Properties

Label 441.4.e.w.361.1
Level $441$
Weight $4$
Character 441.361
Analytic conductor $26.020$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,4,Mod(226,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.226");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0198423125\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.9924270768.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 25x^{4} + 12x^{3} + 582x^{2} - 144x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(-2.27818 - 3.94593i\) of defining polynomial
Character \(\chi\) \(=\) 441.361
Dual form 441.4.e.w.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.27818 - 3.94593i) q^{2} +(-6.38024 + 11.0509i) q^{4} +(-8.93660 - 15.4786i) q^{5} +21.6905 q^{8} +(-40.7184 + 70.5264i) q^{10} +(-5.69708 + 9.86762i) q^{11} +13.0987 q^{13} +(1.62706 + 2.81815i) q^{16} +(-26.6337 + 46.1309i) q^{17} +(-21.2111 - 36.7388i) q^{19} +228.071 q^{20} +51.9159 q^{22} +(76.0427 + 131.710i) q^{23} +(-97.2257 + 168.400i) q^{25} +(-29.8412 - 51.6864i) q^{26} -186.493 q^{29} +(-78.9369 + 136.723i) q^{31} +(94.1753 - 163.116i) q^{32} +242.706 q^{34} +(-1.87294 - 3.24403i) q^{37} +(-96.6457 + 167.395i) q^{38} +(-193.839 - 335.739i) q^{40} -39.3230 q^{41} +429.439 q^{43} +(-72.6974 - 125.916i) q^{44} +(346.478 - 600.118i) q^{46} +(-10.5934 - 18.3484i) q^{47} +885.992 q^{50} +(-83.5726 + 144.752i) q^{52} +(182.952 - 316.882i) q^{53} +203.650 q^{55} +(424.866 + 735.889i) q^{58} +(113.289 - 196.222i) q^{59} +(325.987 + 564.626i) q^{61} +719.331 q^{62} -832.161 q^{64} +(-117.058 - 202.750i) q^{65} +(-72.7166 + 125.949i) q^{67} +(-339.858 - 588.652i) q^{68} +368.962 q^{71} +(304.453 - 527.328i) q^{73} +(-8.53380 + 14.7810i) q^{74} +541.328 q^{76} +(-455.119 - 788.289i) q^{79} +(29.0808 - 50.3694i) q^{80} +(89.5850 + 155.166i) q^{82} -327.929 q^{83} +952.058 q^{85} +(-978.340 - 1694.53i) q^{86} +(-123.572 + 214.033i) q^{88} +(18.8059 + 32.5728i) q^{89} -1940.68 q^{92} +(-48.2676 + 83.6019i) q^{94} +(-379.111 + 656.640i) q^{95} -722.013 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 25 q^{4} - 11 q^{5} - 78 q^{8} - 55 q^{10} + 35 q^{11} - 124 q^{13} - 241 q^{16} - 48 q^{17} - 202 q^{19} + 878 q^{20} - 14 q^{22} + 216 q^{23} - 130 q^{25} - 274 q^{26} - 106 q^{29} - 95 q^{31}+ \cdots - 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.27818 3.94593i −0.805459 1.39510i −0.915981 0.401223i \(-0.868585\pi\)
0.110521 0.993874i \(-0.464748\pi\)
\(3\) 0 0
\(4\) −6.38024 + 11.0509i −0.797530 + 1.38136i
\(5\) −8.93660 15.4786i −0.799314 1.38445i −0.920063 0.391769i \(-0.871863\pi\)
0.120749 0.992683i \(-0.461470\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 21.6905 0.958592
\(9\) 0 0
\(10\) −40.7184 + 70.5264i −1.28763 + 2.23024i
\(11\) −5.69708 + 9.86762i −0.156158 + 0.270473i −0.933480 0.358630i \(-0.883244\pi\)
0.777322 + 0.629102i \(0.216577\pi\)
\(12\) 0 0
\(13\) 13.0987 0.279455 0.139728 0.990190i \(-0.455377\pi\)
0.139728 + 0.990190i \(0.455377\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.62706 + 2.81815i 0.0254228 + 0.0440336i
\(17\) −26.6337 + 46.1309i −0.379977 + 0.658140i −0.991059 0.133428i \(-0.957402\pi\)
0.611081 + 0.791568i \(0.290735\pi\)
\(18\) 0 0
\(19\) −21.2111 36.7388i −0.256114 0.443603i 0.709083 0.705125i \(-0.249109\pi\)
−0.965198 + 0.261522i \(0.915776\pi\)
\(20\) 228.071 2.54991
\(21\) 0 0
\(22\) 51.9159 0.503114
\(23\) 76.0427 + 131.710i 0.689391 + 1.19406i 0.972035 + 0.234836i \(0.0754553\pi\)
−0.282644 + 0.959225i \(0.591211\pi\)
\(24\) 0 0
\(25\) −97.2257 + 168.400i −0.777806 + 1.34720i
\(26\) −29.8412 51.6864i −0.225090 0.389867i
\(27\) 0 0
\(28\) 0 0
\(29\) −186.493 −1.19417 −0.597085 0.802178i \(-0.703675\pi\)
−0.597085 + 0.802178i \(0.703675\pi\)
\(30\) 0 0
\(31\) −78.9369 + 136.723i −0.457338 + 0.792133i −0.998819 0.0485801i \(-0.984530\pi\)
0.541481 + 0.840713i \(0.317864\pi\)
\(32\) 94.1753 163.116i 0.520250 0.901099i
\(33\) 0 0
\(34\) 242.706 1.22423
\(35\) 0 0
\(36\) 0 0
\(37\) −1.87294 3.24403i −0.00832188 0.0144139i 0.861834 0.507190i \(-0.169316\pi\)
−0.870156 + 0.492776i \(0.835982\pi\)
\(38\) −96.6457 + 167.395i −0.412579 + 0.714608i
\(39\) 0 0
\(40\) −193.839 335.739i −0.766216 1.32712i
\(41\) −39.3230 −0.149786 −0.0748930 0.997192i \(-0.523862\pi\)
−0.0748930 + 0.997192i \(0.523862\pi\)
\(42\) 0 0
\(43\) 429.439 1.52300 0.761498 0.648168i \(-0.224464\pi\)
0.761498 + 0.648168i \(0.224464\pi\)
\(44\) −72.6974 125.916i −0.249080 0.431420i
\(45\) 0 0
\(46\) 346.478 600.118i 1.11055 1.92354i
\(47\) −10.5934 18.3484i −0.0328768 0.0569444i 0.849119 0.528202i \(-0.177134\pi\)
−0.881996 + 0.471258i \(0.843800\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 885.992 2.50596
\(51\) 0 0
\(52\) −83.5726 + 144.752i −0.222874 + 0.386029i
\(53\) 182.952 316.882i 0.474158 0.821266i −0.525404 0.850853i \(-0.676086\pi\)
0.999562 + 0.0295866i \(0.00941909\pi\)
\(54\) 0 0
\(55\) 203.650 0.499276
\(56\) 0 0
\(57\) 0 0
\(58\) 424.866 + 735.889i 0.961856 + 1.66598i
\(59\) 113.289 196.222i 0.249982 0.432982i −0.713538 0.700616i \(-0.752909\pi\)
0.963521 + 0.267634i \(0.0862419\pi\)
\(60\) 0 0
\(61\) 325.987 + 564.626i 0.684235 + 1.18513i 0.973677 + 0.227934i \(0.0731970\pi\)
−0.289442 + 0.957196i \(0.593470\pi\)
\(62\) 719.331 1.47347
\(63\) 0 0
\(64\) −832.161 −1.62532
\(65\) −117.058 202.750i −0.223372 0.386892i
\(66\) 0 0
\(67\) −72.7166 + 125.949i −0.132593 + 0.229658i −0.924675 0.380756i \(-0.875664\pi\)
0.792082 + 0.610414i \(0.208997\pi\)
\(68\) −339.858 588.652i −0.606086 1.04977i
\(69\) 0 0
\(70\) 0 0
\(71\) 368.962 0.616728 0.308364 0.951268i \(-0.400218\pi\)
0.308364 + 0.951268i \(0.400218\pi\)
\(72\) 0 0
\(73\) 304.453 527.328i 0.488130 0.845466i −0.511777 0.859119i \(-0.671012\pi\)
0.999907 + 0.0136522i \(0.00434576\pi\)
\(74\) −8.53380 + 14.7810i −0.0134059 + 0.0232197i
\(75\) 0 0
\(76\) 541.328 0.817034
\(77\) 0 0
\(78\) 0 0
\(79\) −455.119 788.289i −0.648163 1.12265i −0.983561 0.180574i \(-0.942204\pi\)
0.335399 0.942076i \(-0.391129\pi\)
\(80\) 29.0808 50.3694i 0.0406416 0.0703933i
\(81\) 0 0
\(82\) 89.5850 + 155.166i 0.120646 + 0.208966i
\(83\) −327.929 −0.433674 −0.216837 0.976208i \(-0.569574\pi\)
−0.216837 + 0.976208i \(0.569574\pi\)
\(84\) 0 0
\(85\) 952.058 1.21489
\(86\) −978.340 1694.53i −1.22671 2.12473i
\(87\) 0 0
\(88\) −123.572 + 214.033i −0.149691 + 0.259273i
\(89\) 18.8059 + 32.5728i 0.0223980 + 0.0387945i 0.877007 0.480477i \(-0.159537\pi\)
−0.854609 + 0.519272i \(0.826203\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1940.68 −2.19924
\(93\) 0 0
\(94\) −48.2676 + 83.6019i −0.0529619 + 0.0917327i
\(95\) −379.111 + 656.640i −0.409431 + 0.709156i
\(96\) 0 0
\(97\) −722.013 −0.755766 −0.377883 0.925853i \(-0.623348\pi\)
−0.377883 + 0.925853i \(0.623348\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1240.65 2148.86i −1.24065 2.14886i
\(101\) −759.336 + 1315.21i −0.748087 + 1.29572i 0.200652 + 0.979663i \(0.435694\pi\)
−0.948739 + 0.316062i \(0.897639\pi\)
\(102\) 0 0
\(103\) −525.942 910.957i −0.503132 0.871450i −0.999993 0.00361990i \(-0.998848\pi\)
0.496862 0.867830i \(-0.334486\pi\)
\(104\) 284.116 0.267883
\(105\) 0 0
\(106\) −1667.19 −1.52766
\(107\) 383.260 + 663.826i 0.346273 + 0.599762i 0.985584 0.169186i \(-0.0541139\pi\)
−0.639312 + 0.768948i \(0.720781\pi\)
\(108\) 0 0
\(109\) 713.524 1235.86i 0.627002 1.08600i −0.361148 0.932509i \(-0.617615\pi\)
0.988150 0.153491i \(-0.0490516\pi\)
\(110\) −463.952 803.588i −0.402146 0.696538i
\(111\) 0 0
\(112\) 0 0
\(113\) −362.564 −0.301833 −0.150917 0.988546i \(-0.548222\pi\)
−0.150917 + 0.988546i \(0.548222\pi\)
\(114\) 0 0
\(115\) 1359.13 2354.08i 1.10208 1.90886i
\(116\) 1189.87 2060.92i 0.952386 1.64958i
\(117\) 0 0
\(118\) −1032.37 −0.805402
\(119\) 0 0
\(120\) 0 0
\(121\) 600.587 + 1040.25i 0.451230 + 0.781553i
\(122\) 1485.31 2572.64i 1.10225 1.90915i
\(123\) 0 0
\(124\) −1007.27 1744.65i −0.729481 1.26350i
\(125\) 1241.32 0.888216
\(126\) 0 0
\(127\) 974.777 0.681082 0.340541 0.940230i \(-0.389390\pi\)
0.340541 + 0.940230i \(0.389390\pi\)
\(128\) 1142.41 + 1978.72i 0.788875 + 1.36637i
\(129\) 0 0
\(130\) −533.357 + 923.802i −0.359835 + 0.623252i
\(131\) 896.351 + 1552.53i 0.597821 + 1.03546i 0.993142 + 0.116914i \(0.0373001\pi\)
−0.395321 + 0.918543i \(0.629367\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 662.647 0.427194
\(135\) 0 0
\(136\) −577.697 + 1000.60i −0.364243 + 0.630888i
\(137\) 842.208 1458.75i 0.525217 0.909702i −0.474352 0.880335i \(-0.657318\pi\)
0.999569 0.0293665i \(-0.00934900\pi\)
\(138\) 0 0
\(139\) −315.089 −0.192270 −0.0961350 0.995368i \(-0.530648\pi\)
−0.0961350 + 0.995368i \(0.530648\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −840.563 1455.90i −0.496750 0.860396i
\(143\) −74.6241 + 129.253i −0.0436390 + 0.0755850i
\(144\) 0 0
\(145\) 1666.62 + 2886.67i 0.954517 + 1.65327i
\(146\) −2774.40 −1.57268
\(147\) 0 0
\(148\) 47.7992 0.0265478
\(149\) 946.887 + 1640.06i 0.520617 + 0.901736i 0.999713 + 0.0239729i \(0.00763155\pi\)
−0.479095 + 0.877763i \(0.659035\pi\)
\(150\) 0 0
\(151\) 1005.92 1742.31i 0.542124 0.938986i −0.456658 0.889642i \(-0.650954\pi\)
0.998782 0.0493434i \(-0.0157129\pi\)
\(152\) −460.079 796.881i −0.245509 0.425234i
\(153\) 0 0
\(154\) 0 0
\(155\) 2821.71 1.46223
\(156\) 0 0
\(157\) −1914.25 + 3315.58i −0.973082 + 1.68543i −0.286956 + 0.957944i \(0.592643\pi\)
−0.686125 + 0.727483i \(0.740690\pi\)
\(158\) −2073.69 + 3591.73i −1.04414 + 1.80850i
\(159\) 0 0
\(160\) −3366.43 −1.66337
\(161\) 0 0
\(162\) 0 0
\(163\) 1754.63 + 3039.11i 0.843148 + 1.46038i 0.887220 + 0.461347i \(0.152634\pi\)
−0.0440718 + 0.999028i \(0.514033\pi\)
\(164\) 250.890 434.554i 0.119459 0.206909i
\(165\) 0 0
\(166\) 747.083 + 1293.99i 0.349307 + 0.605017i
\(167\) −343.008 −0.158939 −0.0794694 0.996837i \(-0.525323\pi\)
−0.0794694 + 0.996837i \(0.525323\pi\)
\(168\) 0 0
\(169\) −2025.42 −0.921905
\(170\) −2168.96 3756.75i −0.978541 1.69488i
\(171\) 0 0
\(172\) −2739.92 + 4745.68i −1.21463 + 2.10381i
\(173\) 2093.61 + 3626.23i 0.920081 + 1.59363i 0.799288 + 0.600949i \(0.205210\pi\)
0.120793 + 0.992678i \(0.461456\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −37.0779 −0.0158798
\(177\) 0 0
\(178\) 85.6866 148.413i 0.0360813 0.0624947i
\(179\) −985.143 + 1706.32i −0.411358 + 0.712493i −0.995039 0.0994906i \(-0.968279\pi\)
0.583681 + 0.811983i \(0.301612\pi\)
\(180\) 0 0
\(181\) 3613.10 1.48376 0.741878 0.670535i \(-0.233935\pi\)
0.741878 + 0.670535i \(0.233935\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1649.40 + 2856.85i 0.660845 + 1.14462i
\(185\) −33.4755 + 57.9812i −0.0133036 + 0.0230425i
\(186\) 0 0
\(187\) −303.468 525.622i −0.118673 0.205547i
\(188\) 270.355 0.104881
\(189\) 0 0
\(190\) 3454.74 1.31912
\(191\) 953.884 + 1652.18i 0.361365 + 0.625902i 0.988186 0.153261i \(-0.0489776\pi\)
−0.626821 + 0.779163i \(0.715644\pi\)
\(192\) 0 0
\(193\) −1199.96 + 2078.40i −0.447540 + 0.775162i −0.998225 0.0595509i \(-0.981033\pi\)
0.550685 + 0.834713i \(0.314366\pi\)
\(194\) 1644.88 + 2849.01i 0.608738 + 1.05437i
\(195\) 0 0
\(196\) 0 0
\(197\) −1514.32 −0.547668 −0.273834 0.961777i \(-0.588292\pi\)
−0.273834 + 0.961777i \(0.588292\pi\)
\(198\) 0 0
\(199\) 683.889 1184.53i 0.243616 0.421955i −0.718126 0.695914i \(-0.755000\pi\)
0.961742 + 0.273958i \(0.0883330\pi\)
\(200\) −2108.87 + 3652.67i −0.745598 + 1.29141i
\(201\) 0 0
\(202\) 6919.63 2.41021
\(203\) 0 0
\(204\) 0 0
\(205\) 351.414 + 608.667i 0.119726 + 0.207371i
\(206\) −2396.38 + 4150.66i −0.810504 + 1.40383i
\(207\) 0 0
\(208\) 21.3123 + 36.9140i 0.00710453 + 0.0123054i
\(209\) 483.366 0.159977
\(210\) 0 0
\(211\) 4302.52 1.40378 0.701891 0.712285i \(-0.252339\pi\)
0.701891 + 0.712285i \(0.252339\pi\)
\(212\) 2334.55 + 4043.57i 0.756311 + 1.30997i
\(213\) 0 0
\(214\) 1746.27 3024.64i 0.557817 0.966167i
\(215\) −3837.72 6647.13i −1.21735 2.10851i
\(216\) 0 0
\(217\) 0 0
\(218\) −6502.16 −2.02010
\(219\) 0 0
\(220\) −1299.34 + 2250.51i −0.398187 + 0.689680i
\(221\) −348.866 + 604.253i −0.106187 + 0.183921i
\(222\) 0 0
\(223\) 1497.19 0.449592 0.224796 0.974406i \(-0.427828\pi\)
0.224796 + 0.974406i \(0.427828\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 825.987 + 1430.65i 0.243114 + 0.421086i
\(227\) −801.662 + 1388.52i −0.234397 + 0.405988i −0.959097 0.283076i \(-0.908645\pi\)
0.724700 + 0.689065i \(0.241978\pi\)
\(228\) 0 0
\(229\) 505.261 + 875.137i 0.145802 + 0.252536i 0.929672 0.368389i \(-0.120091\pi\)
−0.783870 + 0.620925i \(0.786757\pi\)
\(230\) −12385.4 −3.55072
\(231\) 0 0
\(232\) −4045.13 −1.14472
\(233\) 99.1084 + 171.661i 0.0278661 + 0.0482656i 0.879622 0.475673i \(-0.157795\pi\)
−0.851756 + 0.523939i \(0.824462\pi\)
\(234\) 0 0
\(235\) −189.339 + 327.944i −0.0525578 + 0.0910329i
\(236\) 1445.62 + 2503.88i 0.398736 + 0.690631i
\(237\) 0 0
\(238\) 0 0
\(239\) 1201.19 0.325098 0.162549 0.986700i \(-0.448028\pi\)
0.162549 + 0.986700i \(0.448028\pi\)
\(240\) 0 0
\(241\) −1366.35 + 2366.58i −0.365204 + 0.632551i −0.988809 0.149188i \(-0.952334\pi\)
0.623605 + 0.781739i \(0.285667\pi\)
\(242\) 2736.49 4739.74i 0.726894 1.25902i
\(243\) 0 0
\(244\) −8319.49 −2.18279
\(245\) 0 0
\(246\) 0 0
\(247\) −277.838 481.229i −0.0715724 0.123967i
\(248\) −1712.18 + 2965.58i −0.438401 + 0.759332i
\(249\) 0 0
\(250\) −2827.95 4898.16i −0.715422 1.23915i
\(251\) 7565.82 1.90259 0.951295 0.308281i \(-0.0997537\pi\)
0.951295 + 0.308281i \(0.0997537\pi\)
\(252\) 0 0
\(253\) −1732.88 −0.430615
\(254\) −2220.72 3846.40i −0.548584 0.950175i
\(255\) 0 0
\(256\) 1876.61 3250.38i 0.458156 0.793550i
\(257\) −2504.34 4337.64i −0.607846 1.05282i −0.991595 0.129382i \(-0.958701\pi\)
0.383749 0.923437i \(-0.374633\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 2987.42 0.712584
\(261\) 0 0
\(262\) 4084.10 7073.88i 0.963041 1.66804i
\(263\) −3124.40 + 5411.63i −0.732544 + 1.26880i 0.223249 + 0.974761i \(0.428334\pi\)
−0.955793 + 0.294042i \(0.905000\pi\)
\(264\) 0 0
\(265\) −6539.88 −1.51601
\(266\) 0 0
\(267\) 0 0
\(268\) −927.898 1607.17i −0.211494 0.366318i
\(269\) 1794.22 3107.69i 0.406676 0.704383i −0.587839 0.808978i \(-0.700021\pi\)
0.994515 + 0.104595i \(0.0333546\pi\)
\(270\) 0 0
\(271\) −991.571 1717.45i −0.222264 0.384973i 0.733231 0.679980i \(-0.238012\pi\)
−0.955495 + 0.295007i \(0.904678\pi\)
\(272\) −173.338 −0.0386404
\(273\) 0 0
\(274\) −7674.81 −1.69216
\(275\) −1107.80 1918.77i −0.242920 0.420751i
\(276\) 0 0
\(277\) −3681.96 + 6377.33i −0.798654 + 1.38331i 0.121838 + 0.992550i \(0.461121\pi\)
−0.920493 + 0.390760i \(0.872212\pi\)
\(278\) 717.831 + 1243.32i 0.154866 + 0.268235i
\(279\) 0 0
\(280\) 0 0
\(281\) 5312.05 1.12772 0.563861 0.825869i \(-0.309315\pi\)
0.563861 + 0.825869i \(0.309315\pi\)
\(282\) 0 0
\(283\) −545.882 + 945.495i −0.114662 + 0.198600i −0.917645 0.397402i \(-0.869912\pi\)
0.802983 + 0.596002i \(0.203245\pi\)
\(284\) −2354.06 + 4077.36i −0.491859 + 0.851925i
\(285\) 0 0
\(286\) 680.030 0.140598
\(287\) 0 0
\(288\) 0 0
\(289\) 1037.79 + 1797.51i 0.211234 + 0.365869i
\(290\) 7593.72 13152.7i 1.53765 2.66329i
\(291\) 0 0
\(292\) 3884.96 + 6728.95i 0.778597 + 1.34857i
\(293\) −7191.86 −1.43397 −0.716985 0.697089i \(-0.754478\pi\)
−0.716985 + 0.697089i \(0.754478\pi\)
\(294\) 0 0
\(295\) −4049.67 −0.799257
\(296\) −40.6249 70.3645i −0.00797729 0.0138171i
\(297\) 0 0
\(298\) 4314.36 7472.70i 0.838672 1.45262i
\(299\) 996.058 + 1725.22i 0.192654 + 0.333687i
\(300\) 0 0
\(301\) 0 0
\(302\) −9166.69 −1.74663
\(303\) 0 0
\(304\) 69.0236 119.552i 0.0130223 0.0225552i
\(305\) 5826.43 10091.7i 1.09384 1.89458i
\(306\) 0 0
\(307\) −541.355 −0.100641 −0.0503204 0.998733i \(-0.516024\pi\)
−0.0503204 + 0.998733i \(0.516024\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −6428.37 11134.3i −1.17776 2.03995i
\(311\) −27.0084 + 46.7799i −0.00492446 + 0.00852941i −0.868477 0.495729i \(-0.834901\pi\)
0.863553 + 0.504259i \(0.168234\pi\)
\(312\) 0 0
\(313\) 1886.47 + 3267.46i 0.340670 + 0.590058i 0.984557 0.175063i \(-0.0560128\pi\)
−0.643887 + 0.765120i \(0.722679\pi\)
\(314\) 17444.1 3.13511
\(315\) 0 0
\(316\) 11615.1 2.06772
\(317\) 859.618 + 1488.90i 0.152306 + 0.263802i 0.932075 0.362266i \(-0.117997\pi\)
−0.779769 + 0.626068i \(0.784663\pi\)
\(318\) 0 0
\(319\) 1062.47 1840.25i 0.186479 0.322991i
\(320\) 7436.70 + 12880.7i 1.29914 + 2.25017i
\(321\) 0 0
\(322\) 0 0
\(323\) 2259.72 0.389270
\(324\) 0 0
\(325\) −1273.53 + 2205.81i −0.217362 + 0.376482i
\(326\) 7994.73 13847.3i 1.35824 2.35255i
\(327\) 0 0
\(328\) −852.934 −0.143584
\(329\) 0 0
\(330\) 0 0
\(331\) −4204.11 7281.73i −0.698123 1.20918i −0.969117 0.246603i \(-0.920686\pi\)
0.270994 0.962581i \(-0.412648\pi\)
\(332\) 2092.27 3623.91i 0.345868 0.599060i
\(333\) 0 0
\(334\) 781.436 + 1353.49i 0.128019 + 0.221735i
\(335\) 2599.36 0.423935
\(336\) 0 0
\(337\) 2789.46 0.450894 0.225447 0.974255i \(-0.427616\pi\)
0.225447 + 0.974255i \(0.427616\pi\)
\(338\) 4614.29 + 7992.18i 0.742557 + 1.28615i
\(339\) 0 0
\(340\) −6074.36 + 10521.1i −0.968907 + 1.67820i
\(341\) −899.419 1557.84i −0.142834 0.247395i
\(342\) 0 0
\(343\) 0 0
\(344\) 9314.72 1.45993
\(345\) 0 0
\(346\) 9539.24 16522.4i 1.48217 2.56720i
\(347\) −1735.98 + 3006.81i −0.268566 + 0.465170i −0.968492 0.249046i \(-0.919883\pi\)
0.699926 + 0.714216i \(0.253216\pi\)
\(348\) 0 0
\(349\) 6626.12 1.01630 0.508149 0.861269i \(-0.330330\pi\)
0.508149 + 0.861269i \(0.330330\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1073.05 + 1858.57i 0.162482 + 0.281427i
\(353\) −4734.20 + 8199.87i −0.713813 + 1.23636i 0.249603 + 0.968348i \(0.419700\pi\)
−0.963416 + 0.268012i \(0.913633\pi\)
\(354\) 0 0
\(355\) −3297.27 5711.03i −0.492960 0.853831i
\(356\) −479.944 −0.0714522
\(357\) 0 0
\(358\) 8977.35 1.32533
\(359\) −3139.78 5438.25i −0.461591 0.799499i 0.537450 0.843296i \(-0.319388\pi\)
−0.999040 + 0.0437971i \(0.986054\pi\)
\(360\) 0 0
\(361\) 2529.68 4381.53i 0.368811 0.638800i
\(362\) −8231.31 14257.0i −1.19510 2.06998i
\(363\) 0 0
\(364\) 0 0
\(365\) −10883.1 −1.56068
\(366\) 0 0
\(367\) −5413.91 + 9377.17i −0.770038 + 1.33374i 0.167504 + 0.985871i \(0.446429\pi\)
−0.937542 + 0.347873i \(0.886904\pi\)
\(368\) −247.452 + 428.599i −0.0350525 + 0.0607127i
\(369\) 0 0
\(370\) 305.053 0.0428620
\(371\) 0 0
\(372\) 0 0
\(373\) −2619.61 4537.30i −0.363642 0.629846i 0.624915 0.780693i \(-0.285134\pi\)
−0.988557 + 0.150846i \(0.951800\pi\)
\(374\) −1382.71 + 2394.93i −0.191172 + 0.331120i
\(375\) 0 0
\(376\) −229.777 397.985i −0.0315155 0.0545864i
\(377\) −2442.81 −0.333717
\(378\) 0 0
\(379\) −11050.4 −1.49768 −0.748839 0.662751i \(-0.769389\pi\)
−0.748839 + 0.662751i \(0.769389\pi\)
\(380\) −4837.64 8379.03i −0.653067 1.13115i
\(381\) 0 0
\(382\) 4346.25 7527.92i 0.582129 1.00828i
\(383\) 5234.02 + 9065.59i 0.698292 + 1.20948i 0.969058 + 0.246832i \(0.0793897\pi\)
−0.270766 + 0.962645i \(0.587277\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10934.9 1.44190
\(387\) 0 0
\(388\) 4606.61 7978.88i 0.602745 1.04399i
\(389\) −5807.02 + 10058.1i −0.756884 + 1.31096i 0.187549 + 0.982255i \(0.439946\pi\)
−0.944432 + 0.328705i \(0.893388\pi\)
\(390\) 0 0
\(391\) −8101.19 −1.04781
\(392\) 0 0
\(393\) 0 0
\(394\) 3449.89 + 5975.38i 0.441124 + 0.764049i
\(395\) −8134.43 + 14089.2i −1.03617 + 1.79470i
\(396\) 0 0
\(397\) −3353.65 5808.69i −0.423967 0.734332i 0.572356 0.820005i \(-0.306029\pi\)
−0.996323 + 0.0856726i \(0.972696\pi\)
\(398\) −6232.10 −0.784892
\(399\) 0 0
\(400\) −632.768 −0.0790960
\(401\) 2763.19 + 4785.98i 0.344107 + 0.596011i 0.985191 0.171459i \(-0.0548482\pi\)
−0.641084 + 0.767471i \(0.721515\pi\)
\(402\) 0 0
\(403\) −1033.97 + 1790.89i −0.127805 + 0.221366i
\(404\) −9689.49 16782.7i −1.19324 2.06676i
\(405\) 0 0
\(406\) 0 0
\(407\) 42.6811 0.00519810
\(408\) 0 0
\(409\) −659.453 + 1142.21i −0.0797258 + 0.138089i −0.903132 0.429364i \(-0.858738\pi\)
0.823406 + 0.567453i \(0.192071\pi\)
\(410\) 1601.17 2773.31i 0.192869 0.334059i
\(411\) 0 0
\(412\) 13422.5 1.60505
\(413\) 0 0
\(414\) 0 0
\(415\) 2930.57 + 5075.90i 0.346641 + 0.600401i
\(416\) 1233.57 2136.61i 0.145387 0.251817i
\(417\) 0 0
\(418\) −1101.20 1907.33i −0.128855 0.223183i
\(419\) 3656.13 0.426286 0.213143 0.977021i \(-0.431630\pi\)
0.213143 + 0.977021i \(0.431630\pi\)
\(420\) 0 0
\(421\) −135.389 −0.0156733 −0.00783663 0.999969i \(-0.502495\pi\)
−0.00783663 + 0.999969i \(0.502495\pi\)
\(422\) −9801.93 16977.4i −1.13069 1.95841i
\(423\) 0 0
\(424\) 3968.31 6873.32i 0.454524 0.787259i
\(425\) −5178.96 8970.22i −0.591097 1.02381i
\(426\) 0 0
\(427\) 0 0
\(428\) −9781.16 −1.10465
\(429\) 0 0
\(430\) −17486.1 + 30286.8i −1.96105 + 3.39665i
\(431\) 4194.58 7265.23i 0.468784 0.811958i −0.530579 0.847635i \(-0.678026\pi\)
0.999363 + 0.0356776i \(0.0113589\pi\)
\(432\) 0 0
\(433\) 8243.02 0.914859 0.457430 0.889246i \(-0.348770\pi\)
0.457430 + 0.889246i \(0.348770\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 9104.91 + 15770.2i 1.00011 + 1.73223i
\(437\) 3225.91 5587.43i 0.353126 0.611632i
\(438\) 0 0
\(439\) −9141.59 15833.7i −0.993859 1.72142i −0.592755 0.805383i \(-0.701960\pi\)
−0.401104 0.916032i \(-0.631374\pi\)
\(440\) 4417.26 0.478602
\(441\) 0 0
\(442\) 3179.12 0.342116
\(443\) 605.218 + 1048.27i 0.0649092 + 0.112426i 0.896654 0.442733i \(-0.145991\pi\)
−0.831745 + 0.555159i \(0.812658\pi\)
\(444\) 0 0
\(445\) 336.122 582.180i 0.0358061 0.0620179i
\(446\) −3410.86 5907.79i −0.362128 0.627224i
\(447\) 0 0
\(448\) 0 0
\(449\) 8301.16 0.872508 0.436254 0.899824i \(-0.356305\pi\)
0.436254 + 0.899824i \(0.356305\pi\)
\(450\) 0 0
\(451\) 224.026 388.025i 0.0233902 0.0405130i
\(452\) 2313.24 4006.66i 0.240721 0.416941i
\(453\) 0 0
\(454\) 7305.34 0.755190
\(455\) 0 0
\(456\) 0 0
\(457\) 6146.88 + 10646.7i 0.629188 + 1.08979i 0.987715 + 0.156266i \(0.0499458\pi\)
−0.358527 + 0.933519i \(0.616721\pi\)
\(458\) 2302.15 3987.45i 0.234875 0.406815i
\(459\) 0 0
\(460\) 17343.1 + 30039.1i 1.75788 + 3.04474i
\(461\) 19434.2 1.96343 0.981717 0.190346i \(-0.0609609\pi\)
0.981717 + 0.190346i \(0.0609609\pi\)
\(462\) 0 0
\(463\) −12491.1 −1.25380 −0.626902 0.779098i \(-0.715678\pi\)
−0.626902 + 0.779098i \(0.715678\pi\)
\(464\) −303.436 525.566i −0.0303592 0.0525836i
\(465\) 0 0
\(466\) 451.574 782.150i 0.0448901 0.0777519i
\(467\) −1692.59 2931.65i −0.167716 0.290493i 0.769900 0.638164i \(-0.220306\pi\)
−0.937617 + 0.347671i \(0.886973\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1725.39 0.169333
\(471\) 0 0
\(472\) 2457.29 4256.14i 0.239631 0.415053i
\(473\) −2446.54 + 4237.54i −0.237827 + 0.411929i
\(474\) 0 0
\(475\) 8249.07 0.796828
\(476\) 0 0
\(477\) 0 0
\(478\) −2736.53 4739.80i −0.261853 0.453543i
\(479\) −2989.71 + 5178.32i −0.285184 + 0.493953i −0.972654 0.232260i \(-0.925388\pi\)
0.687470 + 0.726213i \(0.258721\pi\)
\(480\) 0 0
\(481\) −24.5330 42.4925i −0.00232559 0.00402804i
\(482\) 12451.1 1.17663
\(483\) 0 0
\(484\) −15327.5 −1.43948
\(485\) 6452.34 + 11175.8i 0.604094 + 1.04632i
\(486\) 0 0
\(487\) 557.481 965.586i 0.0518725 0.0898457i −0.838923 0.544250i \(-0.816814\pi\)
0.890796 + 0.454404i \(0.150148\pi\)
\(488\) 7070.80 + 12247.0i 0.655902 + 1.13606i
\(489\) 0 0
\(490\) 0 0
\(491\) −1086.23 −0.0998387 −0.0499194 0.998753i \(-0.515896\pi\)
−0.0499194 + 0.998753i \(0.515896\pi\)
\(492\) 0 0
\(493\) 4967.00 8603.10i 0.453758 0.785932i
\(494\) −1265.93 + 2192.66i −0.115297 + 0.199701i
\(495\) 0 0
\(496\) −513.740 −0.0465073
\(497\) 0 0
\(498\) 0 0
\(499\) 1106.75 + 1916.95i 0.0992884 + 0.171973i 0.911390 0.411543i \(-0.135010\pi\)
−0.812102 + 0.583516i \(0.801677\pi\)
\(500\) −7919.92 + 13717.7i −0.708379 + 1.22695i
\(501\) 0 0
\(502\) −17236.3 29854.2i −1.53246 2.65430i
\(503\) −2643.32 −0.234314 −0.117157 0.993113i \(-0.537378\pi\)
−0.117157 + 0.993113i \(0.537378\pi\)
\(504\) 0 0
\(505\) 27143.5 2.39183
\(506\) 3947.83 + 6837.84i 0.346843 + 0.600749i
\(507\) 0 0
\(508\) −6219.31 + 10772.2i −0.543183 + 0.940821i
\(509\) 332.584 + 576.053i 0.0289618 + 0.0501633i 0.880143 0.474709i \(-0.157447\pi\)
−0.851181 + 0.524872i \(0.824113\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1177.58 0.101645
\(513\) 0 0
\(514\) −11410.7 + 19763.9i −0.979190 + 1.69601i
\(515\) −9400.26 + 16281.7i −0.804320 + 1.39312i
\(516\) 0 0
\(517\) 241.406 0.0205359
\(518\) 0 0
\(519\) 0 0
\(520\) −2539.03 4397.73i −0.214123 0.370872i
\(521\) 5880.99 10186.2i 0.494531 0.856554i −0.505449 0.862857i \(-0.668673\pi\)
0.999980 + 0.00630307i \(0.00200634\pi\)
\(522\) 0 0
\(523\) 5061.30 + 8766.43i 0.423165 + 0.732943i 0.996247 0.0865547i \(-0.0275857\pi\)
−0.573082 + 0.819498i \(0.694252\pi\)
\(524\) −22875.7 −1.90712
\(525\) 0 0
\(526\) 28471.9 2.36014
\(527\) −4204.76 7282.85i −0.347556 0.601985i
\(528\) 0 0
\(529\) −5481.49 + 9494.22i −0.450521 + 0.780325i
\(530\) 14899.0 + 25805.9i 1.22108 + 2.11497i
\(531\) 0 0
\(532\) 0 0
\(533\) −515.079 −0.0418585
\(534\) 0 0
\(535\) 6850.09 11864.7i 0.553561 0.958796i
\(536\) −1577.26 + 2731.89i −0.127103 + 0.220148i
\(537\) 0 0
\(538\) −16350.3 −1.31024
\(539\) 0 0
\(540\) 0 0
\(541\) −8058.98 13958.6i −0.640449 1.10929i −0.985333 0.170644i \(-0.945415\pi\)
0.344884 0.938645i \(-0.387918\pi\)
\(542\) −4517.96 + 7825.34i −0.358050 + 0.620161i
\(543\) 0 0
\(544\) 5016.47 + 8688.78i 0.395366 + 0.684795i
\(545\) −25505.9 −2.00469
\(546\) 0 0
\(547\) −626.100 −0.0489399 −0.0244699 0.999701i \(-0.507790\pi\)
−0.0244699 + 0.999701i \(0.507790\pi\)
\(548\) 10747.0 + 18614.3i 0.837751 + 1.45103i
\(549\) 0 0
\(550\) −5047.56 + 8742.64i −0.391325 + 0.677795i
\(551\) 3955.74 + 6851.54i 0.305844 + 0.529737i
\(552\) 0 0
\(553\) 0 0
\(554\) 33552.7 2.57313
\(555\) 0 0
\(556\) 2010.34 3482.02i 0.153341 0.265594i
\(557\) 10385.6 17988.4i 0.790039 1.36839i −0.135903 0.990722i \(-0.543394\pi\)
0.925942 0.377665i \(-0.123273\pi\)
\(558\) 0 0
\(559\) 5625.08 0.425609
\(560\) 0 0
\(561\) 0 0
\(562\) −12101.8 20961.0i −0.908335 1.57328i
\(563\) 2760.86 4781.95i 0.206672 0.357966i −0.743992 0.668188i \(-0.767070\pi\)
0.950664 + 0.310222i \(0.100403\pi\)
\(564\) 0 0
\(565\) 3240.09 + 5612.00i 0.241260 + 0.417874i
\(566\) 4974.48 0.369422
\(567\) 0 0
\(568\) 8002.95 0.591191
\(569\) 3787.40 + 6559.97i 0.279044 + 0.483319i 0.971147 0.238480i \(-0.0766491\pi\)
−0.692103 + 0.721799i \(0.743316\pi\)
\(570\) 0 0
\(571\) 165.624 286.869i 0.0121386 0.0210247i −0.859892 0.510476i \(-0.829469\pi\)
0.872031 + 0.489451i \(0.162803\pi\)
\(572\) −952.239 1649.33i −0.0696068 0.120563i
\(573\) 0 0
\(574\) 0 0
\(575\) −29573.2 −2.14485
\(576\) 0 0
\(577\) 1019.06 1765.06i 0.0735248 0.127349i −0.826919 0.562321i \(-0.809909\pi\)
0.900444 + 0.434972i \(0.143242\pi\)
\(578\) 4728.57 8190.13i 0.340281 0.589385i
\(579\) 0 0
\(580\) −42533.6 −3.04502
\(581\) 0 0
\(582\) 0 0
\(583\) 2084.58 + 3610.60i 0.148087 + 0.256494i
\(584\) 6603.72 11438.0i 0.467918 0.810457i
\(585\) 0 0
\(586\) 16384.4 + 28378.6i 1.15500 + 2.00053i
\(587\) 5232.90 0.367947 0.183973 0.982931i \(-0.441104\pi\)
0.183973 + 0.982931i \(0.441104\pi\)
\(588\) 0 0
\(589\) 6697.36 0.468523
\(590\) 9225.88 + 15979.7i 0.643769 + 1.11504i
\(591\) 0 0
\(592\) 6.09477 10.5565i 0.000423131 0.000732884i
\(593\) 2860.12 + 4953.87i 0.198062 + 0.343054i 0.947900 0.318568i \(-0.103202\pi\)
−0.749838 + 0.661622i \(0.769868\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −24165.5 −1.66083
\(597\) 0 0
\(598\) 4538.41 7860.75i 0.310350 0.537542i
\(599\) 9044.21 15665.0i 0.616922 1.06854i −0.373122 0.927782i \(-0.621713\pi\)
0.990044 0.140758i \(-0.0449540\pi\)
\(600\) 0 0
\(601\) 1821.43 0.123623 0.0618117 0.998088i \(-0.480312\pi\)
0.0618117 + 0.998088i \(0.480312\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 12836.0 + 22232.6i 0.864719 + 1.49774i
\(605\) 10734.4 18592.5i 0.721348 1.24941i
\(606\) 0 0
\(607\) 1186.10 + 2054.39i 0.0793120 + 0.137372i 0.902953 0.429739i \(-0.141394\pi\)
−0.823641 + 0.567111i \(0.808061\pi\)
\(608\) −7990.26 −0.532974
\(609\) 0 0
\(610\) −53094.7 −3.52416
\(611\) −138.760 240.339i −0.00918760 0.0159134i
\(612\) 0 0
\(613\) −4862.54 + 8422.16i −0.320385 + 0.554923i −0.980567 0.196182i \(-0.937146\pi\)
0.660182 + 0.751105i \(0.270479\pi\)
\(614\) 1233.30 + 2136.15i 0.0810621 + 0.140404i
\(615\) 0 0
\(616\) 0 0
\(617\) 5329.51 0.347744 0.173872 0.984768i \(-0.444372\pi\)
0.173872 + 0.984768i \(0.444372\pi\)
\(618\) 0 0
\(619\) −7988.29 + 13836.1i −0.518702 + 0.898418i 0.481062 + 0.876687i \(0.340251\pi\)
−0.999764 + 0.0217314i \(0.993082\pi\)
\(620\) −18003.2 + 31182.4i −1.16617 + 2.01986i
\(621\) 0 0
\(622\) 246.120 0.0158658
\(623\) 0 0
\(624\) 0 0
\(625\) 1060.03 + 1836.03i 0.0678420 + 0.117506i
\(626\) 8595.45 14887.8i 0.548791 0.950535i
\(627\) 0 0
\(628\) −24426.7 42308.4i −1.55212 2.68836i
\(629\) 199.533 0.0126485
\(630\) 0 0
\(631\) −4199.98 −0.264974 −0.132487 0.991185i \(-0.542296\pi\)
−0.132487 + 0.991185i \(0.542296\pi\)
\(632\) −9871.73 17098.3i −0.621324 1.07616i
\(633\) 0 0
\(634\) 3916.74 6783.99i 0.245352 0.424963i
\(635\) −8711.19 15088.2i −0.544399 0.942926i
\(636\) 0 0
\(637\) 0 0
\(638\) −9681.97 −0.600804
\(639\) 0 0
\(640\) 20418.6 35366.0i 1.26112 2.18432i
\(641\) 1324.25 2293.67i 0.0815988 0.141333i −0.822338 0.568999i \(-0.807331\pi\)
0.903937 + 0.427666i \(0.140664\pi\)
\(642\) 0 0
\(643\) −13.4305 −0.000823715 −0.000411857 1.00000i \(-0.500131\pi\)
−0.000411857 1.00000i \(0.500131\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −5148.06 8916.70i −0.313541 0.543070i
\(647\) −5812.07 + 10066.8i −0.353162 + 0.611695i −0.986802 0.161934i \(-0.948227\pi\)
0.633639 + 0.773628i \(0.281560\pi\)
\(648\) 0 0
\(649\) 1290.83 + 2235.78i 0.0780732 + 0.135227i
\(650\) 11605.3 0.700305
\(651\) 0 0
\(652\) −44779.8 −2.68974
\(653\) −14258.3 24696.1i −0.854471 1.47999i −0.877135 0.480244i \(-0.840548\pi\)
0.0226638 0.999743i \(-0.492785\pi\)
\(654\) 0 0
\(655\) 16020.7 27748.6i 0.955694 1.65531i
\(656\) −63.9809 110.818i −0.00380798 0.00659561i
\(657\) 0 0
\(658\) 0 0
\(659\) −18048.6 −1.06688 −0.533440 0.845838i \(-0.679101\pi\)
−0.533440 + 0.845838i \(0.679101\pi\)
\(660\) 0 0
\(661\) 8920.72 15451.1i 0.524926 0.909198i −0.474653 0.880173i \(-0.657426\pi\)
0.999579 0.0290250i \(-0.00924023\pi\)
\(662\) −19155.5 + 33178.2i −1.12462 + 1.94790i
\(663\) 0 0
\(664\) −7112.94 −0.415716
\(665\) 0 0
\(666\) 0 0
\(667\) −14181.5 24563.0i −0.823251 1.42591i
\(668\) 2188.47 3790.55i 0.126758 0.219552i
\(669\) 0 0
\(670\) −5921.81 10256.9i −0.341462 0.591430i
\(671\) −7428.68 −0.427394
\(672\) 0 0
\(673\) −6826.13 −0.390978 −0.195489 0.980706i \(-0.562629\pi\)
−0.195489 + 0.980706i \(0.562629\pi\)
\(674\) −6354.89 11007.0i −0.363177 0.629041i
\(675\) 0 0
\(676\) 12922.7 22382.8i 0.735246 1.27348i
\(677\) 10643.4 + 18435.0i 0.604225 + 1.04655i 0.992173 + 0.124867i \(0.0398505\pi\)
−0.387949 + 0.921681i \(0.626816\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 20650.6 1.16458
\(681\) 0 0
\(682\) −4098.08 + 7098.08i −0.230093 + 0.398533i
\(683\) −10348.4 + 17924.0i −0.579753 + 1.00416i 0.415755 + 0.909477i \(0.363517\pi\)
−0.995507 + 0.0946842i \(0.969816\pi\)
\(684\) 0 0
\(685\) −30105.9 −1.67925
\(686\) 0 0
\(687\) 0 0
\(688\) 698.722 + 1210.22i 0.0387188 + 0.0670629i
\(689\) 2396.43 4150.74i 0.132506 0.229507i
\(690\) 0 0
\(691\) 15671.0 + 27142.9i 0.862738 + 1.49431i 0.869276 + 0.494327i \(0.164585\pi\)
−0.00653825 + 0.999979i \(0.502081\pi\)
\(692\) −53430.8 −2.93517
\(693\) 0 0
\(694\) 15819.5 0.865276
\(695\) 2815.83 + 4877.16i 0.153684 + 0.266189i
\(696\) 0 0
\(697\) 1047.32 1814.01i 0.0569153 0.0985801i
\(698\) −15095.5 26146.2i −0.818587 1.41783i
\(699\) 0 0
\(700\) 0 0
\(701\) 9213.32 0.496408 0.248204 0.968708i \(-0.420160\pi\)
0.248204 + 0.968708i \(0.420160\pi\)
\(702\) 0 0
\(703\) −79.4544 + 137.619i −0.00426270 + 0.00738322i
\(704\) 4740.89 8211.46i 0.253805 0.439604i
\(705\) 0 0
\(706\) 43141.5 2.29979
\(707\) 0 0
\(708\) 0 0
\(709\) −7258.27 12571.7i −0.384471 0.665923i 0.607225 0.794530i \(-0.292283\pi\)
−0.991696 + 0.128607i \(0.958949\pi\)
\(710\) −15023.5 + 26021.6i −0.794118 + 1.37545i
\(711\) 0 0
\(712\) 407.908 + 706.518i 0.0214705 + 0.0371880i
\(713\) −24010.3 −1.26114
\(714\) 0 0
\(715\) 2667.54 0.139525
\(716\) −12570.9 21773.4i −0.656140 1.13647i
\(717\) 0 0
\(718\) −14306.0 + 24778.7i −0.743585 + 1.28793i
\(719\) −12941.2 22414.8i −0.671246 1.16263i −0.977551 0.210698i \(-0.932426\pi\)
0.306306 0.951933i \(-0.400907\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −23052.3 −1.18825
\(723\) 0 0
\(724\) −23052.4 + 39928.0i −1.18334 + 2.04960i
\(725\) 18132.0 31405.5i 0.928833 1.60879i
\(726\) 0 0
\(727\) −32181.2 −1.64172 −0.820862 0.571127i \(-0.806506\pi\)
−0.820862 + 0.571127i \(0.806506\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 24793.7 + 42943.9i 1.25706 + 2.17730i
\(731\) −11437.5 + 19810.4i −0.578704 + 1.00234i
\(732\) 0 0
\(733\) 10418.1 + 18044.6i 0.524966 + 0.909268i 0.999577 + 0.0290722i \(0.00925528\pi\)
−0.474611 + 0.880195i \(0.657411\pi\)
\(734\) 49335.5 2.48094
\(735\) 0 0
\(736\) 28645.4 1.43462
\(737\) −828.544 1435.08i −0.0414109 0.0717257i
\(738\) 0 0
\(739\) −13217.4 + 22893.3i −0.657931 + 1.13957i 0.323219 + 0.946324i \(0.395235\pi\)
−0.981150 + 0.193246i \(0.938098\pi\)
\(740\) −427.163 739.867i −0.0212200 0.0367541i
\(741\) 0 0
\(742\) 0 0
\(743\) −9954.69 −0.491524 −0.245762 0.969330i \(-0.579038\pi\)
−0.245762 + 0.969330i \(0.579038\pi\)
\(744\) 0 0
\(745\) 16923.9 29313.1i 0.832274 1.44154i
\(746\) −11935.9 + 20673.6i −0.585798 + 1.01463i
\(747\) 0 0
\(748\) 7744.79 0.378580
\(749\) 0 0
\(750\) 0 0
\(751\) 16602.3 + 28756.0i 0.806692 + 1.39723i 0.915143 + 0.403129i \(0.132077\pi\)
−0.108451 + 0.994102i \(0.534589\pi\)
\(752\) 34.4723 59.7078i 0.00167164 0.00289537i
\(753\) 0 0
\(754\) 5565.18 + 9639.17i 0.268796 + 0.465568i
\(755\) −35958.1 −1.73331
\(756\) 0 0
\(757\) 1964.06 0.0942998 0.0471499 0.998888i \(-0.484986\pi\)
0.0471499 + 0.998888i \(0.484986\pi\)
\(758\) 25174.8 + 43604.0i 1.20632 + 2.08941i
\(759\) 0 0
\(760\) −8223.09 + 14242.8i −0.392477 + 0.679791i
\(761\) 19276.9 + 33388.6i 0.918248 + 1.59045i 0.802075 + 0.597224i \(0.203730\pi\)
0.116174 + 0.993229i \(0.462937\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −24344.0 −1.15280
\(765\) 0 0
\(766\) 23848.1 41306.1i 1.12489 1.94837i
\(767\) 1483.93 2570.25i 0.0698588 0.120999i
\(768\) 0 0
\(769\) 19715.0 0.924501 0.462251 0.886749i \(-0.347042\pi\)
0.462251 + 0.886749i \(0.347042\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −15312.1 26521.3i −0.713853 1.23643i
\(773\) 7350.34 12731.2i 0.342010 0.592378i −0.642796 0.766037i \(-0.722226\pi\)
0.984806 + 0.173659i \(0.0555591\pi\)
\(774\) 0 0
\(775\) −15349.4 26585.9i −0.711440 1.23225i
\(776\) −15660.8 −0.724471
\(777\) 0 0
\(778\) 52917.8 2.43856
\(779\) 834.086 + 1444.68i 0.0383623 + 0.0664454i
\(780\) 0 0
\(781\) −2102.00 + 3640.78i −0.0963068 + 0.166808i
\(782\) 18456.0 + 31966.7i 0.843970 + 1.46180i
\(783\) 0 0
\(784\) 0 0
\(785\) 68427.6 3.11119
\(786\) 0 0
\(787\) −11959.3 + 20714.1i −0.541681 + 0.938218i 0.457127 + 0.889401i \(0.348878\pi\)
−0.998808 + 0.0488169i \(0.984455\pi\)
\(788\) 9661.69 16734.5i 0.436781 0.756527i
\(789\) 0 0
\(790\) 74126.9 3.33837
\(791\) 0 0
\(792\) 0 0
\(793\) 4269.99 + 7395.84i 0.191213 + 0.331191i
\(794\) −15280.5 + 26466.5i −0.682976 + 1.18295i
\(795\) 0 0
\(796\) 8726.75 + 15115.2i 0.388582 + 0.673044i
\(797\) 38252.7 1.70010 0.850051 0.526700i \(-0.176571\pi\)
0.850051 + 0.526700i \(0.176571\pi\)
\(798\) 0 0
\(799\) 1128.57 0.0499698
\(800\) 18312.5 + 31718.2i 0.809307 + 1.40176i
\(801\) 0 0
\(802\) 12590.1 21806.7i 0.554329 0.960126i
\(803\) 3468.98 + 6008.45i 0.152450 + 0.264052i
\(804\) 0 0
\(805\) 0 0
\(806\) 9422.27 0.411769
\(807\) 0 0
\(808\) −16470.3 + 28527.5i −0.717110 + 1.24207i
\(809\) −15717.8 + 27224.0i −0.683075 + 1.18312i 0.290962 + 0.956734i \(0.406025\pi\)
−0.974038 + 0.226386i \(0.927309\pi\)
\(810\) 0 0
\(811\) −11467.0 −0.496501 −0.248250 0.968696i \(-0.579856\pi\)
−0.248250 + 0.968696i \(0.579856\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −97.2354 168.417i −0.00418686 0.00725185i
\(815\) 31360.8 54318.6i 1.34788 2.33460i
\(816\) 0 0
\(817\) −9108.88 15777.1i −0.390061 0.675605i
\(818\) 6009.42 0.256864
\(819\) 0 0
\(820\) −8968.42 −0.381940
\(821\) −2515.29 4356.60i −0.106923 0.185197i 0.807599 0.589732i \(-0.200767\pi\)
−0.914522 + 0.404535i \(0.867433\pi\)
\(822\) 0 0
\(823\) 6992.59 12111.5i 0.296168 0.512978i −0.679088 0.734057i \(-0.737625\pi\)
0.975256 + 0.221079i \(0.0709578\pi\)
\(824\) −11407.9 19759.1i −0.482298 0.835364i
\(825\) 0 0
\(826\) 0 0
\(827\) 13939.5 0.586125 0.293063 0.956093i \(-0.405326\pi\)
0.293063 + 0.956093i \(0.405326\pi\)
\(828\) 0 0
\(829\) −10052.2 + 17410.9i −0.421143 + 0.729441i −0.996052 0.0887769i \(-0.971704\pi\)
0.574909 + 0.818218i \(0.305038\pi\)
\(830\) 13352.8 23127.7i 0.558411 0.967197i
\(831\) 0 0
\(832\) −10900.2 −0.454203
\(833\) 0 0
\(834\) 0 0
\(835\) 3065.33 + 5309.31i 0.127042 + 0.220043i
\(836\) −3083.99 + 5341.62i −0.127586 + 0.220986i
\(837\) 0 0
\(838\) −8329.33 14426.8i −0.343356 0.594710i
\(839\) 15949.5 0.656302 0.328151 0.944625i \(-0.393575\pi\)
0.328151 + 0.944625i \(0.393575\pi\)
\(840\) 0 0
\(841\) 10390.8 0.426043
\(842\) 308.440 + 534.235i 0.0126242 + 0.0218657i
\(843\) 0 0
\(844\) −27451.1 + 47546.7i −1.11956 + 1.93913i
\(845\) 18100.4 + 31350.8i 0.736891 + 1.27633i
\(846\) 0 0
\(847\) 0 0
\(848\) 1190.70 0.0482177
\(849\) 0 0
\(850\) −23597.2 + 40871.6i −0.952210 + 1.64928i
\(851\) 284.847 493.369i 0.0114741 0.0198737i
\(852\) 0 0
\(853\) −11802.0 −0.473730 −0.236865 0.971543i \(-0.576120\pi\)
−0.236865 + 0.971543i \(0.576120\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8313.09 + 14398.7i 0.331934 + 0.574927i
\(857\) −4797.64 + 8309.76i −0.191230 + 0.331220i −0.945658 0.325162i \(-0.894581\pi\)
0.754428 + 0.656383i \(0.227914\pi\)
\(858\) 0 0
\(859\) 10920.4 + 18914.7i 0.433760 + 0.751295i 0.997194 0.0748666i \(-0.0238531\pi\)
−0.563433 + 0.826162i \(0.690520\pi\)
\(860\) 97942.3 3.88350
\(861\) 0 0
\(862\) −38224.1 −1.51035
\(863\) −13265.8 22977.1i −0.523260 0.906313i −0.999634 0.0270699i \(-0.991382\pi\)
0.476374 0.879243i \(-0.341951\pi\)
\(864\) 0 0
\(865\) 37419.5 64812.4i 1.47087 2.54762i
\(866\) −18779.1 32526.4i −0.736882 1.27632i
\(867\) 0 0
\(868\) 0 0
\(869\) 10371.4 0.404862
\(870\) 0 0
\(871\) −952.491 + 1649.76i −0.0370539 + 0.0641792i
\(872\) 15476.7 26806.4i 0.601039 1.04103i
\(873\) 0 0
\(874\) −29396.8 −1.13771
\(875\) 0 0
\(876\) 0 0
\(877\) 3416.23 + 5917.09i 0.131537 + 0.227829i 0.924269 0.381741i \(-0.124675\pi\)
−0.792732 + 0.609570i \(0.791342\pi\)
\(878\) −41652.4 + 72144.1i −1.60103 + 2.77306i
\(879\) 0 0
\(880\) 331.351 + 573.916i 0.0126930 + 0.0219849i
\(881\) −3994.77 −0.152766 −0.0763832 0.997079i \(-0.524337\pi\)
−0.0763832 + 0.997079i \(0.524337\pi\)
\(882\) 0 0
\(883\) 13727.0 0.523161 0.261580 0.965182i \(-0.415756\pi\)
0.261580 + 0.965182i \(0.415756\pi\)
\(884\) −4451.69 7710.56i −0.169374 0.293364i
\(885\) 0 0
\(886\) 2757.59 4776.29i 0.104563 0.181109i
\(887\) −22059.7 38208.5i −0.835054 1.44636i −0.893987 0.448093i \(-0.852103\pi\)
0.0589333 0.998262i \(-0.481230\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −3062.99 −0.115361
\(891\) 0 0
\(892\) −9552.40 + 16545.2i −0.358563 + 0.621049i
\(893\) −449.398 + 778.380i −0.0168405 + 0.0291685i
\(894\) 0 0
\(895\) 35215.3 1.31522
\(896\) 0 0
\(897\) 0 0
\(898\) −18911.6 32755.8i −0.702769 1.21723i
\(899\) 14721.2 25497.9i 0.546140 0.945942i
\(900\) 0 0
\(901\) 9745.37 + 16879.5i 0.360339 + 0.624125i
\(902\) −2041.49 −0.0753594
\(903\) 0 0
\(904\) −7864.18 −0.289335
\(905\) −32288.9 55925.9i −1.18599 2.05419i
\(906\) 0 0
\(907\) −18452.9 + 31961.4i −0.675545 + 1.17008i 0.300764 + 0.953698i \(0.402758\pi\)
−0.976309 + 0.216380i \(0.930575\pi\)
\(908\) −10229.6 17718.2i −0.373878 0.647575i
\(909\) 0 0
\(910\) 0 0
\(911\) 3169.56 0.115271 0.0576356 0.998338i \(-0.481644\pi\)
0.0576356 + 0.998338i \(0.481644\pi\)
\(912\) 0 0
\(913\) 1868.24 3235.88i 0.0677214 0.117297i
\(914\) 28007.4 48510.3i 1.01357 1.75556i
\(915\) 0 0
\(916\) −12894.7 −0.465124
\(917\) 0 0
\(918\) 0 0
\(919\) −4363.50 7557.80i −0.156625 0.271283i 0.777024 0.629470i \(-0.216728\pi\)
−0.933650 + 0.358188i \(0.883395\pi\)
\(920\) 29480.1 51061.0i 1.05645 1.82982i
\(921\) 0 0
\(922\) −44274.8 76686.2i −1.58147 2.73918i
\(923\) 4832.91 0.172348
\(924\) 0 0
\(925\) 728.392 0.0258912
\(926\) 28457.1 + 49289.1i 1.00989 + 1.74918i
\(927\) 0 0
\(928\) −17563.1 + 30420.1i −0.621267 + 1.07607i
\(929\) −9702.54 16805.3i −0.342659 0.593502i 0.642267 0.766481i \(-0.277994\pi\)
−0.984926 + 0.172979i \(0.944661\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −2529.34 −0.0888963
\(933\) 0 0
\(934\) −7712.04 + 13357.6i −0.270177 + 0.467961i
\(935\) −5423.95 + 9394.55i −0.189713 + 0.328593i
\(936\) 0 0
\(937\) 615.692 0.0214662 0.0107331 0.999942i \(-0.496583\pi\)
0.0107331 + 0.999942i \(0.496583\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2416.05 4184.72i −0.0838329 0.145203i
\(941\) 14801.0 25636.1i 0.512751 0.888111i −0.487140 0.873324i \(-0.661960\pi\)
0.999891 0.0147865i \(-0.00470687\pi\)
\(942\) 0 0
\(943\) −2990.23 5179.23i −0.103261 0.178854i
\(944\) 737.310 0.0254210
\(945\) 0 0
\(946\) 22294.7 0.766240
\(947\) 6768.71 + 11723.8i 0.232264 + 0.402292i 0.958474 0.285180i \(-0.0920535\pi\)
−0.726210 + 0.687473i \(0.758720\pi\)
\(948\) 0 0
\(949\) 3987.93 6907.29i 0.136411 0.236270i
\(950\) −18792.9 32550.3i −0.641813 1.11165i
\(951\) 0 0
\(952\) 0 0
\(953\) −33468.5 −1.13762 −0.568810 0.822469i \(-0.692596\pi\)
−0.568810 + 0.822469i \(0.692596\pi\)
\(954\) 0 0
\(955\) 17049.0 29529.7i 0.577688 1.00058i
\(956\) −7663.86 + 13274.2i −0.259275 + 0.449078i
\(957\) 0 0
\(958\) 27244.4 0.918817
\(959\) 0 0
\(960\) 0 0
\(961\) 2433.44 + 4214.85i 0.0816838 + 0.141480i
\(962\) −111.781 + 193.611i −0.00374634 + 0.00648885i
\(963\) 0 0
\(964\) −17435.2 30198.7i −0.582521 1.00896i
\(965\) 42894.4 1.43090
\(966\) 0 0
\(967\) −55733.5 −1.85343 −0.926715 0.375764i \(-0.877380\pi\)
−0.926715 + 0.375764i \(0.877380\pi\)
\(968\) 13027.0 + 22563.4i 0.432545 + 0.749190i
\(969\) 0 0
\(970\) 29399.2 50920.9i 0.973146 1.68554i
\(971\) 9745.65 + 16880.0i 0.322094 + 0.557882i 0.980920 0.194413i \(-0.0622801\pi\)
−0.658826 + 0.752295i \(0.728947\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −5080.18 −0.167125
\(975\) 0 0
\(976\) −1060.80 + 1837.36i −0.0347903 + 0.0602586i
\(977\) −3120.78 + 5405.35i −0.102193 + 0.177004i −0.912588 0.408881i \(-0.865919\pi\)
0.810395 + 0.585884i \(0.199253\pi\)
\(978\) 0 0
\(979\) −428.554 −0.0139905
\(980\) 0 0
\(981\) 0 0
\(982\) 2474.63 + 4286.18i 0.0804160 + 0.139285i
\(983\) −29847.3 + 51697.0i −0.968444 + 1.67739i −0.268382 + 0.963313i \(0.586489\pi\)
−0.700062 + 0.714082i \(0.746845\pi\)
\(984\) 0 0
\(985\) 13532.8 + 23439.6i 0.437758 + 0.758220i
\(986\) −45263.0 −1.46193
\(987\) 0 0
\(988\) 7090.68 0.228324
\(989\) 32655.7 + 56561.3i 1.04994 + 1.81855i
\(990\) 0 0
\(991\) −7780.82 + 13476.8i −0.249411 + 0.431992i −0.963362 0.268203i \(-0.913570\pi\)
0.713952 + 0.700195i \(0.246904\pi\)
\(992\) 14867.8 + 25751.8i 0.475860 + 0.824214i
\(993\) 0 0
\(994\) 0 0
\(995\) −24446.6 −0.778903
\(996\) 0 0
\(997\) 9942.47 17220.9i 0.315829 0.547031i −0.663785 0.747924i \(-0.731051\pi\)
0.979613 + 0.200892i \(0.0643842\pi\)
\(998\) 5042.76 8734.31i 0.159946 0.277034i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.4.e.w.361.1 6
3.2 odd 2 147.4.e.n.67.3 6
7.2 even 3 inner 441.4.e.w.226.1 6
7.3 odd 6 441.4.a.s.1.3 3
7.4 even 3 441.4.a.t.1.3 3
7.5 odd 6 63.4.e.c.37.1 6
7.6 odd 2 63.4.e.c.46.1 6
21.2 odd 6 147.4.e.n.79.3 6
21.5 even 6 21.4.e.b.16.3 yes 6
21.11 odd 6 147.4.a.m.1.1 3
21.17 even 6 147.4.a.l.1.1 3
21.20 even 2 21.4.e.b.4.3 6
84.11 even 6 2352.4.a.cg.1.1 3
84.47 odd 6 336.4.q.k.289.1 6
84.59 odd 6 2352.4.a.ci.1.3 3
84.83 odd 2 336.4.q.k.193.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.4.e.b.4.3 6 21.20 even 2
21.4.e.b.16.3 yes 6 21.5 even 6
63.4.e.c.37.1 6 7.5 odd 6
63.4.e.c.46.1 6 7.6 odd 2
147.4.a.l.1.1 3 21.17 even 6
147.4.a.m.1.1 3 21.11 odd 6
147.4.e.n.67.3 6 3.2 odd 2
147.4.e.n.79.3 6 21.2 odd 6
336.4.q.k.193.1 6 84.83 odd 2
336.4.q.k.289.1 6 84.47 odd 6
441.4.a.s.1.3 3 7.3 odd 6
441.4.a.t.1.3 3 7.4 even 3
441.4.e.w.226.1 6 7.2 even 3 inner
441.4.e.w.361.1 6 1.1 even 1 trivial
2352.4.a.cg.1.1 3 84.11 even 6
2352.4.a.ci.1.3 3 84.59 odd 6