0.901736i 0.479095 + 0.877763i \(0.340965\pi\)
−0.999713 + 0.0239729i \(0.992368\pi\)
\(150\) −1328.99 2301.87i −0.723409 1.25298i
\(151\) 1005.92 + 1742.31i 0.542124 + 0.938986i 0.998782 + 0.0493434i \(0.0157129\pi\)
−0.456658 + 0.889642i \(0.650954\pi\)
\(152\) −460.079 + 796.881i −0.245509 + 0.425234i
\(153\) 479.406 0.253318
\(154\) 117.355 954.308i 0.0614071 0.499353i
\(155\) −2821.71 −1.46223
\(156\) −250.718 + 434.256i −0.128676 + 0.222874i
\(157\) 1914.25 + 3315.58i 0.973082 + 1.68543i 0.686125 + 0.727483i \(0.259310\pi\)
0.286956 + 0.957944i \(0.407357\pi\)
\(158\) 2073.69 + 3591.73i 1.04414 + 1.80850i
\(159\) 548.856 950.647i 0.273755 0.474158i
\(160\) 3366.43 1.66337
\(161\) 2249.17 + 1695.53i 1.10099 + 0.829977i
\(162\) −369.066 −0.178991
\(163\) 1754.63 3039.11i 0.843148 1.46038i −0.0440718 0.999028i \(-0.514033\pi\)
0.887220 0.461347i \(-0.152634\pi\)
\(164\) 250.890 + 434.554i 0.119459 + 0.206909i
\(165\) −305.475 529.098i −0.144128 0.249638i
\(166\) −747.083 + 1293.99i −0.349307 + 0.605017i
\(167\) −343.008 −0.158939 −0.0794694 0.996837i \(-0.525323\pi\)
−0.0794694 + 0.996837i \(0.525323\pi\)
\(168\) −1109.42 + 470.679i −0.509487 + 0.216153i
\(169\) −2025.42 −0.921905
\(170\) 2168.96 3756.75i 0.978541 1.69488i
\(171\) 190.900 + 330.649i 0.0853714 + 0.147868i
\(172\) −2739.92 4745.68i −1.21463 2.10381i
\(173\) 2093.61 3626.23i 0.920081 1.59363i 0.120793 0.992678i \(-0.461456\pi\)
0.799288 0.600949i \(-0.205210\pi\)
\(174\) 2549.20 1.11066
\(175\) −3315.27 + 1406.52i −1.43206 + 0.607559i
\(176\) 37.0779 0.0158798
\(177\) −339.866 + 588.666i −0.144327 + 0.249982i
\(178\) −85.6866 148.413i −0.0360813 0.0624947i
\(179\) 985.143 + 1706.32i 0.411358 + 0.712493i 0.995039 0.0994906i \(-0.0317213\pi\)
−0.583681 + 0.811983i \(0.698388\pi\)
\(180\) −1026.32 + 1777.63i −0.424984 + 0.736095i
\(181\) −3613.10 −1.48376 −0.741878 0.670535i \(-0.766065\pi\)
−0.741878 + 0.670535i \(0.766065\pi\)
\(182\) 882.634 + 665.370i 0.359479 + 0.270992i
\(183\) −1955.92 −0.790086
\(184\) 1649.40 2856.85i 0.660845 1.14462i
\(185\) −33.4755 57.9812i −0.0133036 0.0230425i
\(186\) 1079.00 + 1868.88i 0.425354 + 0.736734i
\(187\) 303.468 525.622i 0.118673 0.205547i
\(188\) 270.355 0.104881
\(189\) −61.0328 + 496.308i −0.0234893 + 0.191011i
\(190\) 3454.74 1.31912
\(191\) −953.884 + 1652.18i −0.361365 + 0.625902i −0.988186 0.153261i \(-0.951022\pi\)
0.626821 + 0.779163i \(0.284356\pi\)
\(192\) −1248.24 2162.02i −0.469188 0.812658i
\(193\) −1199.96 2078.40i −0.447540 0.775162i 0.550685 0.834713i \(-0.314366\pi\)
−0.998225 + 0.0595509i \(0.981033\pi\)
\(194\) 1644.88 2849.01i 0.608738 1.05437i
\(195\) 702.346 0.257928
\(196\) 1204.86 + 4207.74i 0.439087 + 1.53343i
\(197\) 1514.32 0.547668 0.273834 0.961777i \(-0.411708\pi\)
0.273834 + 0.961777i \(0.411708\pi\)
\(198\) −233.622 + 404.645i −0.0838524 + 0.145237i
\(199\) −683.889 1184.53i −0.243616 0.421955i 0.718126 0.695914i \(-0.245000\pi\)
−0.961742 + 0.273958i \(0.911667\pi\)
\(200\) 2108.87 + 3652.67i 0.745598 + 1.29141i
\(201\) 218.150 377.847i 0.0765527 0.132593i
\(202\) −6919.63 −2.41021
\(203\) 421.563 3428.08i 0.145753 1.18524i
\(204\) −2039.15 −0.699848
\(205\) 351.414 608.667i 0.119726 0.207371i
\(206\) −2396.38 4150.66i −0.810504 1.40383i
\(207\) −684.384 1185.39i −0.229797 0.398020i
\(208\) −21.3123 + 36.9140i −0.00710453 + 0.0123054i
\(209\) 483.366 0.159977
\(210\) 3613.08 + 2723.70i 1.18727 + 0.895016i
\(211\) 4302.52 1.40378 0.701891 0.712285i \(-0.252339\pi\)
0.701891 + 0.712285i \(0.252339\pi\)
\(212\) −2334.55 + 4043.57i −0.756311 + 1.30997i
\(213\) −553.443 958.591i −0.178034 0.308364i
\(214\) 1746.27 + 3024.64i 0.557817 + 0.966167i
\(215\) −3837.72 + 6647.13i −1.21735 + 2.10851i
\(216\) 585.642 0.184481
\(217\) 2691.64 1141.94i 0.842030 0.357236i
\(218\) 6502.16 2.02010
\(219\) 913.359 1581.98i 0.281822 0.488130i
\(220\) 1299.34 + 2250.51i 0.398187 + 0.689680i
\(221\) 348.866 + 604.253i 0.106187 + 0.183921i
\(222\) −25.6014 + 44.3429i −0.00773988 + 0.0134059i
\(223\) −1497.19 −0.449592 −0.224796 0.974406i \(-0.572172\pi\)
−0.224796 + 0.974406i \(0.572172\pi\)
\(224\) −3211.25 + 1362.39i −0.957861 + 0.406377i
\(225\) 1750.06 0.518537
\(226\) 825.987 1430.65i 0.243114 0.421086i
\(227\) −801.662 1388.52i −0.234397 0.405988i 0.724700 0.689065i \(-0.241978\pi\)
−0.959097 + 0.283076i \(0.908645\pi\)
\(228\) −811.992 1406.41i −0.235858 0.408517i
\(229\) −505.261 + 875.137i −0.145802 + 0.252536i −0.929672 0.368389i \(-0.879909\pi\)
0.783870 + 0.620925i \(0.213243\pi\)
\(230\) −12385.4 −3.55072
\(231\) 505.520 + 381.084i 0.143986 + 0.108543i
\(232\) −4045.13 −1.14472
\(233\) −99.1084 + 171.661i −0.0278661 + 0.0482656i −0.879622 0.475673i \(-0.842205\pi\)
0.851756 + 0.523939i \(0.175538\pi\)
\(234\) −268.571 465.178i −0.0750299 0.129956i
\(235\) −189.339 327.944i −0.0525578 0.0910329i
\(236\) 1445.62 2503.88i 0.398736 0.690631i
\(237\) −2730.71 −0.748434
\(238\) −548.629 + 4461.36i −0.149422 + 1.21507i
\(239\) −1201.19 −0.325098 −0.162549 0.986700i \(-0.551972\pi\)
−0.162549 + 0.986700i \(0.551972\pi\)
\(240\) −87.2423 + 151.108i −0.0234644 + 0.0406416i
\(241\) 1366.35 + 2366.58i 0.365204 + 0.632551i 0.988809 0.149188i \(-0.0476660\pi\)
−0.623605 + 0.781739i \(0.714333\pi\)
\(242\) −2736.49 4739.74i −0.726894 1.25902i
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) 8319.49 2.18279
\(245\) 4260.25 4408.33i 1.11093 1.14954i
\(246\) −537.510 −0.139311
\(247\) −277.838 + 481.229i −0.0715724 + 0.123967i
\(248\) −1712.18 2965.58i −0.438401 0.759332i
\(249\) −491.894 851.985i −0.125191 0.216837i
\(250\) 2827.95 4898.16i 0.715422 1.23915i
\(251\) 7565.82 1.90259 0.951295 0.308281i \(-0.0997537\pi\)
0.951295 + 0.308281i \(0.0997537\pi\)
\(252\) 259.602 2111.04i 0.0648945 0.527711i
\(253\) −1732.88 −0.430615
\(254\) 2220.72 3846.40i 0.548584 0.950175i
\(255\) 1428.09 + 2473.52i 0.350707 + 0.607443i
\(256\) 1876.61 + 3250.38i 0.458156 + 0.793550i
\(257\) −2504.34 + 4337.64i −0.607846 + 1.05282i 0.383749 + 0.923437i \(0.374633\pi\)
−0.991595 + 0.129382i \(0.958701\pi\)
\(258\) 5870.04 1.41648
\(259\) 55.3973 + 41.7610i 0.0132904 + 0.0100189i
\(260\) −2987.42 −0.712584
\(261\) −839.220 + 1453.57i −0.199028 + 0.344727i
\(262\) −4084.10 7073.88i −0.963041 1.66804i
\(263\) 3124.40 + 5411.63i 0.732544 + 1.26880i 0.955793 + 0.294042i \(0.0950004\pi\)
−0.223249 + 0.974761i \(0.571666\pi\)
\(264\) 370.716 642.100i 0.0864243 0.149691i
\(265\) 6539.88 1.51601
\(266\) −3295.49 + 1398.13i −0.759622 + 0.322274i
\(267\) 112.835 0.0258630
\(268\) −927.898 + 1607.17i −0.211494 + 0.366318i
\(269\) 1794.22 + 3107.69i 0.406676 + 0.704383i 0.994515 0.104595i \(-0.0333546\pi\)
−0.587839 + 0.808978i \(0.700021\pi\)
\(270\) −1099.40 1904.21i −0.247804 0.429210i
\(271\) 991.571 1717.45i 0.222264 0.384973i −0.733231 0.679980i \(-0.761988\pi\)
0.955495 + 0.295007i \(0.0953218\pi\)
\(272\) −173.338 −0.0386404
\(273\) −669.971 + 284.239i −0.148529 + 0.0630143i
\(274\) −7674.81 −1.69216
\(275\) 1107.80 1918.77i 0.242920 0.420751i
\(276\) 2911.02 + 5042.04i 0.634866 + 1.09962i
\(277\) −3681.96 6377.33i −0.798654 1.38331i −0.920493 0.390760i \(-0.872212\pi\)
0.121838 0.992550i \(-0.461121\pi\)
\(278\) 717.831 1243.32i 0.154866 0.268235i
\(279\) −1420.86 −0.304892
\(280\) −5733.32 4322.04i −1.22368 0.922468i
\(281\) −5312.05 −1.12772 −0.563861 0.825869i \(-0.690685\pi\)
−0.563861 + 0.825869i \(0.690685\pi\)
\(282\) −144.803 + 250.806i −0.0305776 + 0.0529619i
\(283\) 545.882 + 945.495i 0.114662 + 0.198600i 0.917645 0.397402i \(-0.130088\pi\)
−0.802983 + 0.596002i \(0.796755\pi\)
\(284\) 2354.06 + 4077.36i 0.491859 + 0.851925i
\(285\) −1137.33 + 1969.92i −0.236385 + 0.409431i
\(286\) −680.030 −0.140598
\(287\) −88.8886 + 722.827i −0.0182820 + 0.148666i
\(288\) 1695.16 0.346833
\(289\) 1037.79 1797.51i 0.211234 0.365869i
\(290\) 7593.72 + 13152.7i 1.53765 + 2.66329i
\(291\) 1083.02 + 1875.84i 0.218171 + 0.377883i
\(292\) −3884.96 + 6728.95i −0.778597 + 1.34857i
\(293\) −7191.86 −1.43397 −0.716985 0.697089i \(-0.754478\pi\)
−0.716985 + 0.697089i \(0.754478\pi\)
\(294\) −4548.81 1135.94i −0.902354 0.225339i
\(295\) −4049.67 −0.799257
\(296\) 40.6249 70.3645i 0.00797729 0.0138171i
\(297\) −153.821 266.426i −0.0300525 0.0520525i
\(298\) 4314.36 + 7472.70i 0.838672 + 1.45262i
\(299\) 996.058 1725.22i 0.192654 0.333687i
\(300\) −7443.88 −1.43257
\(301\) 970.735 7893.85i 0.185888 1.51161i
\(302\) 9166.69 1.74663
\(303\) 2278.01 3945.63i 0.431908 0.748087i
\(304\) −69.0236 119.552i −0.0130223 0.0225552i
\(305\) −5826.43 10091.7i −1.09384 1.89458i
\(306\) 1092.18 1891.70i 0.204038 0.353403i
\(307\) 541.355 0.100641 0.0503204 0.998733i \(-0.483976\pi\)
0.0503204 + 0.998733i \(0.483976\pi\)
\(308\) −2150.22 1620.94i −0.397793 0.299875i
\(309\) 3155.65 0.580966
\(310\) −6428.37 + 11134.3i −1.17776 + 2.03995i
\(311\) −27.0084 46.7799i −0.00492446 0.00852941i 0.863553 0.504259i \(-0.168234\pi\)
−0.868477 + 0.495729i \(0.834901\pi\)
\(312\) 426.174 + 738.155i 0.0773313 + 0.133942i
\(313\) −1886.47 + 3267.46i −0.340670 + 0.590058i −0.984557 0.175063i \(-0.943987\pi\)
0.643887 + 0.765120i \(0.277321\pi\)
\(314\) 17444.1 3.13511
\(315\) −2742.54 + 1163.54i −0.490554 + 0.208120i
\(316\) 11615.1 2.06772
\(317\) −859.618 + 1488.90i −0.152306 + 0.263802i −0.932075 0.362266i \(-0.882003\pi\)
0.779769 + 0.626068i \(0.215337\pi\)
\(318\) −2500.79 4331.49i −0.440998 0.763831i
\(319\) 1062.47 + 1840.25i 0.186479 + 0.322991i
\(320\) 7436.70 12880.7i 1.29914 2.25017i
\(321\) −2299.56 −0.399841
\(322\) 11814.5 5012.34i 2.04470 0.867475i
\(323\) −2259.72 −0.389270
\(324\) −516.799 + 895.122i −0.0886144 + 0.153485i
\(325\) 1273.53 + 2205.81i 0.217362 + 0.376482i
\(326\) −7994.73 13847.3i −1.35824 2.35255i
\(327\) −2140.57 + 3707.58i −0.362000 + 0.627002i
\(328\) 852.934 0.143584
\(329\) 313.330 + 236.202i 0.0525059 + 0.0395813i
\(330\) −2783.71 −0.464358
\(331\) −4204.11 + 7281.73i −0.698123 + 1.20918i 0.270994 + 0.962581i \(0.412648\pi\)
−0.969117 + 0.246603i \(0.920686\pi\)
\(332\) 2092.27 + 3623.91i 0.345868 + 0.599060i
\(333\) −16.8565 29.1963i −0.00277396 0.00480464i
\(334\) −781.436 + 1353.49i −0.128019 + 0.221735i
\(335\) 2599.36 0.423935
\(336\) 22.0675 179.450i 0.00358298 0.0291362i
\(337\) 2789.46 0.450894 0.225447 0.974255i \(-0.427616\pi\)
0.225447 + 0.974255i \(0.427616\pi\)
\(338\) −4614.29 + 7992.18i −0.742557 + 1.28615i
\(339\) 543.846 + 941.969i 0.0871317 + 0.150917i
\(340\) −6074.36 10521.1i −0.968907 1.67820i
\(341\) −899.419 + 1557.84i −0.142834 + 0.247395i
\(342\) 1739.62 0.275053
\(343\) −2279.82 + 5929.25i −0.358889 + 0.933380i
\(344\) −9314.72 −1.45993
\(345\) 4077.38 7062.23i 0.636286 1.10208i
\(346\) −9539.24 16522.4i −1.48217 2.56720i
\(347\) 1735.98 + 3006.81i 0.268566 + 0.465170i 0.968492 0.249046i \(-0.0801170\pi\)
−0.699926 + 0.714216i \(0.746784\pi\)
\(348\) 3569.61 6182.75i 0.549860 0.952386i
\(349\) −6626.12 −1.01630 −0.508149 0.861269i \(-0.669670\pi\)
−0.508149 + 0.861269i \(0.669670\pi\)
\(350\) −2002.76 + 16286.1i −0.305863 + 2.48723i
\(351\) 353.664 0.0537812
\(352\) 1073.05 1858.57i 0.162482 0.281427i
\(353\) −4734.20 8199.87i −0.713813 1.23636i −0.963416 0.268012i \(-0.913633\pi\)
0.249603 0.968348i \(-0.419700\pi\)
\(354\) 1548.56 + 2682.18i 0.232499 + 0.402701i
\(355\) 3297.27 5711.03i 0.492960 0.853831i
\(356\) −479.944 −0.0714522
\(357\) −2363.29 1781.56i −0.350360 0.264118i
\(358\) 8977.35 1.32533
\(359\) 3139.78 5438.25i 0.461591 0.799499i −0.537450 0.843296i \(-0.680612\pi\)
0.999040 + 0.0437971i \(0.0139455\pi\)
\(360\) 1744.55 + 3021.65i 0.255405 + 0.442375i
\(361\) 2529.68 + 4381.53i 0.368811 + 0.638800i
\(362\) −8231.31 + 14257.0i −1.19510 + 2.06998i
\(363\) 3603.52 0.521035
\(364\) 2849.71 1209.01i 0.410345 0.174091i
\(365\) 10883.1 1.56068
\(366\) −4455.94 + 7717.92i −0.636382 + 1.10225i
\(367\) 5413.91 + 9377.17i 0.770038 + 1.33374i 0.937542 + 0.347873i \(0.113096\pi\)
−0.167504 + 0.985871i \(0.553571\pi\)
\(368\) 247.452 + 428.599i 0.0350525 + 0.0607127i
\(369\) 176.954 306.493i 0.0249643 0.0432395i
\(370\) −305.053 −0.0428620
\(371\) −6238.42 + 2646.68i −0.872999 + 0.370374i
\(372\) 6043.63 0.842332
\(373\) −2619.61 + 4537.30i −0.363642 + 0.629846i −0.988557 0.150846i \(-0.951800\pi\)
0.624915 + 0.780693i \(0.285134\pi\)
\(374\) −1382.71 2394.93i −0.191172 0.331120i
\(375\) 1861.98 + 3225.04i 0.256406 + 0.444108i
\(376\) 229.777 397.985i 0.0315155 0.0545864i
\(377\) −2442.81 −0.333717
\(378\) 1819.35 + 1371.51i 0.247559 + 0.186622i
\(379\) −11050.4 −1.49768 −0.748839 0.662751i \(-0.769389\pi\)
−0.748839 + 0.662751i \(0.769389\pi\)
\(380\) 4837.64 8379.03i 0.653067 1.13115i
\(381\) 1462.16 + 2532.54i 0.196611 + 0.340541i
\(382\) 4346.25 + 7527.92i 0.582129 + 1.00828i
\(383\) 5234.02 9065.59i 0.698292 1.20948i −0.270766 0.962645i \(-0.587277\pi\)
0.969058 0.246832i \(-0.0793897\pi\)
\(384\) −6854.48 −0.910915
\(385\) −460.345 + 3743.45i −0.0609386 + 0.495543i
\(386\) −10934.9 −1.44190
\(387\) −1932.47 + 3347.14i −0.253833 + 0.439651i
\(388\) −4606.61 7978.88i −0.602745 1.04399i
\(389\) 5807.02 + 10058.1i 0.756884 + 1.31096i 0.944432 + 0.328705i \(0.106612\pi\)
−0.187549 + 0.982255i \(0.560054\pi\)
\(390\) 1600.07 2771.41i 0.207751 0.359835i
\(391\) 8101.19 1.04781
\(392\) 7218.16 + 1802.54i 0.930031 + 0.232251i
\(393\) 5378.11 0.690304
\(394\) 3449.89 5975.38i 0.441124 0.764049i
\(395\) −8134.43 14089.2i −1.03617 1.79470i
\(396\) 654.276 + 1133.24i 0.0830268 + 0.143807i
\(397\) 3353.65 5808.69i 0.423967 0.734332i −0.572356 0.820005i \(-0.693971\pi\)
0.996323 + 0.0856726i \(0.0273039\pi\)
\(398\) −6232.10 −0.784892
\(399\) 287.683 2339.39i 0.0360957 0.293524i
\(400\) −632.768 −0.0790960
\(401\) −2763.19 + 4785.98i −0.344107 + 0.596011i −0.985191 0.171459i \(-0.945152\pi\)
0.641084 + 0.767471i \(0.278485\pi\)
\(402\) −993.970 1721.61i −0.123320 0.213597i
\(403\) −1033.97 1790.89i −0.127805 0.221366i
\(404\) −9689.49 + 16782.7i −1.19324 + 2.06676i
\(405\) 1447.73 0.177625
\(406\) −12566.6 9473.26i −1.53613 1.15800i
\(407\) −42.6811 −0.00519810
\(408\) −1733.09 + 3001.80i −0.210296 + 0.364243i
\(409\) 659.453 + 1142.21i 0.0797258 + 0.138089i 0.903132 0.429364i \(-0.141262\pi\)
−0.823406 + 0.567453i \(0.807929\pi\)
\(410\) −1601.17 2773.31i −0.192869 0.334059i
\(411\) 2526.62 4376.24i 0.303234 0.525217i
\(412\) −13422.5 −1.60505
\(413\) 3863.00 1638.90i 0.460256 0.195266i
\(414\) −6236.61 −0.740369
\(415\) 2930.57 5075.90i 0.346641 0.600401i
\(416\) 1233.57 + 2136.61i 0.145387 + 0.251817i
\(417\) 472.634 + 818.626i 0.0555036 + 0.0961350i
\(418\) 1101.20 1907.33i 0.128855 0.223183i
\(419\) 3656.13 0.426286 0.213143 0.977021i \(-0.431630\pi\)
0.213143 + 0.977021i \(0.431630\pi\)
\(420\) 11665.4 4949.09i 1.35526 0.574978i
\(421\) −135.389 −0.0156733 −0.00783663 0.999969i \(-0.502495\pi\)
−0.00783663 + 0.999969i \(0.502495\pi\)
\(422\) 9801.93 16977.4i 1.13069 1.95841i
\(423\) −95.3409 165.135i −0.0109589 0.0189815i
\(424\) 3968.31 + 6873.32i 0.454524 + 0.787259i
\(425\) −5178.96 + 8970.22i −0.591097 + 1.02381i
\(426\) −5043.38 −0.573597
\(427\) 9641.94 + 7268.54i 1.09276 + 0.823769i
\(428\) 9781.16 1.10465
\(429\) 223.872 387.758i 0.0251950 0.0436390i
\(430\) 17486.1 + 30286.8i 1.96105 + 3.39665i
\(431\) −4194.58 7265.23i −0.468784 0.811958i 0.530579 0.847635i \(-0.321974\pi\)
−0.999363 + 0.0356776i \(0.988641\pi\)
\(432\) −43.9306 + 76.0900i −0.00489262 + 0.00847427i
\(433\) −8243.02 −0.914859 −0.457430 0.889246i \(-0.651230\pi\)
−0.457430 + 0.889246i \(0.651230\pi\)
\(434\) 1626.03 13222.6i 0.179843 1.46245i
\(435\) −9999.70 −1.10218
\(436\) 9104.91 15770.2i 1.00011 1.73223i
\(437\) 3225.91 + 5587.43i 0.353126 + 0.611632i
\(438\) −4161.60 7208.10i −0.453993 0.786338i
\(439\) 9141.59 15833.7i 0.993859 1.72142i 0.401104 0.916032i \(-0.368626\pi\)
0.592755 0.805383i \(-0.298040\pi\)
\(440\) 4417.26 0.478602
\(441\) 2145.24 2219.80i 0.231642 0.239694i
\(442\) 3179.12 0.342116
\(443\) −605.218 + 1048.27i −0.0649092 + 0.112426i −0.896654 0.442733i \(-0.854009\pi\)
0.831745 + 0.555159i \(0.187342\pi\)
\(444\) 71.6988 + 124.186i 0.00766368 + 0.0132739i
\(445\) 336.122 + 582.180i 0.0358061 + 0.0620179i
\(446\) −3410.86 + 5907.79i −0.362128 + 0.627224i
\(447\) −5681.32 −0.601157
\(448\) −1881.08 + 15296.6i −0.198376 + 1.61316i
\(449\) −8301.16 −0.872508 −0.436254 0.899824i \(-0.643695\pi\)
−0.436254 + 0.899824i \(0.643695\pi\)
\(450\) 3986.96 6905.62i 0.417661 0.723409i
\(451\) −224.026 388.025i −0.0233902 0.0405130i
\(452\) −2313.24 4006.66i −0.240721 0.416941i
\(453\) −3017.76 + 5226.92i −0.312995 + 0.542124i
\(454\) −7305.34 −0.755190
\(455\) −3462.30 2610.04i −0.356736 0.268924i
\(456\) −2760.48 −0.283489
\(457\) 6146.88 10646.7i 0.629188 1.08979i −0.358527 0.933519i \(-0.616721\pi\)
0.987715 0.156266i \(-0.0499458\pi\)
\(458\) 2302.15 + 3987.45i 0.234875 + 0.406815i
\(459\) 719.109 + 1245.53i 0.0731267 + 0.126659i
\(460\) −17343.1 + 30039.1i −1.75788 + 3.04474i
\(461\) 19434.2 1.96343 0.981717 0.190346i \(-0.0609609\pi\)
0.981717 + 0.190346i \(0.0609609\pi\)
\(462\) 2655.40 1126.57i 0.267403 0.113447i
\(463\) −12491.1 −1.25380 −0.626902 0.779098i \(-0.715678\pi\)
−0.626902 + 0.779098i \(0.715678\pi\)
\(464\) 303.436 525.566i 0.0303592 0.0525836i
\(465\) −4232.56 7331.02i −0.422109 0.731113i
\(466\) 451.574 + 782.150i 0.0448901 + 0.0777519i
\(467\) −1692.59 + 2931.65i −0.167716 + 0.290493i −0.937617 0.347671i \(-0.886973\pi\)
0.769900 + 0.638164i \(0.220306\pi\)
\(468\) −1504.31 −0.148583
\(469\) −2479.54 + 1051.96i −0.244125 + 0.103571i
\(470\) −1725.39 −0.169333
\(471\) −5742.75 + 9946.74i −0.561809 + 0.973082i
\(472\) −2457.29 4256.14i −0.239631 0.415053i
\(473\) 2446.54 + 4237.54i 0.237827 + 0.411929i
\(474\) −6221.06 + 10775.2i −0.602833 + 1.04414i
\(475\) −8249.07 −0.796828
\(476\) 10052.2 + 7577.84i 0.967948 + 0.729684i
\(477\) 3293.14 0.316106
\(478\) −2736.53 + 4739.80i −0.261853 + 0.453543i
\(479\) −2989.71 5178.32i −0.285184 0.493953i 0.687470 0.726213i \(-0.258721\pi\)
−0.972654 + 0.232260i \(0.925388\pi\)
\(480\) 5049.64 + 8746.24i 0.480174 + 0.831686i
\(481\) 24.5330 42.4925i 0.00232559 0.00402804i
\(482\) 12451.1 1.17663
\(483\) −1031.35 + 8386.81i −0.0971600 + 0.790089i
\(484\) −15327.5 −1.43948
\(485\) −6452.34 + 11175.8i −0.604094 + 1.04632i
\(486\) −553.598 958.861i −0.0516702 0.0894955i
\(487\) 557.481 + 965.586i 0.0518725 + 0.0898457i 0.890796 0.454404i \(-0.150148\pi\)
−0.838923 + 0.544250i \(0.816814\pi\)
\(488\) 7070.80 12247.0i 0.655902 1.13606i
\(489\) 10527.8 0.973583
\(490\) −7689.34 26853.6i −0.708916 2.47576i
\(491\) 1086.23 0.0998387 0.0499194 0.998753i \(-0.484104\pi\)
0.0499194 + 0.998753i \(0.484104\pi\)
\(492\) −752.670 + 1303.66i −0.0689695 + 0.119459i
\(493\) −4967.00 8603.10i −0.453758 0.785932i
\(494\) 1265.93 + 2192.66i 0.115297 + 0.199701i
\(495\) 916.425 1587.29i 0.0832126 0.144128i
\(496\) 513.740 0.0465073
\(497\) −834.028 + 6782.18i −0.0752742 + 0.612117i
\(498\) −4482.50 −0.403344
\(499\) 1106.75 1916.95i 0.0992884 0.171973i −0.812102 0.583516i \(-0.801677\pi\)
0.911390 + 0.411543i \(0.135010\pi\)
\(500\) −7919.92 13717.7i −0.708379 1.22695i
\(501\) −514.512 891.162i −0.0458817 0.0794694i
\(502\) 17236.3 29854.2i 1.53246 2.65430i
\(503\) −2643.32 −0.234314 −0.117157 0.993113i \(-0.537378\pi\)
−0.117157 + 0.993113i \(0.537378\pi\)
\(504\) −2886.99 2176.35i −0.255153 0.192346i
\(505\) 27143.5 2.39183
\(506\) −3947.83 + 6837.84i −0.346843 + 0.600749i
\(507\) −3038.14 5262.21i −0.266131 0.460952i
\(508\) −6219.31 10772.2i −0.543183 0.940821i
\(509\) 332.584 576.053i 0.0289618 0.0501633i −0.851181 0.524872i \(-0.824113\pi\)
0.880143 + 0.474709i \(0.157447\pi\)
\(510\) 13013.8 1.12992
\(511\) −10381.4 + 4404.38i −0.898724 + 0.381288i
\(512\) −1177.58 −0.101645
\(513\) −572.701 + 991.947i −0.0492892 + 0.0853714i
\(514\) 11410.7 + 19763.9i 0.979190 + 1.69601i
\(515\) 9400.26 + 16281.7i 0.804320 + 1.39312i
\(516\) 8219.76 14237.0i 0.701269 1.21463i
\(517\) −241.406 −0.0205359
\(518\) 290.991 123.455i 0.0246823 0.0104716i
\(519\) 12561.6 1.06242
\(520\) −2539.03 + 4397.73i −0.214123 + 0.370872i
\(521\) 5880.99 + 10186.2i 0.494531 + 0.856554i 0.999980 0.00630307i \(-0.00200634\pi\)
−0.505449 + 0.862857i \(0.668673\pi\)
\(522\) 3823.79 + 6623.01i 0.320619 + 0.555328i
\(523\) −5061.30 + 8766.43i −0.423165 + 0.732943i −0.996247 0.0865547i \(-0.972414\pi\)
0.573082 + 0.819498i \(0.305748\pi\)
\(524\) −22875.7 −1.90712
\(525\) −8627.15 6503.54i −0.717180 0.540643i
\(526\) 28471.9 2.36014
\(527\) 4204.76 7282.85i 0.347556 0.601985i
\(528\) 55.6169 + 96.3312i 0.00458412 + 0.00793992i
\(529\) −5481.49 9494.22i −0.450521 0.780325i
\(530\) 14899.0 25805.9i 1.22108 2.11497i
\(531\) −2039.20 −0.166655
\(532\) −1223.66 + 9950.58i −0.0997224 + 0.810926i
\(533\) 515.079 0.0418585
\(534\) 257.060 445.240i 0.0208316 0.0360813i
\(535\) −6850.09 11864.7i −0.553561 0.958796i
\(536\) 1577.26 + 2731.89i 0.127103 + 0.220148i
\(537\) −2955.43 + 5118.95i −0.237498 + 0.411358i
\(538\) 16350.3 1.31024
\(539\) −1075.85 3757.20i −0.0859740 0.300249i
\(540\) −6157.90 −0.490730
\(541\) −8058.98 + 13958.6i −0.640449 + 1.10929i 0.344884 + 0.938645i \(0.387918\pi\)
−0.985333 + 0.170644i \(0.945415\pi\)
\(542\) −4517.96 7825.34i −0.358050 0.620161i
\(543\) −5419.65 9387.11i −0.428323 0.741878i
\(544\) −5016.47 + 8688.78i −0.395366 + 0.684795i
\(545\) −25505.9 −2.00469
\(546\) −404.731 + 3291.20i −0.0317232 + 0.257968i
\(547\) −626.100 −0.0489399 −0.0244699 0.999701i \(-0.507790\pi\)
−0.0244699 + 0.999701i \(0.507790\pi\)
\(548\) −10747.0 + 18614.3i −0.837751 + 1.45103i
\(549\) −2933.88 5081.63i −0.228078 0.395043i
\(550\) −5047.56 8742.64i −0.391325 0.677795i
\(551\) 3955.74 6851.54i 0.305844 0.529737i
\(552\) 9896.41 0.763078
\(553\) 13461.4 + 10147.8i 1.03515 + 0.780341i
\(554\) −33552.7 −2.57313
\(555\) 100.426 173.944i 0.00768083 0.0133036i
\(556\) −2010.34 3482.02i −0.153341 0.265594i
\(557\) −10385.6 17988.4i −0.790039 1.36839i −0.925942 0.377665i \(-0.876727\pi\)
0.135903 0.990722i \(-0.456606\pi\)
\(558\) −3236.99 + 5606.63i −0.245578 + 0.425354i
\(559\) −5625.08 −0.425609
\(560\) 991.615 420.698i 0.0748275 0.0317460i
\(561\) 1820.81 0.137031
\(562\) −12101.8 + 20961.0i −0.908335 + 1.57328i
\(563\) 2760.86 + 4781.95i 0.206672 + 0.357966i 0.950664 0.310222i \(-0.100403\pi\)
−0.743992 + 0.668188i \(0.767070\pi\)
\(564\) 405.532 + 702.402i 0.0302765 + 0.0524405i
\(565\) −3240.09 + 5612.00i −0.241260 + 0.417874i
\(566\) 4974.48 0.369422
\(567\) −1381.00 + 585.895i −0.102286 + 0.0433955i
\(568\) 8002.95 0.591191
\(569\) −3787.40 + 6559.97i −0.279044 + 0.483319i −0.971147 0.238480i \(-0.923351\pi\)
0.692103 + 0.721799i \(0.256684\pi\)
\(570\) 5182.11 + 8975.67i 0.380797 + 0.659560i
\(571\) 165.624 + 286.869i 0.0121386 + 0.0210247i 0.872031 0.489451i \(-0.162803\pi\)
−0.859892 + 0.510476i \(0.829469\pi\)
\(572\) −952.239 + 1649.33i −0.0696068 + 0.120563i
\(573\) −5723.31 −0.417268
\(574\) 2649.72 + 1997.48i 0.192678 + 0.145250i
\(575\) 29573.2 2.14485
\(576\) 3744.73 6486.06i 0.270886 0.469188i
\(577\) −1019.06 1765.06i −0.0735248 0.127349i 0.826919 0.562321i \(-0.190091\pi\)
−0.900444 + 0.434972i \(0.856758\pi\)
\(578\) −4728.57 8190.13i −0.340281 0.589385i
\(579\) 3599.89 6235.19i 0.258387 0.447540i
\(580\) 42533.6 3.04502
\(581\) −741.275 + 6027.93i −0.0529316 + 0.430431i
\(582\) 9869.26 0.702911
\(583\) 2084.58 3610.60i 0.148087 0.256494i
\(584\) 6603.72 + 11438.0i 0.467918 + 0.810457i
\(585\) 1053.52 + 1824.75i 0.0744575 + 0.128964i
\(586\) −16384.4 + 28378.6i −1.15500 + 2.00053i
\(587\) 5232.90 0.367947 0.183973 0.982931i \(-0.441104\pi\)
0.183973 + 0.982931i \(0.441104\pi\)
\(588\) −9124.74 + 9441.91i −0.639963 + 0.662207i
\(589\) 6697.36 0.468523
\(590\) −9225.88 + 15979.7i −0.643769 + 1.11504i
\(591\) 2271.47 + 3934.31i 0.158098 + 0.273834i
\(592\) 6.09477 + 10.5565i 0.000423131 + 0.000732884i
\(593\) 2860.12 4953.87i 0.198062 0.343054i −0.749838 0.661622i \(-0.769868\pi\)
0.947900 + 0.318568i \(0.103202\pi\)
\(594\) −1401.73 −0.0968244
\(595\) 2152.10 17500.5i 0.148282 1.20580i
\(596\) 24165.5 1.66083
\(597\) 2051.67 3553.59i 0.140652 0.243616i
\(598\) −4538.41 7860.75i −0.310350 0.537542i
\(599\) −9044.21 15665.0i −0.616922 1.06854i −0.990044 0.140758i \(-0.955046\pi\)
0.373122 0.927782i \(-0.378287\pi\)
\(600\) −6326.61 + 10958.0i −0.430471 + 0.745598i
\(601\) −1821.43 −0.123623 −0.0618117 0.998088i \(-0.519688\pi\)
−0.0618117 + 0.998088i \(0.519688\pi\)
\(602\) −28937.1 21814.1i −1.95911 1.47687i
\(603\) 1308.90 0.0883955
\(604\) 12836.0 22232.6i 0.864719 1.49774i
\(605\) 10734.4 + 18592.5i 0.721348 + 1.24941i
\(606\) −10379.4 17977.7i −0.695769 1.20511i
\(607\) −1186.10 + 2054.39i −0.0793120 + 0.137372i −0.902953 0.429739i \(-0.858606\pi\)
0.823641 + 0.567111i \(0.191939\pi\)
\(608\) −7990.26 −0.532974
\(609\) 9538.76 4046.87i 0.634696 0.269273i
\(610\) −53094.7 −3.52416
\(611\) 138.760 240.339i 0.00918760 0.0159134i
\(612\) −3058.72 5297.87i −0.202029 0.349924i
\(613\) −4862.54 8422.16i −0.320385 0.554923i 0.660182 0.751105i \(-0.270479\pi\)
−0.980567 + 0.196182i \(0.937146\pi\)
\(614\) 1233.30 2136.15i 0.0810621 0.140404i
\(615\) 2108.48 0.138248
\(616\) −4213.65 + 1787.66i −0.275605 + 0.116927i
\(617\) −5329.51 −0.347744 −0.173872 0.984768i \(-0.555628\pi\)
−0.173872 + 0.984768i \(0.555628\pi\)
\(618\) 7189.15 12452.0i 0.467945 0.810504i
\(619\) 7988.29 + 13836.1i 0.518702 + 0.898418i 0.999764 + 0.0217314i \(0.00691786\pi\)
−0.481062 + 0.876687i \(0.659749\pi\)
\(620\) 18003.2 + 31182.4i 1.16617 + 2.01986i
\(621\) 2053.15 3556.17i 0.132673 0.229797i
\(622\) −246.120 −0.0158658
\(623\) −556.236 419.316i −0.0357706 0.0269656i
\(624\) −127.874 −0.00820361
\(625\) 1060.03 1836.03i 0.0678420 0.117506i
\(626\) 8595.45 + 14887.8i 0.548791 + 0.950535i
\(627\) 725.049 + 1255.82i 0.0461813 + 0.0799883i
\(628\) 24426.7 42308.4i 1.55212 2.68836i
\(629\) 199.533 0.0126485
\(630\) −1656.77 + 13472.6i −0.104774 + 0.852002i
\(631\) −4199.98 −0.264974 −0.132487 0.991185i \(-0.542296\pi\)
−0.132487 + 0.991185i \(0.542296\pi\)
\(632\) 9871.73 17098.3i 0.621324 1.07616i
\(633\) 6453.78 + 11178.3i 0.405237 + 0.701891i
\(634\) 3916.74 + 6783.99i 0.245352 + 0.424963i
\(635\) −8711.19 + 15088.2i −0.544399 + 0.942926i
\(636\) −14007.3 −0.873312
\(637\) 4358.98 + 1088.54i 0.271129 + 0.0677072i
\(638\) 9681.97 0.600804
\(639\) 1660.33 2875.77i 0.102788 0.178034i
\(640\) −20418.6 35366.0i −1.26112 2.18432i
\(641\) −1324.25 2293.67i −0.0815988 0.141333i 0.822338 0.568999i \(-0.192669\pi\)
−0.903937 + 0.427666i \(0.859336\pi\)
\(642\) −5238.82 + 9073.91i −0.322056 + 0.557817i
\(643\) 13.4305 0.000823715 0.000411857 1.00000i \(-0.499869\pi\)
0.000411857 1.00000i \(0.499869\pi\)
\(644\) 4386.86 35673.2i 0.268426 2.18280i
\(645\) −23026.3 −1.40568
\(646\) −5148.06 + 8916.70i −0.313541 + 0.543070i
\(647\) −5812.07 10066.8i −0.353162 0.611695i 0.633639 0.773628i \(-0.281560\pi\)
−0.986802 + 0.161934i \(0.948227\pi\)
\(648\) 878.463 + 1521.54i 0.0532551 + 0.0922405i
\(649\) −1290.83 + 2235.78i −0.0780732 + 0.135227i
\(650\) 11605.3 0.700305
\(651\) 7004.32 + 5280.18i 0.421691 + 0.317890i
\(652\) −44779.8 −2.68974
\(653\) 14258.3 24696.1i 0.854471 1.47999i −0.0226638 0.999743i \(-0.507215\pi\)
0.877135 0.480244i \(-0.159452\pi\)
\(654\) 9753.23 + 16893.1i 0.583152 + 1.01005i
\(655\) 16020.7 + 27748.6i 0.955694 + 1.65531i
\(656\) −63.9809 + 110.818i −0.00380798 + 0.00659561i
\(657\) 5480.15 0.325420
\(658\) 1645.86 698.265i 0.0975111 0.0413696i
\(659\) 18048.6 1.06688 0.533440 0.845838i \(-0.320899\pi\)
0.533440 + 0.845838i \(0.320899\pi\)
\(660\) −3898.01 + 6751.54i −0.229893 + 0.398187i
\(661\) −8920.72 15451.1i −0.524926 0.909198i −0.999579 0.0290250i \(-0.990760\pi\)
0.474653 0.880173i \(-0.342574\pi\)
\(662\) 19155.5 + 33178.2i 1.12462 + 1.94790i
\(663\) −1046.60 + 1812.76i −0.0613069 + 0.106187i
\(664\) 7112.94 0.415716
\(665\) 12927.2 5484.42i 0.753826 0.319815i
\(666\) −153.608 −0.00893725
\(667\) −14181.5 + 24563.0i −0.823251 + 1.42591i
\(668\) 2188.47 + 3790.55i 0.126758 + 0.219552i
\(669\) −2245.78 3889.80i −0.129786 0.224796i
\(670\) 5921.81 10256.9i 0.341462 0.591430i
\(671\) −7428.68 −0.427394
\(672\) −8356.47 6299.49i −0.479699 0.361619i
\(673\) −6826.13 −0.390978 −0.195489 0.980706i \(-0.562629\pi\)
−0.195489 + 0.980706i \(0.562629\pi\)
\(674\) 6354.89 11007.0i 0.363177 0.629041i
\(675\) 2625.09 + 4546.80i 0.149689 + 0.259269i
\(676\) 12922.7 + 22382.8i 0.735246 + 1.27348i
\(677\) 10643.4 18435.0i 0.604225 1.04655i −0.387949 0.921681i \(-0.626816\pi\)
0.992173 0.124867i \(-0.0398505\pi\)
\(678\) 4955.92 0.280724
\(679\) 1632.09 13271.9i 0.0922443 0.750115i
\(680\) −20650.6 −1.16458
\(681\) 2404.99 4165.56i 0.135329 0.234397i
\(682\) 4098.08 + 7098.08i 0.230093 + 0.398533i
\(683\) 10348.4 + 17924.0i 0.579753 + 1.00416i 0.995507 + 0.0946842i \(0.0301841\pi\)
−0.415755 + 0.909477i \(0.636483\pi\)
\(684\) 2435.98 4219.24i 0.136172 0.235858i
\(685\) 30105.9 1.67925
\(686\) 18202.5 + 22503.9i 1.01308 + 1.25248i
\(687\) −3031.56 −0.168357
\(688\) 698.722 1210.22i 0.0387188 0.0670629i
\(689\) 2396.43 + 4150.74i 0.132506 + 0.229507i
\(690\) −18578.0 32178.1i −1.02501 1.77536i
\(691\) −15671.0 + 27142.9i −0.862738 + 1.49431i 0.00653825 + 0.999979i \(0.497919\pi\)
−0.869276 + 0.494327i \(0.835415\pi\)
\(692\) −53430.8 −2.93517
\(693\) −231.805 + 1885.00i −0.0127064 + 0.103327i
\(694\) 15819.5 0.865276
\(695\) −2815.83 + 4877.16i −0.153684 + 0.266189i
\(696\) −6067.69 10509.5i −0.330453 0.572361i
\(697\) 1047.32 + 1814.01i 0.0569153 + 0.0985801i
\(698\) −15095.5 + 26146.2i −0.818587 + 1.41783i
\(699\) −594.651 −0.0321770
\(700\) 36695.5 + 27662.7i 1.98137 + 1.49365i
\(701\) −9213.32 −0.496408 −0.248204 0.968708i \(-0.579840\pi\)
−0.248204 + 0.968708i \(0.579840\pi\)
\(702\) 805.712 1395.53i 0.0433185 0.0750299i
\(703\) 79.4544 + 137.619i 0.00426270 + 0.00738322i
\(704\) −4740.89 8211.46i −0.253805 0.439604i
\(705\) 568.016 983.833i 0.0303443 0.0525578i
\(706\) −43141.5 −2.29979
\(707\) −25892.4 + 10985.0i −1.37734 + 0.584345i
\(708\) 8673.71 0.460421
\(709\) −7258.27 + 12571.7i −0.384471 + 0.665923i −0.991696 0.128607i \(-0.958949\pi\)
0.607225 + 0.794530i \(0.292283\pi\)
\(710\) −15023.5 26021.6i −0.794118 1.37545i
\(711\) −4096.07 7094.60i −0.216054 0.374217i
\(712\) −407.908 + 706.518i −0.0214705 + 0.0371880i
\(713\) −24010.3 −1.26114
\(714\) −12413.9 + 5266.66i −0.650671 + 0.276050i
\(715\) 2667.54 0.139525
\(716\) 12570.9 21773.4i 0.656140 1.13647i
\(717\) −1801.78 3120.78i −0.0938477 0.162549i
\(718\) −14306.0 24778.7i −0.743585 1.28793i
\(719\) −12941.2 + 22414.8i −0.671246 + 1.16263i 0.306306 + 0.951933i \(0.400907\pi\)
−0.977551 + 0.210698i \(0.932426\pi\)
\(720\) −523.454 −0.0270944
\(721\) −15556.2 11726.9i −0.803525 0.605734i
\(722\) 23052.3 1.18825
\(723\) −4099.04 + 7099.74i −0.210850 + 0.365204i
\(724\) 23052.4 + 39928.0i 1.18334 + 2.04960i
\(725\) −18132.0 31405.5i −0.928833 1.60879i
\(726\) 8209.48 14219.2i 0.419673 0.726894i
\(727\) 32181.2 1.64172 0.820862 0.571127i \(-0.193494\pi\)
0.820862 + 0.571127i \(0.193494\pi\)
\(728\) 642.237 5222.56i 0.0326963 0.265881i
\(729\) 729.000 0.0370370
\(730\) 24793.7 42943.9i 1.25706 2.17730i
\(731\) −11437.5 19810.4i −0.578704 1.00234i
\(732\) 12479.2 + 21614.7i 0.630117 + 1.09139i
\(733\) −10418.1 + 18044.6i −0.524966 + 0.909268i 0.474611 + 0.880195i \(0.342589\pi\)
−0.999577 + 0.0290722i \(0.990745\pi\)
\(734\) 49335.5 2.48094
\(735\) 17843.6 + 4455.95i 0.895469 + 0.223620i
\(736\) 28645.4 1.43462
\(737\) 828.544 1435.08i 0.0414109 0.0717257i
\(738\) −806.265 1396.49i −0.0402155 0.0696553i
\(739\) −13217.4 22893.3i −0.657931 1.13957i −0.981150 0.193246i \(-0.938098\pi\)
0.323219 0.946324i \(-0.395235\pi\)
\(740\) −427.163 + 739.867i −0.0212200 + 0.0367541i
\(741\) −1667.03 −0.0826447
\(742\) −3768.64 + 30646.0i −0.186457 + 1.51624i
\(743\) 9954.69 0.491524 0.245762 0.969330i \(-0.420962\pi\)
0.245762 + 0.969330i \(0.420962\pi\)
\(744\) 5136.53 8896.73i 0.253111 0.438401i
\(745\) −16923.9 29313.1i −0.832274 1.44154i
\(746\) 11935.9 + 20673.6i 0.585798 + 1.01463i
\(747\) 1475.68 2555.96i 0.0722790 0.125191i
\(748\) −7744.79 −0.378580
\(749\) 11336.0 + 8545.57i 0.553014 + 0.416887i
\(750\) 16967.7 0.826098
\(751\) 16602.3 28756.0i 0.806692 1.39723i −0.108451 0.994102i \(-0.534589\pi\)
0.915143 0.403129i \(-0.132077\pi\)
\(752\) 34.4723 + 59.7078i 0.00167164 + 0.00289537i
\(753\) 11348.7 + 19656.6i 0.549231 + 0.951295i
\(754\) −5565.18 + 9639.17i −0.268796 + 0.465568i
\(755\) −35958.1 −1.73331
\(756\) 5874.05 2492.10i 0.282589 0.119890i
\(757\) 1964.06 0.0942998 0.0471499 0.998888i \(-0.484986\pi\)
0.0471499 + 0.998888i \(0.484986\pi\)
\(758\) −25174.8 + 43604.0i −1.20632 + 2.08941i
\(759\) −2599.33 4502.17i −0.124308 0.215307i
\(760\) −8223.09 14242.8i −0.392477 0.679791i
\(761\) 19276.9 33388.6i 0.918248 1.59045i 0.116174 0.993229i \(-0.462937\pi\)
0.802075 0.597224i \(-0.203730\pi\)
\(762\) 13324.3 0.633450
\(763\) 24330.2 10322.2i 1.15441 0.489764i
\(764\) 24344.0 1.15280
\(765\) −4284.26 + 7420.56i −0.202481 + 0.350707i
\(766\) −23848.1 41306.1i −1.12489 1.94837i
\(767\) −1483.93 2570.25i −0.0698588 0.120999i
\(768\) −5629.83 + 9751.15i −0.264517 + 0.458156i
\(769\) −19715.0 −0.924501 −0.462251 0.886749i \(-0.652958\pi\)
−0.462251 + 0.886749i \(0.652958\pi\)
\(770\) 13722.6 + 10344.8i 0.642246 + 0.484155i
\(771\) −15026.0 −0.701880
\(772\) −15312.1 + 26521.3i −0.713853 + 1.23643i
\(773\) 7350.34 + 12731.2i 0.342010 + 0.592378i 0.984806 0.173659i \(-0.0555591\pi\)
−0.642796 + 0.766037i \(0.722226\pi\)
\(774\) 8805.06 + 15250.8i 0.408904 + 0.708242i
\(775\) 15349.4 26585.9i 0.711440 1.23225i
\(776\) −15660.8 −0.724471
\(777\) −25.4024 + 206.568i −0.00117285 + 0.00953744i
\(778\) 52917.8 2.43856
\(779\) −834.086 + 1444.68i −0.0383623 + 0.0664454i
\(780\) −4481.13 7761.55i −0.205705 0.356292i
\(781\) −2102.00 3640.78i −0.0963068 0.166808i
\(782\) 18456.0 31966.7i 0.843970 1.46180i
\(783\) −5035.32 −0.229818
\(784\) −775.650 + 802.612i −0.0353339 + 0.0365621i
\(785\) −68427.6 −3.11119
\(786\) 12252.3 21221.6i 0.556012 0.963041i
\(787\) 11959.3 + 20714.1i 0.541681 + 0.938218i 0.998808 + 0.0488169i \(0.0155451\pi\)
−0.457127 + 0.889401i \(0.651122\pi\)
\(788\) −9661.69 16734.5i −0.436781 0.756527i
\(789\) −9373.21 + 16234.9i −0.422934 + 0.732544i
\(790\) −74126.9 −3.33837
\(791\) 819.566 6664.58i 0.0368400 0.299577i
\(792\) 2224.30 0.0997942
\(793\) 4269.99 7395.84i 0.191213 0.331191i
\(794\) −15280.5 26466.5i −0.682976 1.18295i
\(795\) 9809.82 + 16991.1i 0.437633 + 0.758003i
\(796\) −8726.75 + 15115.2i −0.388582 + 0.673044i
\(797\) 38252.7 1.70010 0.850051 0.526700i \(-0.176571\pi\)
0.850051 + 0.526700i \(0.176571\pi\)
\(798\) −8575.68 6464.74i −0.380421 0.286779i
\(799\) 1128.57 0.0499698
\(800\) −18312.5 + 31718.2i −0.809307 + 1.40176i
\(801\) 169.253 + 293.155i 0.00746600 + 0.0129315i
\(802\) 12590.1 + 21806.7i 0.554329 + 0.960126i
\(803\) 3468.98 6008.45i 0.152450 0.264052i
\(804\) −5567.39 −0.244212
\(805\) −46344.4 + 19661.9i −2.02910 + 0.860857i
\(806\) −9422.27 −0.411769
\(807\) −5382.67 + 9323.06i −0.234794 + 0.406676i
\(808\) 16470.3 + 28527.5i 0.717110 + 1.24207i
\(809\) 15717.8 + 27224.0i 0.683075 + 1.18312i 0.974038 + 0.226386i \(0.0726912\pi\)
−0.290962 + 0.956734i \(0.593975\pi\)
\(810\) 3298.19 5712.64i 0.143070 0.247804i
\(811\) 11467.0 0.496501 0.248250 0.968696i \(-0.420144\pi\)
0.248250 + 0.968696i \(0.420144\pi\)
\(812\) −40573.0 + 17213.3i −1.75349 + 0.743928i
\(813\) 5949.43 0.256649
\(814\) −97.2354 + 168.417i −0.00418686 + 0.00725185i
\(815\) 31360.8 + 54318.6i 1.34788 + 2.33460i
\(816\) −260.007 450.346i −0.0111545 0.0193202i
\(817\) 9108.88 15777.1i 0.390061 0.675605i
\(818\) 6009.42 0.256864
\(819\) −1743.43 1314.28i −0.0743838 0.0560740i
\(820\) −8968.42 −0.381940
\(821\) 2515.29 4356.60i 0.106923 0.185197i −0.807599 0.589732i \(-0.799233\pi\)
0.914522 + 0.404535i \(0.132567\pi\)
\(822\) −11512.2 19939.8i −0.488485 0.846081i
\(823\) 6992.59 + 12111.5i 0.296168 + 0.512978i 0.975256 0.221079i \(-0.0709578\pi\)
−0.679088 + 0.734057i \(0.737625\pi\)
\(824\) −11407.9 + 19759.1i −0.482298 + 0.835364i
\(825\) 6646.83 0.280500
\(826\) 2333.65 18976.8i 0.0983025 0.799380i
\(827\) −13939.5 −0.586125 −0.293063 0.956093i \(-0.594674\pi\)
−0.293063 + 0.956093i \(0.594674\pi\)
\(828\) −8733.07 + 15126.1i −0.366540 + 0.634866i
\(829\) 10052.2 + 17410.9i 0.421143 + 0.729441i 0.996052 0.0887769i \(-0.0282958\pi\)
−0.574909 + 0.818218i \(0.694962\pi\)
\(830\) −13352.8 23127.7i −0.558411 0.967197i
\(831\) 11045.9 19132.0i 0.461103 0.798654i
\(832\) 10900.2 0.454203
\(833\) 5029.55 + 17564.8i 0.209200 + 0.730593i
\(834\) 4306.99 0.178823
\(835\) 3065.33 5309.31i 0.127042 0.220043i
\(836\) −3083.99 5341.62i −0.127586 0.220986i
\(837\) −2131.30 3691.51i −0.0880148 0.152446i
\(838\) 8329.33 14426.8i 0.343356 0.594710i
\(839\) 15949.5 0.656302 0.328151 0.944625i \(-0.393575\pi\)
0.328151 + 0.944625i \(0.393575\pi\)
\(840\) 2629.01 21378.6i 0.107987 0.878135i
\(841\) 10390.8 0.426043
\(842\) −308.440 + 534.235i −0.0126242 + 0.0218657i
\(843\) −7968.07 13801.1i −0.325546 0.563861i
\(844\) −27451.1 47546.7i −1.11956 1.93913i
\(845\) 18100.4 31350.8i 0.736891 1.27633i
\(846\) −868.817 −0.0353080
\(847\) −17764.0 13391.3i −0.720635 0.543248i
\(848\) −1190.70 −0.0482177
\(849\) −1637.65 + 2836.49i −0.0662001 + 0.114662i
\(850\) 23597.2 + 40871.6i 0.952210 + 1.64928i
\(851\) −284.847 493.369i −0.0114741 0.0198737i
\(852\) −7062.19 + 12232.1i −0.283975 + 0.491859i
\(853\) 11802.0 0.473730 0.236865 0.971543i \(-0.423880\pi\)
0.236865 + 0.971543i \(0.423880\pi\)
\(854\) 50647.3 21487.4i 2.02941 0.860986i
\(855\) −6824.00 −0.272954
\(856\) 8313.09 14398.7i 0.331934 0.574927i
\(857\) −4797.64 8309.76i −0.191230 0.331220i 0.754428 0.656383i \(-0.227914\pi\)
−0.945658 + 0.325162i \(0.894581\pi\)
\(858\) −1020.04 1766.77i −0.0405871 0.0702989i
\(859\) −10920.4 + 18914.7i −0.433760 + 0.751295i −0.997194 0.0748666i \(-0.976147\pi\)
0.563433 + 0.826162i \(0.309480\pi\)
\(860\) 97942.3 3.88350
\(861\) −2011.29 + 853.302i −0.0796106 + 0.0337752i
\(862\) −38224.1 −1.51035
\(863\) 13265.8 22977.1i 0.523260 0.906313i −0.476374 0.879243i \(-0.658049\pi\)
0.999634 0.0270699i \(-0.00861768\pi\)
\(864\) 2542.73 + 4404.14i 0.100122 + 0.173417i
\(865\) 37419.5 + 64812.4i 1.47087 + 2.54762i
\(866\) −18779.1 + 32526.4i −0.736882 + 1.27632i
\(867\) 6226.77 0.243912
\(868\) −29792.8 22459.2i −1.16502 0.878242i
\(869\) −10371.4 −0.404862
\(870\) −22781.2 + 39458.1i −0.887762 + 1.53765i
\(871\) 952.491 + 1649.76i 0.0370539 + 0.0641792i
\(872\) −15476.7 26806.4i −0.601039 1.04103i
\(873\) −3249.06 + 5627.53i −0.125961 + 0.218171i
\(874\) 29396.8 1.13771
\(875\) 2805.97 22817.7i 0.108410 0.881576i
\(876\) −23309.8 −0.899046
\(877\) 3416.23 5917.09i 0.131537 0.227829i −0.792732 0.609570i \(-0.791342\pi\)
0.924269 + 0.381741i \(0.124675\pi\)
\(878\) −41652.4 72144.1i −1.60103 2.77306i
\(879\) −10787.8 18685.0i −0.413951 0.716985i
\(880\) −331.351 + 573.916i −0.0126930 + 0.0219849i
\(881\) −3994.77 −0.152766 −0.0763832 0.997079i \(-0.524337\pi\)
−0.0763832 + 0.997079i \(0.524337\pi\)
\(882\) −3871.95 13522.1i −0.147818 0.516227i
\(883\) 13727.0 0.523161 0.261580 0.965182i \(-0.415756\pi\)
0.261580 + 0.965182i \(0.415756\pi\)
\(884\) 4451.69 7710.56i 0.169374 0.293364i
\(885\) −6074.50 10521.3i −0.230726 0.399628i
\(886\) 2757.59 + 4776.29i 0.104563 + 0.181109i
\(887\) −22059.7 + 38208.5i −0.835054 + 1.44636i 0.0589333 + 0.998262i \(0.481230\pi\)
−0.893987 + 0.448093i \(0.852103\pi\)
\(888\) 243.750 0.00921138
\(889\) 2203.46 17918.1i 0.0831288 0.675990i
\(890\) 3062.99 0.115361
\(891\) 461.463 799.278i 0.0173508 0.0300525i
\(892\) 9552.40 + 16545.2i 0.358563 + 0.621049i
\(893\) 449.398 + 778.380i 0.0168405 + 0.0291685i
\(894\) −12943.1 + 22418.1i −0.484208 + 0.838672i
\(895\) −35215.3 −1.31522
\(896\) 33790.0 + 25472.4i 1.25987 + 0.949749i
\(897\) 5976.35 0.222458
\(898\) −18911.6 + 32755.8i −0.702769 + 1.21723i
\(899\) 14721.2 + 25497.9i 0.546140 + 0.945942i
\(900\) −11165.8 19339.8i −0.413549 0.716287i
\(901\) −9745.37 + 16879.5i −0.360339 + 0.624125i
\(902\) −2041.49 −0.0753594
\(903\) 21964.9 9318.74i 0.809465 0.343420i
\(904\) −7864.18 −0.289335
\(905\) 32288.9 55925.9i 1.18599 2.05419i
\(906\) 13750.0 + 23815.7i 0.504210 + 0.873317i
\(907\) −18452.9 31961.4i −0.675545 1.17008i −0.976309 0.216380i \(-0.930575\pi\)
0.300764 0.953698i \(-0.402758\pi\)
\(908\) −10229.6 + 17718.2i −0.373878 + 0.647575i
\(909\) 13668.1 0.498725
\(910\) −18186.8 + 7715.83i −0.662512 + 0.281074i
\(911\) −3169.56 −0.115271 −0.0576356 0.998338i \(-0.518356\pi\)
−0.0576356 + 0.998338i \(0.518356\pi\)
\(912\) 207.071 358.657i 0.00751842 0.0130223i
\(913\) −1868.24 3235.88i −0.0677214 0.117297i
\(914\) −28007.4 48510.3i −1.01357 1.75556i
\(915\) 17479.3 30275.0i 0.631527 1.09384i
\(916\) 12894.7 0.465124
\(917\) −26512.0 19986.0i −0.954749 0.719733i
\(918\) 6553.05 0.235602
\(919\) −4363.50 + 7557.80i −0.156625 + 0.271283i −0.933650 0.358188i \(-0.883395\pi\)
0.777024 + 0.629470i \(0.216728\pi\)
\(920\) 29480.1 + 51061.0i 1.05645 + 1.82982i
\(921\) 812.032 + 1406.48i 0.0290525 + 0.0503204i
\(922\) 44274.8 76686.2i 1.58147 2.73918i
\(923\) 4832.91 0.172348
\(924\) 985.983 8017.85i 0.0351044 0.285463i
\(925\) 728.392 0.0258912
\(926\) −28457.1 + 49289.1i −1.00989 + 1.74918i
\(927\) 4733.47 + 8198.62i 0.167711 + 0.290483i
\(928\) −17563.1 30420.1i −0.621267 1.07607i
\(929\) −9702.54 + 16805.3i −0.342659 + 0.593502i −0.984926 0.172979i \(-0.944661\pi\)
0.642267 + 0.766481i \(0.277994\pi\)
\(930\) −38570.2 −1.35997
\(931\) −10111.8 + 10463.2i −0.355961 + 0.368334i
\(932\) 2529.34 0.0888963
\(933\) 81.0252 140.340i 0.00284314 0.00492446i
\(934\) 7712.04 + 13357.6i 0.270177 + 0.467961i
\(935\) 5423.95 + 9394.55i 0.189713 + 0.328593i
\(936\) −1278.52 + 2214.47i −0.0446472 + 0.0773313i
\(937\) −615.692 −0.0214662 −0.0107331 0.999942i \(-0.503417\pi\)
−0.0107331 + 0.999942i \(0.503417\pi\)
\(938\) −1497.90 + 12180.6i −0.0521407 + 0.424000i
\(939\) −11318.8 −0.393372
\(940\) −2416.05 + 4184.72i −0.0838329 + 0.145203i
\(941\) 14801.0 + 25636.1i 0.512751 + 0.888111i 0.999891 + 0.0147865i \(0.00470687\pi\)
−0.487140 + 0.873324i \(0.661960\pi\)
\(942\) 26166.1 + 45321.0i 0.905029 + 1.56756i
\(943\) 2990.23 5179.23i 0.103261 0.178854i
\(944\) 737.310 0.0254210
\(945\) −7136.76 5380.02i −0.245671 0.185198i
\(946\) 22294.7 0.766240
\(947\) −6768.71 + 11723.8i −0.232264 + 0.402292i −0.958474 0.285180i \(-0.907947\pi\)
0.726210 + 0.687473i \(0.241280\pi\)
\(948\) 17422.6 + 30176.8i 0.596898 + 1.03386i
\(949\) 3987.93 + 6907.29i 0.136411 + 0.236270i
\(950\) −18792.9 + 32550.3i −0.641813 + 1.11165i
\(951\) −5157.71 −0.175868
\(952\) 19698.7 8357.27i 0.670628 0.284518i
\(953\) 33468.5 1.13762 0.568810 0.822469i \(-0.307404\pi\)
0.568810 + 0.822469i \(0.307404\pi\)
\(954\) 7502.37 12994.5i 0.254610 0.440998i
\(955\) −17049.0 29529.7i −0.577688 1.00058i
\(956\) 7663.86 + 13274.2i 0.259275 + 0.449078i
\(957\) −3187.40 + 5520.74i −0.107664 + 0.186479i
\(958\) −27244.4 −0.918817
\(959\) −28718.2 + 12183.8i −0.967005 + 0.410257i
\(960\) 44620.2 1.50011
\(961\) 2433.44 4214.85i 0.0816838 0.141480i
\(962\) −111.781 193.611i −0.00374634 0.00648885i
\(963\) −3449.34 5974.44i −0.115424 0.199921i
\(964\) 17435.2 30198.7i 0.582521 1.00896i
\(965\) 42894.4 1.43090
\(966\) 30744.1 + 23176.3i 1.02399 + 0.771932i
\(967\) −55733.5 −1.85343 −0.926715 0.375764i \(-0.877380\pi\)
−0.926715 + 0.375764i \(0.877380\pi\)
\(968\) −13027.0 + 22563.4i −0.432545 + 0.749190i
\(969\) −3389.58 5870.93i −0.112373 0.194635i
\(970\) 29399.2 + 50920.9i 0.973146 + 1.68554i
\(971\) 9745.65 16880.0i 0.322094 0.557882i −0.658826 0.752295i \(-0.728947\pi\)
0.980920 + 0.194413i \(0.0622801\pi\)
\(972\) −3100.79 −0.102323
\(973\) 712.251 5791.91i 0.0234673 0.190832i
\(974\) 5080.18 0.167125
\(975\) −3820.58 + 6617.44i −0.125494 + 0.217362i
\(976\) 1060.80 + 1837.36i 0.0347903 + 0.0602586i
\(977\) 3120.78 + 5405.35i 0.102193 + 0.177004i 0.912588 0.408881i \(-0.134081\pi\)
−0.810395 + 0.585884i \(0.800747\pi\)
\(978\) 23984.2 41541.8i 0.784182 1.35824i
\(979\) 428.554 0.0139905
\(980\) −75897.4 18953.4i −2.47393 0.617799i
\(981\) −12843.4 −0.418001
\(982\) 2474.63 4286.18i 0.0804160 0.139285i
\(983\) −29847.3 51697.0i −0.968444 1.67739i −0.700062 0.714082i \(-0.746845\pi\)
−0.268382 0.963313i \(-0.586489\pi\)
\(984\) 1279.40 + 2215.99i 0.0414490 + 0.0717918i
\(985\) −13532.8 + 23439.6i −0.437758 + 0.758220i
\(986\) −45263.0 −1.46193
\(987\) −143.677 + 1168.36i −0.00463353 + 0.0376791i
\(988\) 7090.68 0.228324
\(989\) −32655.7 + 56561.3i −1.04994 + 1.81855i
\(990\) −4175.57 7232.30i −0.134049 0.232179i
\(991\) −7780.82 13476.8i −0.249411 0.431992i 0.713952 0.700195i \(-0.246904\pi\)
−0.963362 + 0.268203i \(0.913570\pi\)
\(992\) 14867.8 25751.8i 0.475860 0.824214i
\(993\) −25224.6 −0.806123
\(994\) 24861.9 + 18742.1i 0.793333 + 0.598050i
\(995\) 24446.6 0.778903
\(996\) −6276.80 + 10871.7i −0.199687 + 0.345868i
\(997\) −9942.47 17220.9i −0.315829 0.547031i 0.663785 0.747924i \(-0.268949\pi\)
−0.979613 + 0.200892i \(0.935616\pi\)
\(998\) −5042.76 8734.31i −0.159946 0.277034i
\(999\) 50.5694 87.5888i 0.00160155 0.00277396i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 21.4.e.b.16.3 yes 6
3.2 odd 2 63.4.e.c.37.1 6
4.3 odd 2 336.4.q.k.289.1 6
7.2 even 3 147.4.a.l.1.1 3
7.3 odd 6 147.4.e.n.67.3 6
7.4 even 3 inner 21.4.e.b.4.3 6
7.5 odd 6 147.4.a.m.1.1 3
7.6 odd 2 147.4.e.n.79.3 6
21.2 odd 6 441.4.a.s.1.3 3
21.5 even 6 441.4.a.t.1.3 3
21.11 odd 6 63.4.e.c.46.1 6
21.17 even 6 441.4.e.w.361.1 6
21.20 even 2 441.4.e.w.226.1 6
28.11 odd 6 336.4.q.k.193.1 6
28.19 even 6 2352.4.a.cg.1.1 3
28.23 odd 6 2352.4.a.ci.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.4.e.b.4.3 6 7.4 even 3 inner
21.4.e.b.16.3 yes 6 1.1 even 1 trivial
63.4.e.c.37.1 6 3.2 odd 2
63.4.e.c.46.1 6 21.11 odd 6
147.4.a.l.1.1 3 7.2 even 3
147.4.a.m.1.1 3 7.5 odd 6
147.4.e.n.67.3 6 7.3 odd 6
147.4.e.n.79.3 6 7.6 odd 2
336.4.q.k.193.1 6 28.11 odd 6
336.4.q.k.289.1 6 4.3 odd 2
441.4.a.s.1.3 3 21.2 odd 6
441.4.a.t.1.3 3 21.5 even 6
441.4.e.w.226.1 6 21.20 even 2
441.4.e.w.361.1 6 21.17 even 6
2352.4.a.cg.1.1 3 28.19 even 6
2352.4.a.ci.1.3 3 28.23 odd 6