Properties

Label 2100.3.be.b.649.2
Level $2100$
Weight $3$
Character 2100.649
Analytic conductor $57.221$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,3,Mod(649,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.649");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.be (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 649.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2100.649
Dual form 2100.3.be.b.1249.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{3} +(-2.59808 - 6.50000i) q^{7} +(-1.50000 + 2.59808i) q^{9} +(-6.00000 - 10.3923i) q^{11} -1.73205 q^{13} +(13.5000 + 7.79423i) q^{19} +(7.50000 - 9.52628i) q^{21} +(20.7846 + 12.0000i) q^{23} -5.19615 q^{27} +6.00000 q^{29} +(-18.0000 + 10.3923i) q^{31} +(10.3923 - 18.0000i) q^{33} +(6.06218 + 3.50000i) q^{37} +(-1.50000 - 2.59808i) q^{39} -41.5692i q^{41} -50.0000i q^{43} +(-15.5885 + 27.0000i) q^{47} +(-35.5000 + 33.7750i) q^{49} +(-72.7461 + 42.0000i) q^{53} +27.0000i q^{57} +(-27.0000 + 15.5885i) q^{59} +(-52.5000 - 30.3109i) q^{61} +(20.7846 + 3.00000i) q^{63} +(-97.8609 + 56.5000i) q^{67} +41.5692i q^{69} -30.0000 q^{71} +(-6.06218 - 10.5000i) q^{73} +(-51.9615 + 66.0000i) q^{77} +(47.5000 - 82.2724i) q^{79} +(-4.50000 - 7.79423i) q^{81} -10.3923 q^{83} +(5.19615 + 9.00000i) q^{87} +(-153.000 - 88.3346i) q^{89} +(4.50000 + 11.2583i) q^{91} +(-31.1769 - 18.0000i) q^{93} -112.583 q^{97} +36.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} - 24 q^{11} + 54 q^{19} + 30 q^{21} + 24 q^{29} - 72 q^{31} - 6 q^{39} - 142 q^{49} - 108 q^{59} - 210 q^{61} - 120 q^{71} + 190 q^{79} - 18 q^{81} - 612 q^{89} + 18 q^{91} + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 + 1.50000i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.59808 6.50000i −0.371154 0.928571i
\(8\) 0 0
\(9\) −1.50000 + 2.59808i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −6.00000 10.3923i −0.545455 0.944755i −0.998578 0.0533073i \(-0.983024\pi\)
0.453124 0.891448i \(-0.350310\pi\)
\(12\) 0 0
\(13\) −1.73205 −0.133235 −0.0666173 0.997779i \(-0.521221\pi\)
−0.0666173 + 0.997779i \(0.521221\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 13.5000 + 7.79423i 0.710526 + 0.410223i 0.811256 0.584691i \(-0.198784\pi\)
−0.100730 + 0.994914i \(0.532118\pi\)
\(20\) 0 0
\(21\) 7.50000 9.52628i 0.357143 0.453632i
\(22\) 0 0
\(23\) 20.7846 + 12.0000i 0.903679 + 0.521739i 0.878392 0.477941i \(-0.158617\pi\)
0.0252868 + 0.999680i \(0.491950\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) 6.00000 0.206897 0.103448 0.994635i \(-0.467012\pi\)
0.103448 + 0.994635i \(0.467012\pi\)
\(30\) 0 0
\(31\) −18.0000 + 10.3923i −0.580645 + 0.335236i −0.761390 0.648294i \(-0.775483\pi\)
0.180745 + 0.983530i \(0.442149\pi\)
\(32\) 0 0
\(33\) 10.3923 18.0000i 0.314918 0.545455i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.06218 + 3.50000i 0.163843 + 0.0945946i 0.579679 0.814845i \(-0.303178\pi\)
−0.415837 + 0.909439i \(0.636511\pi\)
\(38\) 0 0
\(39\) −1.50000 2.59808i −0.0384615 0.0666173i
\(40\) 0 0
\(41\) 41.5692i 1.01388i −0.861980 0.506942i \(-0.830776\pi\)
0.861980 0.506942i \(-0.169224\pi\)
\(42\) 0 0
\(43\) 50.0000i 1.16279i −0.813621 0.581395i \(-0.802507\pi\)
0.813621 0.581395i \(-0.197493\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −15.5885 + 27.0000i −0.331669 + 0.574468i −0.982839 0.184464i \(-0.940945\pi\)
0.651170 + 0.758932i \(0.274278\pi\)
\(48\) 0 0
\(49\) −35.5000 + 33.7750i −0.724490 + 0.689286i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −72.7461 + 42.0000i −1.37257 + 0.792453i −0.991251 0.131991i \(-0.957863\pi\)
−0.381318 + 0.924444i \(0.624530\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 27.0000i 0.473684i
\(58\) 0 0
\(59\) −27.0000 + 15.5885i −0.457627 + 0.264211i −0.711046 0.703146i \(-0.751778\pi\)
0.253419 + 0.967357i \(0.418445\pi\)
\(60\) 0 0
\(61\) −52.5000 30.3109i −0.860656 0.496900i 0.00357609 0.999994i \(-0.498862\pi\)
−0.864232 + 0.503094i \(0.832195\pi\)
\(62\) 0 0
\(63\) 20.7846 + 3.00000i 0.329914 + 0.0476190i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −97.8609 + 56.5000i −1.46061 + 0.843284i −0.999039 0.0438199i \(-0.986047\pi\)
−0.461571 + 0.887103i \(0.652714\pi\)
\(68\) 0 0
\(69\) 41.5692i 0.602452i
\(70\) 0 0
\(71\) −30.0000 −0.422535 −0.211268 0.977428i \(-0.567759\pi\)
−0.211268 + 0.977428i \(0.567759\pi\)
\(72\) 0 0
\(73\) −6.06218 10.5000i −0.0830435 0.143836i 0.821512 0.570191i \(-0.193131\pi\)
−0.904556 + 0.426355i \(0.859797\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −51.9615 + 66.0000i −0.674825 + 0.857143i
\(78\) 0 0
\(79\) 47.5000 82.2724i 0.601266 1.04142i −0.391364 0.920236i \(-0.627997\pi\)
0.992630 0.121187i \(-0.0386701\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −10.3923 −0.125208 −0.0626042 0.998038i \(-0.519941\pi\)
−0.0626042 + 0.998038i \(0.519941\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.19615 + 9.00000i 0.0597259 + 0.103448i
\(88\) 0 0
\(89\) −153.000 88.3346i −1.71910 0.992523i −0.920577 0.390560i \(-0.872281\pi\)
−0.798524 0.601963i \(-0.794385\pi\)
\(90\) 0 0
\(91\) 4.50000 + 11.2583i 0.0494505 + 0.123718i
\(92\) 0 0
\(93\) −31.1769 18.0000i −0.335236 0.193548i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −112.583 −1.16065 −0.580326 0.814384i \(-0.697075\pi\)
−0.580326 + 0.814384i \(0.697075\pi\)
\(98\) 0 0
\(99\) 36.0000 0.363636
\(100\) 0 0
\(101\) 18.0000 10.3923i 0.178218 0.102894i −0.408237 0.912876i \(-0.633856\pi\)
0.586455 + 0.809982i \(0.300523\pi\)
\(102\) 0 0
\(103\) 2.59808 4.50000i 0.0252240 0.0436893i −0.853138 0.521686i \(-0.825303\pi\)
0.878362 + 0.477996i \(0.158637\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.3923 + 6.00000i 0.0971243 + 0.0560748i 0.547775 0.836625i \(-0.315475\pi\)
−0.450651 + 0.892700i \(0.648808\pi\)
\(108\) 0 0
\(109\) −8.50000 14.7224i −0.0779817 0.135068i 0.824397 0.566011i \(-0.191514\pi\)
−0.902379 + 0.430943i \(0.858181\pi\)
\(110\) 0 0
\(111\) 12.1244i 0.109228i
\(112\) 0 0
\(113\) 54.0000i 0.477876i 0.971035 + 0.238938i \(0.0767993\pi\)
−0.971035 + 0.238938i \(0.923201\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.59808 4.50000i 0.0222058 0.0384615i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.5000 + 19.9186i −0.0950413 + 0.164616i
\(122\) 0 0
\(123\) 62.3538 36.0000i 0.506942 0.292683i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 109.000i 0.858268i 0.903241 + 0.429134i \(0.141181\pi\)
−0.903241 + 0.429134i \(0.858819\pi\)
\(128\) 0 0
\(129\) 75.0000 43.3013i 0.581395 0.335669i
\(130\) 0 0
\(131\) 18.0000 + 10.3923i 0.137405 + 0.0793306i 0.567126 0.823631i \(-0.308055\pi\)
−0.429722 + 0.902961i \(0.641388\pi\)
\(132\) 0 0
\(133\) 15.5885 108.000i 0.117206 0.812030i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −135.100 + 78.0000i −0.986131 + 0.569343i −0.904116 0.427288i \(-0.859469\pi\)
−0.0820155 + 0.996631i \(0.526136\pi\)
\(138\) 0 0
\(139\) 15.5885i 0.112147i −0.998427 0.0560736i \(-0.982142\pi\)
0.998427 0.0560736i \(-0.0178581\pi\)
\(140\) 0 0
\(141\) −54.0000 −0.382979
\(142\) 0 0
\(143\) 10.3923 + 18.0000i 0.0726735 + 0.125874i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −81.4064 24.0000i −0.553785 0.163265i
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0 0
\(151\) −48.5000 84.0045i −0.321192 0.556321i 0.659542 0.751668i \(-0.270750\pi\)
−0.980734 + 0.195347i \(0.937417\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 26.8468 + 46.5000i 0.170999 + 0.296178i 0.938769 0.344546i \(-0.111967\pi\)
−0.767771 + 0.640725i \(0.778634\pi\)
\(158\) 0 0
\(159\) −126.000 72.7461i −0.792453 0.457523i
\(160\) 0 0
\(161\) 24.0000 166.277i 0.149068 1.03278i
\(162\) 0 0
\(163\) 193.124 + 111.500i 1.18481 + 0.684049i 0.957122 0.289686i \(-0.0935507\pi\)
0.227686 + 0.973735i \(0.426884\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −166.277 −0.995670 −0.497835 0.867272i \(-0.665871\pi\)
−0.497835 + 0.867272i \(0.665871\pi\)
\(168\) 0 0
\(169\) −166.000 −0.982249
\(170\) 0 0
\(171\) −40.5000 + 23.3827i −0.236842 + 0.136741i
\(172\) 0 0
\(173\) 67.5500 117.000i 0.390462 0.676301i −0.602048 0.798460i \(-0.705649\pi\)
0.992511 + 0.122159i \(0.0389818\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −46.7654 27.0000i −0.264211 0.152542i
\(178\) 0 0
\(179\) −81.0000 140.296i −0.452514 0.783777i 0.546028 0.837767i \(-0.316139\pi\)
−0.998541 + 0.0539901i \(0.982806\pi\)
\(180\) 0 0
\(181\) 277.128i 1.53109i −0.643380 0.765547i \(-0.722468\pi\)
0.643380 0.765547i \(-0.277532\pi\)
\(182\) 0 0
\(183\) 105.000i 0.573770i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 13.5000 + 33.7750i 0.0714286 + 0.178704i
\(190\) 0 0
\(191\) −78.0000 + 135.100i −0.408377 + 0.707330i −0.994708 0.102742i \(-0.967238\pi\)
0.586331 + 0.810072i \(0.300572\pi\)
\(192\) 0 0
\(193\) 112.583 65.0000i 0.583333 0.336788i −0.179124 0.983827i \(-0.557326\pi\)
0.762457 + 0.647039i \(0.223993\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 150.000i 0.761421i 0.924694 + 0.380711i \(0.124321\pi\)
−0.924694 + 0.380711i \(0.875679\pi\)
\(198\) 0 0
\(199\) 4.50000 2.59808i 0.0226131 0.0130557i −0.488651 0.872479i \(-0.662511\pi\)
0.511264 + 0.859424i \(0.329177\pi\)
\(200\) 0 0
\(201\) −169.500 97.8609i −0.843284 0.486870i
\(202\) 0 0
\(203\) −15.5885 39.0000i −0.0767904 0.192118i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −62.3538 + 36.0000i −0.301226 + 0.173913i
\(208\) 0 0
\(209\) 187.061i 0.895031i
\(210\) 0 0
\(211\) −305.000 −1.44550 −0.722749 0.691111i \(-0.757122\pi\)
−0.722749 + 0.691111i \(0.757122\pi\)
\(212\) 0 0
\(213\) −25.9808 45.0000i −0.121975 0.211268i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 114.315 + 90.0000i 0.526799 + 0.414747i
\(218\) 0 0
\(219\) 10.5000 18.1865i 0.0479452 0.0830435i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.5167 0.100972 0.0504858 0.998725i \(-0.483923\pi\)
0.0504858 + 0.998725i \(0.483923\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 192.258 + 333.000i 0.846950 + 1.46696i 0.883917 + 0.467644i \(0.154897\pi\)
−0.0369670 + 0.999316i \(0.511770\pi\)
\(228\) 0 0
\(229\) −205.500 118.645i −0.897380 0.518103i −0.0210307 0.999779i \(-0.506695\pi\)
−0.876349 + 0.481676i \(0.840028\pi\)
\(230\) 0 0
\(231\) −144.000 20.7846i −0.623377 0.0899767i
\(232\) 0 0
\(233\) 259.808 + 150.000i 1.11505 + 0.643777i 0.940134 0.340806i \(-0.110700\pi\)
0.174920 + 0.984583i \(0.444033\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 164.545 0.694282
\(238\) 0 0
\(239\) −240.000 −1.00418 −0.502092 0.864814i \(-0.667436\pi\)
−0.502092 + 0.864814i \(0.667436\pi\)
\(240\) 0 0
\(241\) 184.500 106.521i 0.765560 0.441996i −0.0657283 0.997838i \(-0.520937\pi\)
0.831289 + 0.555841i \(0.187604\pi\)
\(242\) 0 0
\(243\) 7.79423 13.5000i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −23.3827 13.5000i −0.0946667 0.0546559i
\(248\) 0 0
\(249\) −9.00000 15.5885i −0.0361446 0.0626042i
\(250\) 0 0
\(251\) 114.315i 0.455440i 0.973727 + 0.227720i \(0.0731270\pi\)
−0.973727 + 0.227720i \(0.926873\pi\)
\(252\) 0 0
\(253\) 288.000i 1.13834i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −192.258 + 333.000i −0.748084 + 1.29572i 0.200656 + 0.979662i \(0.435693\pi\)
−0.948740 + 0.316058i \(0.897641\pi\)
\(258\) 0 0
\(259\) 7.00000 48.4974i 0.0270270 0.187249i
\(260\) 0 0
\(261\) −9.00000 + 15.5885i −0.0344828 + 0.0597259i
\(262\) 0 0
\(263\) 166.277 96.0000i 0.632231 0.365019i −0.149384 0.988779i \(-0.547729\pi\)
0.781616 + 0.623760i \(0.214396\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 306.000i 1.14607i
\(268\) 0 0
\(269\) 63.0000 36.3731i 0.234201 0.135216i −0.378308 0.925680i \(-0.623494\pi\)
0.612508 + 0.790464i \(0.290161\pi\)
\(270\) 0 0
\(271\) −210.000 121.244i −0.774908 0.447393i 0.0597148 0.998215i \(-0.480981\pi\)
−0.834623 + 0.550822i \(0.814314\pi\)
\(272\) 0 0
\(273\) −12.9904 + 16.5000i −0.0475838 + 0.0604396i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 99.5929 57.5000i 0.359541 0.207581i −0.309338 0.950952i \(-0.600108\pi\)
0.668880 + 0.743371i \(0.266774\pi\)
\(278\) 0 0
\(279\) 62.3538i 0.223490i
\(280\) 0 0
\(281\) 528.000 1.87900 0.939502 0.342544i \(-0.111289\pi\)
0.939502 + 0.342544i \(0.111289\pi\)
\(282\) 0 0
\(283\) −99.5929 172.500i −0.351918 0.609541i 0.634667 0.772786i \(-0.281137\pi\)
−0.986586 + 0.163245i \(0.947804\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −270.200 + 108.000i −0.941463 + 0.376307i
\(288\) 0 0
\(289\) 144.500 250.281i 0.500000 0.866025i
\(290\) 0 0
\(291\) −97.5000 168.875i −0.335052 0.580326i
\(292\) 0 0
\(293\) −197.454 −0.673904 −0.336952 0.941522i \(-0.609396\pi\)
−0.336952 + 0.941522i \(0.609396\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 31.1769 + 54.0000i 0.104973 + 0.181818i
\(298\) 0 0
\(299\) −36.0000 20.7846i −0.120401 0.0695137i
\(300\) 0 0
\(301\) −325.000 + 129.904i −1.07973 + 0.431574i
\(302\) 0 0
\(303\) 31.1769 + 18.0000i 0.102894 + 0.0594059i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −478.046 −1.55715 −0.778577 0.627550i \(-0.784058\pi\)
−0.778577 + 0.627550i \(0.784058\pi\)
\(308\) 0 0
\(309\) 9.00000 0.0291262
\(310\) 0 0
\(311\) 207.000 119.512i 0.665595 0.384281i −0.128811 0.991669i \(-0.541116\pi\)
0.794405 + 0.607388i \(0.207783\pi\)
\(312\) 0 0
\(313\) −159.349 + 276.000i −0.509101 + 0.881789i 0.490843 + 0.871248i \(0.336689\pi\)
−0.999944 + 0.0105412i \(0.996645\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −57.1577 33.0000i −0.180308 0.104101i 0.407129 0.913371i \(-0.366530\pi\)
−0.587437 + 0.809270i \(0.699863\pi\)
\(318\) 0 0
\(319\) −36.0000 62.3538i −0.112853 0.195467i
\(320\) 0 0
\(321\) 20.7846i 0.0647496i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 14.7224 25.5000i 0.0450227 0.0779817i
\(328\) 0 0
\(329\) 216.000 + 31.1769i 0.656535 + 0.0947627i
\(330\) 0 0
\(331\) −111.500 + 193.124i −0.336858 + 0.583455i −0.983840 0.179050i \(-0.942698\pi\)
0.646982 + 0.762505i \(0.276031\pi\)
\(332\) 0 0
\(333\) −18.1865 + 10.5000i −0.0546142 + 0.0315315i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 158.000i 0.468843i 0.972135 + 0.234421i \(0.0753195\pi\)
−0.972135 + 0.234421i \(0.924680\pi\)
\(338\) 0 0
\(339\) −81.0000 + 46.7654i −0.238938 + 0.137951i
\(340\) 0 0
\(341\) 216.000 + 124.708i 0.633431 + 0.365712i
\(342\) 0 0
\(343\) 311.769 + 143.000i 0.908948 + 0.416910i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −51.9615 + 30.0000i −0.149745 + 0.0864553i −0.573000 0.819555i \(-0.694221\pi\)
0.423255 + 0.906010i \(0.360887\pi\)
\(348\) 0 0
\(349\) 34.6410i 0.0992579i 0.998768 + 0.0496290i \(0.0158039\pi\)
−0.998768 + 0.0496290i \(0.984196\pi\)
\(350\) 0 0
\(351\) 9.00000 0.0256410
\(352\) 0 0
\(353\) −10.3923 18.0000i −0.0294400 0.0509915i 0.850930 0.525279i \(-0.176039\pi\)
−0.880370 + 0.474288i \(0.842706\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −135.000 + 233.827i −0.376045 + 0.651328i −0.990483 0.137637i \(-0.956049\pi\)
0.614438 + 0.788965i \(0.289383\pi\)
\(360\) 0 0
\(361\) −59.0000 102.191i −0.163435 0.283078i
\(362\) 0 0
\(363\) −39.8372 −0.109744
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −266.736 462.000i −0.726801 1.25886i −0.958229 0.286004i \(-0.907673\pi\)
0.231428 0.972852i \(-0.425660\pi\)
\(368\) 0 0
\(369\) 108.000 + 62.3538i 0.292683 + 0.168981i
\(370\) 0 0
\(371\) 462.000 + 363.731i 1.24528 + 0.980406i
\(372\) 0 0
\(373\) −264.138 152.500i −0.708144 0.408847i 0.102229 0.994761i \(-0.467402\pi\)
−0.810373 + 0.585914i \(0.800736\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.3923 −0.0275658
\(378\) 0 0
\(379\) −271.000 −0.715040 −0.357520 0.933906i \(-0.616378\pi\)
−0.357520 + 0.933906i \(0.616378\pi\)
\(380\) 0 0
\(381\) −163.500 + 94.3968i −0.429134 + 0.247761i
\(382\) 0 0
\(383\) −254.611 + 441.000i −0.664782 + 1.15144i 0.314562 + 0.949237i \(0.398142\pi\)
−0.979344 + 0.202199i \(0.935191\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 129.904 + 75.0000i 0.335669 + 0.193798i
\(388\) 0 0
\(389\) −339.000 587.165i −0.871465 1.50942i −0.860481 0.509482i \(-0.829837\pi\)
−0.0109843 0.999940i \(-0.503496\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 36.0000i 0.0916031i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 239.023 414.000i 0.602073 1.04282i −0.390434 0.920631i \(-0.627675\pi\)
0.992507 0.122190i \(-0.0389918\pi\)
\(398\) 0 0
\(399\) 175.500 70.1481i 0.439850 0.175810i
\(400\) 0 0
\(401\) 117.000 202.650i 0.291771 0.505361i −0.682458 0.730925i \(-0.739089\pi\)
0.974228 + 0.225563i \(0.0724223\pi\)
\(402\) 0 0
\(403\) 31.1769 18.0000i 0.0773621 0.0446650i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 84.0000i 0.206388i
\(408\) 0 0
\(409\) 388.500 224.301i 0.949878 0.548412i 0.0568348 0.998384i \(-0.481899\pi\)
0.893043 + 0.449971i \(0.148566\pi\)
\(410\) 0 0
\(411\) −234.000 135.100i −0.569343 0.328710i
\(412\) 0 0
\(413\) 171.473 + 135.000i 0.415189 + 0.326877i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 23.3827 13.5000i 0.0560736 0.0323741i
\(418\) 0 0
\(419\) 800.207i 1.90980i 0.296923 + 0.954902i \(0.404040\pi\)
−0.296923 + 0.954902i \(0.595960\pi\)
\(420\) 0 0
\(421\) −151.000 −0.358670 −0.179335 0.983788i \(-0.557395\pi\)
−0.179335 + 0.983788i \(0.557395\pi\)
\(422\) 0 0
\(423\) −46.7654 81.0000i −0.110556 0.191489i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −60.6218 + 420.000i −0.141971 + 0.983607i
\(428\) 0 0
\(429\) −18.0000 + 31.1769i −0.0419580 + 0.0726735i
\(430\) 0 0
\(431\) 297.000 + 514.419i 0.689095 + 1.19355i 0.972131 + 0.234438i \(0.0753251\pi\)
−0.283036 + 0.959109i \(0.591342\pi\)
\(432\) 0 0
\(433\) −311.769 −0.720021 −0.360011 0.932948i \(-0.617227\pi\)
−0.360011 + 0.932948i \(0.617227\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 187.061 + 324.000i 0.428058 + 0.741419i
\(438\) 0 0
\(439\) 484.500 + 279.726i 1.10364 + 0.637190i 0.937176 0.348857i \(-0.113430\pi\)
0.166469 + 0.986047i \(0.446764\pi\)
\(440\) 0 0
\(441\) −34.5000 142.894i −0.0782313 0.324023i
\(442\) 0 0
\(443\) 358.535 + 207.000i 0.809333 + 0.467269i 0.846724 0.532032i \(-0.178571\pi\)
−0.0373912 + 0.999301i \(0.511905\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −234.000 −0.521158 −0.260579 0.965453i \(-0.583913\pi\)
−0.260579 + 0.965453i \(0.583913\pi\)
\(450\) 0 0
\(451\) −432.000 + 249.415i −0.957871 + 0.553027i
\(452\) 0 0
\(453\) 84.0045 145.500i 0.185440 0.321192i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −71.8801 41.5000i −0.157287 0.0908096i 0.419291 0.907852i \(-0.362279\pi\)
−0.576578 + 0.817042i \(0.695612\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 457.261i 0.991890i −0.868354 0.495945i \(-0.834822\pi\)
0.868354 0.495945i \(-0.165178\pi\)
\(462\) 0 0
\(463\) 517.000i 1.11663i −0.829629 0.558315i \(-0.811448\pi\)
0.829629 0.558315i \(-0.188552\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −275.396 + 477.000i −0.589713 + 1.02141i 0.404557 + 0.914513i \(0.367426\pi\)
−0.994270 + 0.106900i \(0.965907\pi\)
\(468\) 0 0
\(469\) 621.500 + 489.304i 1.32516 + 1.04329i
\(470\) 0 0
\(471\) −46.5000 + 80.5404i −0.0987261 + 0.170999i
\(472\) 0 0
\(473\) −519.615 + 300.000i −1.09855 + 0.634249i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 252.000i 0.528302i
\(478\) 0 0
\(479\) −297.000 + 171.473i −0.620042 + 0.357981i −0.776885 0.629642i \(-0.783202\pi\)
0.156844 + 0.987623i \(0.449868\pi\)
\(480\) 0 0
\(481\) −10.5000 6.06218i −0.0218295 0.0126033i
\(482\) 0 0
\(483\) 270.200 108.000i 0.559420 0.223602i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 614.878 355.000i 1.26258 0.728953i 0.289010 0.957326i \(-0.406674\pi\)
0.973574 + 0.228373i \(0.0733407\pi\)
\(488\) 0 0
\(489\) 386.247i 0.789872i
\(490\) 0 0
\(491\) 498.000 1.01426 0.507128 0.861871i \(-0.330707\pi\)
0.507128 + 0.861871i \(0.330707\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 77.9423 + 195.000i 0.156826 + 0.392354i
\(498\) 0 0
\(499\) −434.500 + 752.576i −0.870741 + 1.50817i −0.00951049 + 0.999955i \(0.503027\pi\)
−0.861231 + 0.508214i \(0.830306\pi\)
\(500\) 0 0
\(501\) −144.000 249.415i −0.287425 0.497835i
\(502\) 0 0
\(503\) −550.792 −1.09501 −0.547507 0.836801i \(-0.684423\pi\)
−0.547507 + 0.836801i \(0.684423\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −143.760 249.000i −0.283551 0.491124i
\(508\) 0 0
\(509\) −315.000 181.865i −0.618861 0.357299i 0.157565 0.987509i \(-0.449636\pi\)
−0.776425 + 0.630209i \(0.782969\pi\)
\(510\) 0 0
\(511\) −52.5000 + 66.6840i −0.102740 + 0.130497i
\(512\) 0 0
\(513\) −70.1481 40.5000i −0.136741 0.0789474i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 374.123 0.723642
\(518\) 0 0
\(519\) 234.000 0.450867
\(520\) 0 0
\(521\) 270.000 155.885i 0.518234 0.299203i −0.217978 0.975954i \(-0.569946\pi\)
0.736212 + 0.676751i \(0.236613\pi\)
\(522\) 0 0
\(523\) 173.205 300.000i 0.331176 0.573614i −0.651567 0.758591i \(-0.725888\pi\)
0.982743 + 0.184978i \(0.0592213\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.5000 + 40.7032i 0.0444234 + 0.0769437i
\(530\) 0 0
\(531\) 93.5307i 0.176141i
\(532\) 0 0
\(533\) 72.0000i 0.135084i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 140.296 243.000i 0.261259 0.452514i
\(538\) 0 0
\(539\) 564.000 + 166.277i 1.04638 + 0.308491i
\(540\) 0 0
\(541\) −68.5000 + 118.645i −0.126617 + 0.219308i −0.922364 0.386322i \(-0.873745\pi\)
0.795747 + 0.605630i \(0.207079\pi\)
\(542\) 0 0
\(543\) 415.692 240.000i 0.765547 0.441989i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 758.000i 1.38574i −0.721062 0.692870i \(-0.756346\pi\)
0.721062 0.692870i \(-0.243654\pi\)
\(548\) 0 0
\(549\) 157.500 90.9327i 0.286885 0.165633i
\(550\) 0 0
\(551\) 81.0000 + 46.7654i 0.147005 + 0.0848736i
\(552\) 0 0
\(553\) −658.179 95.0000i −1.19020 0.171790i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 576.773 333.000i 1.03550 0.597846i 0.116944 0.993139i \(-0.462690\pi\)
0.918555 + 0.395293i \(0.129357\pi\)
\(558\) 0 0
\(559\) 86.6025i 0.154924i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 161.081 + 279.000i 0.286111 + 0.495560i 0.972878 0.231318i \(-0.0743039\pi\)
−0.686767 + 0.726878i \(0.740971\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −38.9711 + 49.5000i −0.0687322 + 0.0873016i
\(568\) 0 0
\(569\) 342.000 592.361i 0.601054 1.04106i −0.391607 0.920132i \(-0.628081\pi\)
0.992662 0.120924i \(-0.0385859\pi\)
\(570\) 0 0
\(571\) 27.5000 + 47.6314i 0.0481611 + 0.0834175i 0.889101 0.457711i \(-0.151331\pi\)
−0.840940 + 0.541129i \(0.817997\pi\)
\(572\) 0 0
\(573\) −270.200 −0.471553
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 79.6743 + 138.000i 0.138084 + 0.239168i 0.926771 0.375626i \(-0.122572\pi\)
−0.788687 + 0.614794i \(0.789239\pi\)
\(578\) 0 0
\(579\) 195.000 + 112.583i 0.336788 + 0.194444i
\(580\) 0 0
\(581\) 27.0000 + 67.5500i 0.0464716 + 0.116265i
\(582\) 0 0
\(583\) 872.954 + 504.000i 1.49735 + 0.864494i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 249.415 0.424898 0.212449 0.977172i \(-0.431856\pi\)
0.212449 + 0.977172i \(0.431856\pi\)
\(588\) 0 0
\(589\) −324.000 −0.550085
\(590\) 0 0
\(591\) −225.000 + 129.904i −0.380711 + 0.219803i
\(592\) 0 0
\(593\) −555.988 + 963.000i −0.937586 + 1.62395i −0.167629 + 0.985850i \(0.553611\pi\)
−0.769957 + 0.638096i \(0.779722\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.79423 + 4.50000i 0.0130557 + 0.00753769i
\(598\) 0 0
\(599\) 432.000 + 748.246i 0.721202 + 1.24916i 0.960518 + 0.278217i \(0.0897434\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(600\) 0 0
\(601\) 829.652i 1.38045i −0.723593 0.690227i \(-0.757511\pi\)
0.723593 0.690227i \(-0.242489\pi\)
\(602\) 0 0
\(603\) 339.000i 0.562189i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 440.807 763.500i 0.726206 1.25783i −0.232270 0.972651i \(-0.574615\pi\)
0.958476 0.285174i \(-0.0920514\pi\)
\(608\) 0 0
\(609\) 45.0000 57.1577i 0.0738916 0.0938550i
\(610\) 0 0
\(611\) 27.0000 46.7654i 0.0441899 0.0765391i
\(612\) 0 0
\(613\) −39.8372 + 23.0000i −0.0649872 + 0.0375204i −0.532142 0.846655i \(-0.678613\pi\)
0.467154 + 0.884176i \(0.345279\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 174.000i 0.282010i −0.990009 0.141005i \(-0.954967\pi\)
0.990009 0.141005i \(-0.0450333\pi\)
\(618\) 0 0
\(619\) 762.000 439.941i 1.23102 0.710728i 0.263776 0.964584i \(-0.415032\pi\)
0.967242 + 0.253856i \(0.0816988\pi\)
\(620\) 0 0
\(621\) −108.000 62.3538i −0.173913 0.100409i
\(622\) 0 0
\(623\) −176.669 + 1224.00i −0.283578 + 1.96469i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 280.592 162.000i 0.447516 0.258373i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 875.000 1.38669 0.693344 0.720607i \(-0.256137\pi\)
0.693344 + 0.720607i \(0.256137\pi\)
\(632\) 0 0
\(633\) −264.138 457.500i −0.417279 0.722749i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 61.4878 58.5000i 0.0965272 0.0918367i
\(638\) 0 0
\(639\) 45.0000 77.9423i 0.0704225 0.121975i
\(640\) 0 0
\(641\) 486.000 + 841.777i 0.758190 + 1.31322i 0.943773 + 0.330595i \(0.107250\pi\)
−0.185582 + 0.982629i \(0.559417\pi\)
\(642\) 0 0
\(643\) 195.722 0.304388 0.152194 0.988351i \(-0.451366\pi\)
0.152194 + 0.988351i \(0.451366\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −109.119 189.000i −0.168654 0.292117i 0.769293 0.638896i \(-0.220609\pi\)
−0.937947 + 0.346779i \(0.887275\pi\)
\(648\) 0 0
\(649\) 324.000 + 187.061i 0.499230 + 0.288230i
\(650\) 0 0
\(651\) −36.0000 + 249.415i −0.0552995 + 0.383126i
\(652\) 0 0
\(653\) −259.808 150.000i −0.397868 0.229709i 0.287696 0.957722i \(-0.407111\pi\)
−0.685564 + 0.728013i \(0.740444\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 36.3731 0.0553624
\(658\) 0 0
\(659\) −678.000 −1.02883 −0.514416 0.857541i \(-0.671991\pi\)
−0.514416 + 0.857541i \(0.671991\pi\)
\(660\) 0 0
\(661\) 109.500 63.2199i 0.165658 0.0956427i −0.414879 0.909877i \(-0.636176\pi\)
0.580537 + 0.814234i \(0.302843\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 124.708 + 72.0000i 0.186968 + 0.107946i
\(668\) 0 0
\(669\) 19.5000 + 33.7750i 0.0291480 + 0.0504858i
\(670\) 0 0
\(671\) 727.461i 1.08415i
\(672\) 0 0
\(673\) 407.000i 0.604755i −0.953188 0.302377i \(-0.902220\pi\)
0.953188 0.302377i \(-0.0977803\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 550.792 954.000i 0.813578 1.40916i −0.0967669 0.995307i \(-0.530850\pi\)
0.910345 0.413851i \(-0.135817\pi\)
\(678\) 0 0
\(679\) 292.500 + 731.791i 0.430781 + 1.07775i
\(680\) 0 0
\(681\) −333.000 + 576.773i −0.488987 + 0.846950i
\(682\) 0 0
\(683\) 36.3731 21.0000i 0.0532549 0.0307467i −0.473136 0.880989i \(-0.656878\pi\)
0.526391 + 0.850243i \(0.323545\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 411.000i 0.598253i
\(688\) 0 0
\(689\) 126.000 72.7461i 0.182874 0.105582i
\(690\) 0 0
\(691\) 295.500 + 170.607i 0.427641 + 0.246899i 0.698341 0.715765i \(-0.253922\pi\)
−0.270700 + 0.962664i \(0.587255\pi\)
\(692\) 0 0
\(693\) −93.5307 234.000i −0.134965 0.337662i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 519.615i 0.743369i
\(700\) 0 0
\(701\) 1182.00 1.68616 0.843081 0.537786i \(-0.180739\pi\)
0.843081 + 0.537786i \(0.180739\pi\)
\(702\) 0 0
\(703\) 54.5596 + 94.5000i 0.0776097 + 0.134424i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −114.315 90.0000i −0.161691 0.127298i
\(708\) 0 0
\(709\) 291.500 504.893i 0.411142 0.712120i −0.583873 0.811845i \(-0.698463\pi\)
0.995015 + 0.0997257i \(0.0317965\pi\)
\(710\) 0 0
\(711\) 142.500 + 246.817i 0.200422 + 0.347141i
\(712\) 0 0
\(713\) −498.831 −0.699622
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −207.846 360.000i −0.289883 0.502092i
\(718\) 0 0
\(719\) −522.000 301.377i −0.726008 0.419161i 0.0909518 0.995855i \(-0.471009\pi\)
−0.816960 + 0.576694i \(0.804342\pi\)
\(720\) 0 0
\(721\) −36.0000 5.19615i −0.0499307 0.00720687i
\(722\) 0 0
\(723\) 319.563 + 184.500i 0.441996 + 0.255187i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −84.8705 −0.116741 −0.0583704 0.998295i \(-0.518590\pi\)
−0.0583704 + 0.998295i \(0.518590\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −108.253 + 187.500i −0.147685 + 0.255798i −0.930371 0.366618i \(-0.880516\pi\)
0.782686 + 0.622416i \(0.213849\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1174.33 + 678.000i 1.59339 + 0.919946i
\(738\) 0 0
\(739\) −243.500 421.754i −0.329499 0.570710i 0.652913 0.757433i \(-0.273547\pi\)
−0.982413 + 0.186723i \(0.940213\pi\)
\(740\) 0 0
\(741\) 46.7654i 0.0631112i
\(742\) 0 0
\(743\) 480.000i 0.646030i 0.946394 + 0.323015i \(0.104696\pi\)
−0.946394 + 0.323015i \(0.895304\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 15.5885 27.0000i 0.0208681 0.0361446i
\(748\) 0 0
\(749\) 12.0000 83.1384i 0.0160214 0.110999i
\(750\) 0 0
\(751\) −150.500 + 260.674i −0.200399 + 0.347102i −0.948657 0.316306i \(-0.897557\pi\)
0.748258 + 0.663408i \(0.230891\pi\)
\(752\) 0 0
\(753\) −171.473 + 99.0000i −0.227720 + 0.131474i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 811.000i 1.07133i −0.844429 0.535667i \(-0.820060\pi\)
0.844429 0.535667i \(-0.179940\pi\)
\(758\) 0 0
\(759\) 432.000 249.415i 0.569170 0.328610i
\(760\) 0 0
\(761\) 828.000 + 478.046i 1.08804 + 0.628181i 0.933054 0.359735i \(-0.117133\pi\)
0.154988 + 0.987916i \(0.450466\pi\)
\(762\) 0 0
\(763\) −73.6122 + 93.5000i −0.0964773 + 0.122543i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 46.7654 27.0000i 0.0609718 0.0352021i
\(768\) 0 0
\(769\) 1344.07i 1.74782i 0.486090 + 0.873909i \(0.338423\pi\)
−0.486090 + 0.873909i \(0.661577\pi\)
\(770\) 0 0
\(771\) −666.000 −0.863813
\(772\) 0 0
\(773\) −363.731 630.000i −0.470544 0.815006i 0.528888 0.848691i \(-0.322609\pi\)
−0.999433 + 0.0336850i \(0.989276\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 78.8083 31.5000i 0.101426 0.0405405i
\(778\) 0 0
\(779\) 324.000 561.184i 0.415918 0.720391i
\(780\) 0 0
\(781\) 180.000 + 311.769i 0.230474 + 0.399192i
\(782\) 0 0
\(783\) −31.1769 −0.0398173
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 446.003 + 772.500i 0.566713 + 0.981576i 0.996888 + 0.0788301i \(0.0251185\pi\)
−0.430175 + 0.902745i \(0.641548\pi\)
\(788\) 0 0
\(789\) 288.000 + 166.277i 0.365019 + 0.210744i
\(790\) 0 0
\(791\) 351.000 140.296i 0.443742 0.177366i
\(792\) 0 0
\(793\) 90.9327 + 52.5000i 0.114669 + 0.0662043i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1351.00 −1.69511 −0.847553 0.530711i \(-0.821925\pi\)
−0.847553 + 0.530711i \(0.821925\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 459.000 265.004i 0.573034 0.330841i
\(802\) 0 0
\(803\) −72.7461 + 126.000i −0.0905929 + 0.156912i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 109.119 + 63.0000i 0.135216 + 0.0780669i
\(808\) 0 0
\(809\) −96.0000 166.277i −0.118665 0.205534i 0.800574 0.599234i \(-0.204528\pi\)
−0.919239 + 0.393700i \(0.871195\pi\)
\(810\) 0 0
\(811\) 1234.95i 1.52275i 0.648310 + 0.761376i \(0.275476\pi\)
−0.648310 + 0.761376i \(0.724524\pi\)
\(812\) 0 0
\(813\) 420.000i 0.516605i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 389.711 675.000i 0.477003 0.826193i
\(818\) 0 0
\(819\) −36.0000 5.19615i −0.0439560 0.00634451i
\(820\) 0 0
\(821\) −498.000 + 862.561i −0.606577 + 1.05062i 0.385223 + 0.922824i \(0.374125\pi\)
−0.991800 + 0.127799i \(0.959209\pi\)
\(822\) 0 0
\(823\) 809.734 467.500i 0.983881 0.568044i 0.0804411 0.996759i \(-0.474367\pi\)
0.903439 + 0.428716i \(0.141034\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 228.000i 0.275695i −0.990453 0.137848i \(-0.955982\pi\)
0.990453 0.137848i \(-0.0440184\pi\)
\(828\) 0 0
\(829\) 304.500 175.803i 0.367310 0.212067i −0.304973 0.952361i \(-0.598647\pi\)
0.672283 + 0.740295i \(0.265314\pi\)
\(830\) 0 0
\(831\) 172.500 + 99.5929i 0.207581 + 0.119847i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 93.5307 54.0000i 0.111745 0.0645161i
\(838\) 0 0
\(839\) 852.169i 1.01570i 0.861447 + 0.507848i \(0.169559\pi\)
−0.861447 + 0.507848i \(0.830441\pi\)
\(840\) 0 0
\(841\) −805.000 −0.957194
\(842\) 0 0
\(843\) 457.261 + 792.000i 0.542422 + 0.939502i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 159.349 + 23.0000i 0.188133 + 0.0271547i
\(848\) 0 0
\(849\) 172.500 298.779i 0.203180 0.351918i
\(850\) 0 0
\(851\) 84.0000 + 145.492i 0.0987074 + 0.170966i
\(852\) 0 0
\(853\) −1344.07 −1.57570 −0.787850 0.615868i \(-0.788806\pi\)
−0.787850 + 0.615868i \(0.788806\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 493.634 + 855.000i 0.576003 + 0.997666i 0.995932 + 0.0901093i \(0.0287216\pi\)
−0.419929 + 0.907557i \(0.637945\pi\)
\(858\) 0 0
\(859\) −1194.00 689.356i −1.38999 0.802510i −0.396675 0.917959i \(-0.629836\pi\)
−0.993313 + 0.115449i \(0.963169\pi\)
\(860\) 0 0
\(861\) −396.000 311.769i −0.459930 0.362101i
\(862\) 0 0
\(863\) 1299.04 + 750.000i 1.50526 + 0.869061i 0.999981 + 0.00610429i \(0.00194307\pi\)
0.505277 + 0.862957i \(0.331390\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 500.563 0.577350
\(868\) 0 0
\(869\) −1140.00 −1.31185
\(870\) 0 0
\(871\) 169.500 97.8609i 0.194604 0.112355i
\(872\) 0 0
\(873\) 168.875 292.500i 0.193442 0.335052i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 627.868 + 362.500i 0.715928 + 0.413341i 0.813252 0.581912i \(-0.197695\pi\)
−0.0973244 + 0.995253i \(0.531028\pi\)
\(878\) 0 0
\(879\) −171.000 296.181i −0.194539 0.336952i
\(880\) 0 0
\(881\) 280.592i 0.318493i −0.987239 0.159246i \(-0.949094\pi\)
0.987239 0.159246i \(-0.0509064\pi\)
\(882\) 0 0
\(883\) 691.000i 0.782559i 0.920272 + 0.391280i \(0.127968\pi\)
−0.920272 + 0.391280i \(0.872032\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −161.081 + 279.000i −0.181602 + 0.314543i −0.942426 0.334414i \(-0.891461\pi\)
0.760824 + 0.648958i \(0.224795\pi\)
\(888\) 0 0
\(889\) 708.500 283.190i 0.796963 0.318549i
\(890\) 0 0
\(891\) −54.0000 + 93.5307i −0.0606061 + 0.104973i
\(892\) 0 0
\(893\) −420.888 + 243.000i −0.471320 + 0.272116i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 72.0000i 0.0802676i
\(898\) 0 0
\(899\) −108.000 + 62.3538i −0.120133 + 0.0693591i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −476.314 375.000i −0.527479 0.415282i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 814.930 470.500i 0.898489 0.518743i 0.0217796 0.999763i \(-0.493067\pi\)
0.876710 + 0.481020i \(0.159733\pi\)
\(908\) 0 0
\(909\) 62.3538i 0.0685961i
\(910\) 0 0
\(911\) 780.000 0.856202 0.428101 0.903731i \(-0.359183\pi\)
0.428101 + 0.903731i \(0.359183\pi\)
\(912\) 0 0
\(913\) 62.3538 + 108.000i 0.0682955 + 0.118291i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.7846 144.000i 0.0226659 0.157034i
\(918\) 0 0
\(919\) 809.000 1401.23i 0.880305 1.52473i 0.0293023 0.999571i \(-0.490671\pi\)
0.851002 0.525162i \(-0.175995\pi\)
\(920\) 0 0
\(921\) −414.000 717.069i −0.449511 0.778577i
\(922\) 0 0
\(923\) 51.9615 0.0562963
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7.79423 + 13.5000i 0.00840801 + 0.0145631i
\(928\) 0 0
\(929\) −225.000 129.904i −0.242196 0.139832i 0.373990 0.927433i \(-0.377990\pi\)
−0.616186 + 0.787601i \(0.711323\pi\)
\(930\) 0 0
\(931\) −742.500 + 179.267i −0.797530 + 0.192553i
\(932\) 0 0
\(933\) 358.535 + 207.000i 0.384281 + 0.221865i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6.92820 0.00739403 0.00369701 0.999993i \(-0.498823\pi\)
0.00369701 + 0.999993i \(0.498823\pi\)
\(938\) 0 0
\(939\) −552.000 −0.587859
\(940\) 0 0
\(941\) 621.000 358.535i 0.659936 0.381014i −0.132316 0.991208i \(-0.542242\pi\)
0.792253 + 0.610193i \(0.208908\pi\)
\(942\) 0 0
\(943\) 498.831 864.000i 0.528983 0.916225i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 233.827 + 135.000i 0.246913 + 0.142555i 0.618350 0.785903i \(-0.287801\pi\)
−0.371437 + 0.928458i \(0.621135\pi\)
\(948\) 0 0
\(949\) 10.5000 + 18.1865i 0.0110643 + 0.0191639i
\(950\) 0 0
\(951\) 114.315i 0.120205i
\(952\) 0 0
\(953\) 1266.00i 1.32844i −0.747539 0.664218i \(-0.768765\pi\)
0.747539 0.664218i \(-0.231235\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 62.3538 108.000i 0.0651555 0.112853i
\(958\) 0 0
\(959\) 858.000 + 675.500i 0.894682 + 0.704379i
\(960\) 0 0
\(961\) −264.500 + 458.127i −0.275234 + 0.476719i
\(962\) 0 0
\(963\) −31.1769 + 18.0000i −0.0323748 + 0.0186916i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1151.00i 1.19028i −0.803622 0.595140i \(-0.797097\pi\)
0.803622 0.595140i \(-0.202903\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 441.000 + 254.611i 0.454171 + 0.262216i 0.709590 0.704615i \(-0.248880\pi\)
−0.255419 + 0.966830i \(0.582213\pi\)
\(972\) 0 0
\(973\) −101.325 + 40.5000i −0.104137 + 0.0416238i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1179.53 681.000i 1.20729 0.697032i 0.245127 0.969491i \(-0.421170\pi\)
0.962167 + 0.272459i \(0.0878370\pi\)
\(978\) 0 0
\(979\) 2120.03i 2.16551i
\(980\) 0 0
\(981\) 51.0000 0.0519878
\(982\) 0 0
\(983\) 498.831 + 864.000i 0.507457 + 0.878942i 0.999963 + 0.00863259i \(0.00274787\pi\)
−0.492505 + 0.870309i \(0.663919\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 140.296 + 351.000i 0.142144 + 0.355623i
\(988\) 0 0
\(989\) 600.000 1039.23i 0.606673 1.05079i
\(990\) 0 0
\(991\) −581.000 1006.32i −0.586276 1.01546i −0.994715 0.102675i \(-0.967260\pi\)
0.408438 0.912786i \(-0.366073\pi\)
\(992\) 0 0
\(993\) −386.247 −0.388970
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −754.308 1306.50i −0.756578 1.31043i −0.944586 0.328264i \(-0.893536\pi\)
0.188008 0.982167i \(-0.439797\pi\)
\(998\) 0 0
\(999\) −31.5000 18.1865i −0.0315315 0.0182047i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.be.b.649.2 4
5.2 odd 4 2100.3.bd.e.901.1 yes 2
5.3 odd 4 2100.3.bd.a.901.1 2
5.4 even 2 inner 2100.3.be.b.649.1 4
7.3 odd 6 inner 2100.3.be.b.1249.1 4
35.3 even 12 2100.3.bd.a.1501.1 yes 2
35.17 even 12 2100.3.bd.e.1501.1 yes 2
35.24 odd 6 inner 2100.3.be.b.1249.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2100.3.bd.a.901.1 2 5.3 odd 4
2100.3.bd.a.1501.1 yes 2 35.3 even 12
2100.3.bd.e.901.1 yes 2 5.2 odd 4
2100.3.bd.e.1501.1 yes 2 35.17 even 12
2100.3.be.b.649.1 4 5.4 even 2 inner
2100.3.be.b.649.2 4 1.1 even 1 trivial
2100.3.be.b.1249.1 4 7.3 odd 6 inner
2100.3.be.b.1249.2 4 35.24 odd 6 inner