Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [21,8,Mod(5,21)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(21, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("21.5");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 21.g (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.56008553517\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −17.9825 | − | 10.3822i | −36.2119 | − | 29.5923i | 151.580 | + | 262.545i | −171.660 | + | 297.324i | 343.947 | + | 908.102i | −505.231 | − | 753.847i | − | 3637.11i | 435.597 | + | 2143.18i | 6173.77 | − | 3564.43i | |
5.2 | −17.0599 | − | 9.84952i | −12.0893 | + | 45.1758i | 130.026 | + | 225.212i | 147.583 | − | 255.621i | 651.201 | − | 651.618i | −45.1728 | + | 906.368i | − | 2601.29i | −1894.70 | − | 1092.29i | −5035.49 | + | 2907.24i | |
5.3 | −14.6587 | − | 8.46320i | 44.2597 | − | 15.1022i | 79.2516 | + | 137.268i | −120.388 | + | 208.518i | −776.603 | − | 153.200i | 234.885 | + | 876.568i | − | 516.309i | 1730.84 | − | 1336.84i | 3529.45 | − | 2037.73i | |
5.4 | −12.6634 | − | 7.31122i | 9.88299 | − | 45.7092i | 42.9078 | + | 74.3185i | 269.104 | − | 466.101i | −459.342 | + | 506.577i | 626.737 | − | 656.311i | 616.838i | −1991.65 | − | 903.486i | −6815.54 | + | 3934.95i | ||
5.5 | −10.0113 | − | 5.78004i | 32.5439 | + | 33.5841i | 2.81783 | + | 4.88062i | −33.4474 | + | 57.9325i | −131.690 | − | 524.327i | −470.343 | − | 776.093i | 1414.54i | −68.7843 | + | 2185.92i | 669.705 | − | 386.655i | ||
5.6 | −8.08214 | − | 4.66623i | −31.7364 | + | 34.3482i | −20.4526 | − | 35.4250i | −123.341 | + | 213.633i | 416.775 | − | 129.518i | 658.195 | − | 624.758i | 1576.30i | −172.602 | − | 2180.18i | 1993.72 | − | 1151.08i | ||
5.7 | −6.40713 | − | 3.69916i | −45.1116 | − | 12.3265i | −36.6324 | − | 63.4492i | 101.547 | − | 175.885i | 243.439 | + | 245.852i | −682.340 | + | 598.293i | 1489.02i | 1883.12 | + | 1112.13i | −1301.25 | + | 751.279i | ||
5.8 | −1.73270 | − | 1.00038i | −9.93003 | − | 45.6990i | −61.9985 | − | 107.385i | −181.259 | + | 313.950i | −28.5104 | + | 89.1165i | 799.270 | + | 429.779i | 504.184i | −1989.79 | + | 907.584i | 628.136 | − | 362.654i | ||
5.9 | 1.73270 | + | 1.00038i | 34.6114 | + | 31.4491i | −61.9985 | − | 107.385i | 181.259 | − | 313.950i | 28.5104 | + | 89.1165i | 799.270 | + | 429.779i | − | 504.184i | 208.903 | + | 2177.00i | 628.136 | − | 362.654i | |
5.10 | 6.40713 | + | 3.69916i | −11.8808 | + | 45.2310i | −36.6324 | − | 63.4492i | −101.547 | + | 175.885i | −243.439 | + | 245.852i | −682.340 | + | 598.293i | − | 1489.02i | −1904.69 | − | 1074.76i | −1301.25 | + | 751.279i | |
5.11 | 8.08214 | + | 4.66623i | −45.6146 | + | 10.3104i | −20.4526 | − | 35.4250i | 123.341 | − | 213.633i | −416.775 | − | 129.518i | 658.195 | − | 624.758i | − | 1576.30i | 1974.39 | − | 940.611i | 1993.72 | − | 1151.08i | |
5.12 | 10.0113 | + | 5.78004i | −12.8127 | − | 44.9759i | 2.81783 | + | 4.88062i | 33.4474 | − | 57.9325i | 131.690 | − | 524.327i | −470.343 | − | 776.093i | − | 1414.54i | −1858.67 | + | 1152.53i | 669.705 | − | 386.655i | |
5.13 | 12.6634 | + | 7.31122i | 44.5268 | + | 14.2957i | 42.9078 | + | 74.3185i | −269.104 | + | 466.101i | 459.342 | + | 506.577i | 626.737 | − | 656.311i | − | 616.838i | 1778.27 | + | 1273.08i | −6815.54 | + | 3934.95i | |
5.14 | 14.6587 | + | 8.46320i | 35.2088 | − | 30.7789i | 79.2516 | + | 137.268i | 120.388 | − | 208.518i | 776.603 | − | 153.200i | 234.885 | + | 876.568i | 516.309i | 292.317 | − | 2167.38i | 3529.45 | − | 2037.73i | ||
5.15 | 17.0599 | + | 9.84952i | −45.1680 | − | 12.1182i | 130.026 | + | 225.212i | −147.583 | + | 255.621i | −651.201 | − | 651.618i | −45.1728 | + | 906.368i | 2601.29i | 1893.30 | + | 1094.71i | −5035.49 | + | 2907.24i | ||
5.16 | 17.9825 | + | 10.3822i | 7.52171 | + | 46.1565i | 151.580 | + | 262.545i | 171.660 | − | 297.324i | −343.947 | + | 908.102i | −505.231 | − | 753.847i | 3637.11i | −2073.85 | + | 694.352i | 6173.77 | − | 3564.43i | ||
17.1 | −17.9825 | + | 10.3822i | −36.2119 | + | 29.5923i | 151.580 | − | 262.545i | −171.660 | − | 297.324i | 343.947 | − | 908.102i | −505.231 | + | 753.847i | 3637.11i | 435.597 | − | 2143.18i | 6173.77 | + | 3564.43i | ||
17.2 | −17.0599 | + | 9.84952i | −12.0893 | − | 45.1758i | 130.026 | − | 225.212i | 147.583 | + | 255.621i | 651.201 | + | 651.618i | −45.1728 | − | 906.368i | 2601.29i | −1894.70 | + | 1092.29i | −5035.49 | − | 2907.24i | ||
17.3 | −14.6587 | + | 8.46320i | 44.2597 | + | 15.1022i | 79.2516 | − | 137.268i | −120.388 | − | 208.518i | −776.603 | + | 153.200i | 234.885 | − | 876.568i | 516.309i | 1730.84 | + | 1336.84i | 3529.45 | + | 2037.73i | ||
17.4 | −12.6634 | + | 7.31122i | 9.88299 | + | 45.7092i | 42.9078 | − | 74.3185i | 269.104 | + | 466.101i | −459.342 | − | 506.577i | 626.737 | + | 656.311i | − | 616.838i | −1991.65 | + | 903.486i | −6815.54 | − | 3934.95i | |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
21.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 21.8.g.b | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 21.8.g.b | ✓ | 32 |
7.c | even | 3 | 1 | 147.8.c.b | 32 | ||
7.d | odd | 6 | 1 | inner | 21.8.g.b | ✓ | 32 |
7.d | odd | 6 | 1 | 147.8.c.b | 32 | ||
21.g | even | 6 | 1 | inner | 21.8.g.b | ✓ | 32 |
21.g | even | 6 | 1 | 147.8.c.b | 32 | ||
21.h | odd | 6 | 1 | 147.8.c.b | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
21.8.g.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
21.8.g.b | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
21.8.g.b | ✓ | 32 | 7.d | odd | 6 | 1 | inner |
21.8.g.b | ✓ | 32 | 21.g | even | 6 | 1 | inner |
147.8.c.b | 32 | 7.c | even | 3 | 1 | ||
147.8.c.b | 32 | 7.d | odd | 6 | 1 | ||
147.8.c.b | 32 | 21.g | even | 6 | 1 | ||
147.8.c.b | 32 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{32} - 1599 T_{2}^{30} + 1524771 T_{2}^{28} - 958606738 T_{2}^{26} + 447659189388 T_{2}^{24} + \cdots + 68\!\cdots\!96 \) acting on \(S_{8}^{\mathrm{new}}(21, [\chi])\).