Properties

Label 2100.3.bd.e.901.1
Level $2100$
Weight $3$
Character 2100.901
Analytic conductor $57.221$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,3,Mod(901,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.901");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.bd (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2100.901
Dual form 2100.3.bd.e.1501.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{3} +(6.50000 - 2.59808i) q^{7} +(1.50000 - 2.59808i) q^{9} +(-6.00000 - 10.3923i) q^{11} +1.73205i q^{13} +(-13.5000 - 7.79423i) q^{19} +(7.50000 - 9.52628i) q^{21} +(12.0000 - 20.7846i) q^{23} -5.19615i q^{27} -6.00000 q^{29} +(-18.0000 + 10.3923i) q^{31} +(-18.0000 - 10.3923i) q^{33} +(-3.50000 + 6.06218i) q^{37} +(1.50000 + 2.59808i) q^{39} -41.5692i q^{41} -50.0000 q^{43} +(-27.0000 - 15.5885i) q^{47} +(35.5000 - 33.7750i) q^{49} +(42.0000 + 72.7461i) q^{53} -27.0000 q^{57} +(27.0000 - 15.5885i) q^{59} +(-52.5000 - 30.3109i) q^{61} +(3.00000 - 20.7846i) q^{63} +(-56.5000 - 97.8609i) q^{67} -41.5692i q^{69} -30.0000 q^{71} +(-10.5000 + 6.06218i) q^{73} +(-66.0000 - 51.9615i) q^{77} +(-47.5000 + 82.2724i) q^{79} +(-4.50000 - 7.79423i) q^{81} +10.3923i q^{83} +(-9.00000 + 5.19615i) q^{87} +(153.000 + 88.3346i) q^{89} +(4.50000 + 11.2583i) q^{91} +(-18.0000 + 31.1769i) q^{93} -112.583i q^{97} -36.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 13 q^{7} + 3 q^{9} - 12 q^{11} - 27 q^{19} + 15 q^{21} + 24 q^{23} - 12 q^{29} - 36 q^{31} - 36 q^{33} - 7 q^{37} + 3 q^{39} - 100 q^{43} - 54 q^{47} + 71 q^{49} + 84 q^{53} - 54 q^{57}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 0.866025i 0.500000 0.288675i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 6.50000 2.59808i 0.928571 0.371154i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) −6.00000 10.3923i −0.545455 0.944755i −0.998578 0.0533073i \(-0.983024\pi\)
0.453124 0.891448i \(-0.350310\pi\)
\(12\) 0 0
\(13\) 1.73205i 0.133235i 0.997779 + 0.0666173i \(0.0212207\pi\)
−0.997779 + 0.0666173i \(0.978779\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0 0
\(19\) −13.5000 7.79423i −0.710526 0.410223i 0.100730 0.994914i \(-0.467882\pi\)
−0.811256 + 0.584691i \(0.801216\pi\)
\(20\) 0 0
\(21\) 7.50000 9.52628i 0.357143 0.453632i
\(22\) 0 0
\(23\) 12.0000 20.7846i 0.521739 0.903679i −0.477941 0.878392i \(-0.658617\pi\)
0.999680 0.0252868i \(-0.00804990\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −6.00000 −0.206897 −0.103448 0.994635i \(-0.532988\pi\)
−0.103448 + 0.994635i \(0.532988\pi\)
\(30\) 0 0
\(31\) −18.0000 + 10.3923i −0.580645 + 0.335236i −0.761390 0.648294i \(-0.775483\pi\)
0.180745 + 0.983530i \(0.442149\pi\)
\(32\) 0 0
\(33\) −18.0000 10.3923i −0.545455 0.314918i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.50000 + 6.06218i −0.0945946 + 0.163843i −0.909439 0.415837i \(-0.863489\pi\)
0.814845 + 0.579679i \(0.196822\pi\)
\(38\) 0 0
\(39\) 1.50000 + 2.59808i 0.0384615 + 0.0666173i
\(40\) 0 0
\(41\) 41.5692i 1.01388i −0.861980 0.506942i \(-0.830776\pi\)
0.861980 0.506942i \(-0.169224\pi\)
\(42\) 0 0
\(43\) −50.0000 −1.16279 −0.581395 0.813621i \(-0.697493\pi\)
−0.581395 + 0.813621i \(0.697493\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −27.0000 15.5885i −0.574468 0.331669i 0.184464 0.982839i \(-0.440945\pi\)
−0.758932 + 0.651170i \(0.774278\pi\)
\(48\) 0 0
\(49\) 35.5000 33.7750i 0.724490 0.689286i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 42.0000 + 72.7461i 0.792453 + 1.37257i 0.924444 + 0.381318i \(0.124530\pi\)
−0.131991 + 0.991251i \(0.542137\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −27.0000 −0.473684
\(58\) 0 0
\(59\) 27.0000 15.5885i 0.457627 0.264211i −0.253419 0.967357i \(-0.581555\pi\)
0.711046 + 0.703146i \(0.248222\pi\)
\(60\) 0 0
\(61\) −52.5000 30.3109i −0.860656 0.496900i 0.00357609 0.999994i \(-0.498862\pi\)
−0.864232 + 0.503094i \(0.832195\pi\)
\(62\) 0 0
\(63\) 3.00000 20.7846i 0.0476190 0.329914i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −56.5000 97.8609i −0.843284 1.46061i −0.887103 0.461571i \(-0.847286\pi\)
0.0438199 0.999039i \(-0.486047\pi\)
\(68\) 0 0
\(69\) 41.5692i 0.602452i
\(70\) 0 0
\(71\) −30.0000 −0.422535 −0.211268 0.977428i \(-0.567759\pi\)
−0.211268 + 0.977428i \(0.567759\pi\)
\(72\) 0 0
\(73\) −10.5000 + 6.06218i −0.143836 + 0.0830435i −0.570191 0.821512i \(-0.693131\pi\)
0.426355 + 0.904556i \(0.359797\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −66.0000 51.9615i −0.857143 0.674825i
\(78\) 0 0
\(79\) −47.5000 + 82.2724i −0.601266 + 1.04142i 0.391364 + 0.920236i \(0.372003\pi\)
−0.992630 + 0.121187i \(0.961330\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 10.3923i 0.125208i 0.998038 + 0.0626042i \(0.0199406\pi\)
−0.998038 + 0.0626042i \(0.980059\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −9.00000 + 5.19615i −0.103448 + 0.0597259i
\(88\) 0 0
\(89\) 153.000 + 88.3346i 1.71910 + 0.992523i 0.920577 + 0.390560i \(0.127719\pi\)
0.798524 + 0.601963i \(0.205615\pi\)
\(90\) 0 0
\(91\) 4.50000 + 11.2583i 0.0494505 + 0.123718i
\(92\) 0 0
\(93\) −18.0000 + 31.1769i −0.193548 + 0.335236i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 112.583i 1.16065i −0.814384 0.580326i \(-0.802925\pi\)
0.814384 0.580326i \(-0.197075\pi\)
\(98\) 0 0
\(99\) −36.0000 −0.363636
\(100\) 0 0
\(101\) 18.0000 10.3923i 0.178218 0.102894i −0.408237 0.912876i \(-0.633856\pi\)
0.586455 + 0.809982i \(0.300523\pi\)
\(102\) 0 0
\(103\) −4.50000 2.59808i −0.0436893 0.0252240i 0.477996 0.878362i \(-0.341363\pi\)
−0.521686 + 0.853138i \(0.674697\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 + 10.3923i −0.0560748 + 0.0971243i −0.892700 0.450651i \(-0.851192\pi\)
0.836625 + 0.547775i \(0.184525\pi\)
\(108\) 0 0
\(109\) 8.50000 + 14.7224i 0.0779817 + 0.135068i 0.902379 0.430943i \(-0.141819\pi\)
−0.824397 + 0.566011i \(0.808486\pi\)
\(110\) 0 0
\(111\) 12.1244i 0.109228i
\(112\) 0 0
\(113\) 54.0000 0.477876 0.238938 0.971035i \(-0.423201\pi\)
0.238938 + 0.971035i \(0.423201\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.50000 + 2.59808i 0.0384615 + 0.0222058i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.5000 + 19.9186i −0.0950413 + 0.164616i
\(122\) 0 0
\(123\) −36.0000 62.3538i −0.292683 0.506942i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −109.000 −0.858268 −0.429134 0.903241i \(-0.641181\pi\)
−0.429134 + 0.903241i \(0.641181\pi\)
\(128\) 0 0
\(129\) −75.0000 + 43.3013i −0.581395 + 0.335669i
\(130\) 0 0
\(131\) 18.0000 + 10.3923i 0.137405 + 0.0793306i 0.567126 0.823631i \(-0.308055\pi\)
−0.429722 + 0.902961i \(0.641388\pi\)
\(132\) 0 0
\(133\) −108.000 15.5885i −0.812030 0.117206i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −78.0000 135.100i −0.569343 0.986131i −0.996631 0.0820155i \(-0.973864\pi\)
0.427288 0.904116i \(-0.359469\pi\)
\(138\) 0 0
\(139\) 15.5885i 0.112147i 0.998427 + 0.0560736i \(0.0178581\pi\)
−0.998427 + 0.0560736i \(0.982142\pi\)
\(140\) 0 0
\(141\) −54.0000 −0.382979
\(142\) 0 0
\(143\) 18.0000 10.3923i 0.125874 0.0726735i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 24.0000 81.4064i 0.163265 0.553785i
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0 0
\(151\) −48.5000 84.0045i −0.321192 0.556321i 0.659542 0.751668i \(-0.270750\pi\)
−0.980734 + 0.195347i \(0.937417\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −46.5000 + 26.8468i −0.296178 + 0.170999i −0.640725 0.767771i \(-0.721366\pi\)
0.344546 + 0.938769i \(0.388033\pi\)
\(158\) 0 0
\(159\) 126.000 + 72.7461i 0.792453 + 0.457523i
\(160\) 0 0
\(161\) 24.0000 166.277i 0.149068 1.03278i
\(162\) 0 0
\(163\) 111.500 193.124i 0.684049 1.18481i −0.289686 0.957122i \(-0.593551\pi\)
0.973735 0.227686i \(-0.0731159\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 166.277i 0.995670i −0.867272 0.497835i \(-0.834129\pi\)
0.867272 0.497835i \(-0.165871\pi\)
\(168\) 0 0
\(169\) 166.000 0.982249
\(170\) 0 0
\(171\) −40.5000 + 23.3827i −0.236842 + 0.136741i
\(172\) 0 0
\(173\) −117.000 67.5500i −0.676301 0.390462i 0.122159 0.992511i \(-0.461018\pi\)
−0.798460 + 0.602048i \(0.794351\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 27.0000 46.7654i 0.152542 0.264211i
\(178\) 0 0
\(179\) 81.0000 + 140.296i 0.452514 + 0.783777i 0.998541 0.0539901i \(-0.0171939\pi\)
−0.546028 + 0.837767i \(0.683861\pi\)
\(180\) 0 0
\(181\) 277.128i 1.53109i −0.643380 0.765547i \(-0.722468\pi\)
0.643380 0.765547i \(-0.277532\pi\)
\(182\) 0 0
\(183\) −105.000 −0.573770
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −13.5000 33.7750i −0.0714286 0.178704i
\(190\) 0 0
\(191\) −78.0000 + 135.100i −0.408377 + 0.707330i −0.994708 0.102742i \(-0.967238\pi\)
0.586331 + 0.810072i \(0.300572\pi\)
\(192\) 0 0
\(193\) −65.0000 112.583i −0.336788 0.583333i 0.647039 0.762457i \(-0.276007\pi\)
−0.983827 + 0.179124i \(0.942674\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −150.000 −0.761421 −0.380711 0.924694i \(-0.624321\pi\)
−0.380711 + 0.924694i \(0.624321\pi\)
\(198\) 0 0
\(199\) −4.50000 + 2.59808i −0.0226131 + 0.0130557i −0.511264 0.859424i \(-0.670823\pi\)
0.488651 + 0.872479i \(0.337489\pi\)
\(200\) 0 0
\(201\) −169.500 97.8609i −0.843284 0.486870i
\(202\) 0 0
\(203\) −39.0000 + 15.5885i −0.192118 + 0.0767904i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −36.0000 62.3538i −0.173913 0.301226i
\(208\) 0 0
\(209\) 187.061i 0.895031i
\(210\) 0 0
\(211\) −305.000 −1.44550 −0.722749 0.691111i \(-0.757122\pi\)
−0.722749 + 0.691111i \(0.757122\pi\)
\(212\) 0 0
\(213\) −45.0000 + 25.9808i −0.211268 + 0.121975i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −90.0000 + 114.315i −0.414747 + 0.526799i
\(218\) 0 0
\(219\) −10.5000 + 18.1865i −0.0479452 + 0.0830435i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.5167i 0.100972i −0.998725 0.0504858i \(-0.983923\pi\)
0.998725 0.0504858i \(-0.0160770\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −333.000 + 192.258i −1.46696 + 0.846950i −0.999316 0.0369670i \(-0.988230\pi\)
−0.467644 + 0.883917i \(0.654897\pi\)
\(228\) 0 0
\(229\) 205.500 + 118.645i 0.897380 + 0.518103i 0.876349 0.481676i \(-0.159972\pi\)
0.0210307 + 0.999779i \(0.493305\pi\)
\(230\) 0 0
\(231\) −144.000 20.7846i −0.623377 0.0899767i
\(232\) 0 0
\(233\) 150.000 259.808i 0.643777 1.11505i −0.340806 0.940134i \(-0.610700\pi\)
0.984583 0.174920i \(-0.0559668\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 164.545i 0.694282i
\(238\) 0 0
\(239\) 240.000 1.00418 0.502092 0.864814i \(-0.332564\pi\)
0.502092 + 0.864814i \(0.332564\pi\)
\(240\) 0 0
\(241\) 184.500 106.521i 0.765560 0.441996i −0.0657283 0.997838i \(-0.520937\pi\)
0.831289 + 0.555841i \(0.187604\pi\)
\(242\) 0 0
\(243\) −13.5000 7.79423i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 13.5000 23.3827i 0.0546559 0.0946667i
\(248\) 0 0
\(249\) 9.00000 + 15.5885i 0.0361446 + 0.0626042i
\(250\) 0 0
\(251\) 114.315i 0.455440i 0.973727 + 0.227720i \(0.0731270\pi\)
−0.973727 + 0.227720i \(0.926873\pi\)
\(252\) 0 0
\(253\) −288.000 −1.13834
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −333.000 192.258i −1.29572 0.748084i −0.316058 0.948740i \(-0.602359\pi\)
−0.979662 + 0.200656i \(0.935693\pi\)
\(258\) 0 0
\(259\) −7.00000 + 48.4974i −0.0270270 + 0.187249i
\(260\) 0 0
\(261\) −9.00000 + 15.5885i −0.0344828 + 0.0597259i
\(262\) 0 0
\(263\) −96.0000 166.277i −0.365019 0.632231i 0.623760 0.781616i \(-0.285604\pi\)
−0.988779 + 0.149384i \(0.952271\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 306.000 1.14607
\(268\) 0 0
\(269\) −63.0000 + 36.3731i −0.234201 + 0.135216i −0.612508 0.790464i \(-0.709839\pi\)
0.378308 + 0.925680i \(0.376506\pi\)
\(270\) 0 0
\(271\) −210.000 121.244i −0.774908 0.447393i 0.0597148 0.998215i \(-0.480981\pi\)
−0.834623 + 0.550822i \(0.814314\pi\)
\(272\) 0 0
\(273\) 16.5000 + 12.9904i 0.0604396 + 0.0475838i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 57.5000 + 99.5929i 0.207581 + 0.359541i 0.950952 0.309338i \(-0.100108\pi\)
−0.743371 + 0.668880i \(0.766774\pi\)
\(278\) 0 0
\(279\) 62.3538i 0.223490i
\(280\) 0 0
\(281\) 528.000 1.87900 0.939502 0.342544i \(-0.111289\pi\)
0.939502 + 0.342544i \(0.111289\pi\)
\(282\) 0 0
\(283\) −172.500 + 99.5929i −0.609541 + 0.351918i −0.772786 0.634667i \(-0.781137\pi\)
0.163245 + 0.986586i \(0.447804\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −108.000 270.200i −0.376307 0.941463i
\(288\) 0 0
\(289\) −144.500 + 250.281i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) −97.5000 168.875i −0.335052 0.580326i
\(292\) 0 0
\(293\) 197.454i 0.673904i 0.941522 + 0.336952i \(0.109396\pi\)
−0.941522 + 0.336952i \(0.890604\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −54.0000 + 31.1769i −0.181818 + 0.104973i
\(298\) 0 0
\(299\) 36.0000 + 20.7846i 0.120401 + 0.0695137i
\(300\) 0 0
\(301\) −325.000 + 129.904i −1.07973 + 0.431574i
\(302\) 0 0
\(303\) 18.0000 31.1769i 0.0594059 0.102894i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 478.046i 1.55715i −0.627550 0.778577i \(-0.715942\pi\)
0.627550 0.778577i \(-0.284058\pi\)
\(308\) 0 0
\(309\) −9.00000 −0.0291262
\(310\) 0 0
\(311\) 207.000 119.512i 0.665595 0.384281i −0.128811 0.991669i \(-0.541116\pi\)
0.794405 + 0.607388i \(0.207783\pi\)
\(312\) 0 0
\(313\) 276.000 + 159.349i 0.881789 + 0.509101i 0.871248 0.490843i \(-0.163311\pi\)
0.0105412 + 0.999944i \(0.496645\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 33.0000 57.1577i 0.104101 0.180308i −0.809270 0.587437i \(-0.800137\pi\)
0.913371 + 0.407129i \(0.133470\pi\)
\(318\) 0 0
\(319\) 36.0000 + 62.3538i 0.112853 + 0.195467i
\(320\) 0 0
\(321\) 20.7846i 0.0647496i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 25.5000 + 14.7224i 0.0779817 + 0.0450227i
\(328\) 0 0
\(329\) −216.000 31.1769i −0.656535 0.0947627i
\(330\) 0 0
\(331\) −111.500 + 193.124i −0.336858 + 0.583455i −0.983840 0.179050i \(-0.942698\pi\)
0.646982 + 0.762505i \(0.276031\pi\)
\(332\) 0 0
\(333\) 10.5000 + 18.1865i 0.0315315 + 0.0546142i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −158.000 −0.468843 −0.234421 0.972135i \(-0.575320\pi\)
−0.234421 + 0.972135i \(0.575320\pi\)
\(338\) 0 0
\(339\) 81.0000 46.7654i 0.238938 0.137951i
\(340\) 0 0
\(341\) 216.000 + 124.708i 0.633431 + 0.365712i
\(342\) 0 0
\(343\) 143.000 311.769i 0.416910 0.908948i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.0000 51.9615i −0.0864553 0.149745i 0.819555 0.573000i \(-0.194221\pi\)
−0.906010 + 0.423255i \(0.860887\pi\)
\(348\) 0 0
\(349\) 34.6410i 0.0992579i −0.998768 0.0496290i \(-0.984196\pi\)
0.998768 0.0496290i \(-0.0158039\pi\)
\(350\) 0 0
\(351\) 9.00000 0.0256410
\(352\) 0 0
\(353\) −18.0000 + 10.3923i −0.0509915 + 0.0294400i −0.525279 0.850930i \(-0.676039\pi\)
0.474288 + 0.880370i \(0.342706\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 135.000 233.827i 0.376045 0.651328i −0.614438 0.788965i \(-0.710617\pi\)
0.990483 + 0.137637i \(0.0439506\pi\)
\(360\) 0 0
\(361\) −59.0000 102.191i −0.163435 0.283078i
\(362\) 0 0
\(363\) 39.8372i 0.109744i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 462.000 266.736i 1.25886 0.726801i 0.286004 0.958229i \(-0.407673\pi\)
0.972852 + 0.231428i \(0.0743398\pi\)
\(368\) 0 0
\(369\) −108.000 62.3538i −0.292683 0.168981i
\(370\) 0 0
\(371\) 462.000 + 363.731i 1.24528 + 0.980406i
\(372\) 0 0
\(373\) −152.500 + 264.138i −0.408847 + 0.708144i −0.994761 0.102229i \(-0.967402\pi\)
0.585914 + 0.810373i \(0.300736\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.3923i 0.0275658i
\(378\) 0 0
\(379\) 271.000 0.715040 0.357520 0.933906i \(-0.383622\pi\)
0.357520 + 0.933906i \(0.383622\pi\)
\(380\) 0 0
\(381\) −163.500 + 94.3968i −0.429134 + 0.247761i
\(382\) 0 0
\(383\) 441.000 + 254.611i 1.15144 + 0.664782i 0.949237 0.314562i \(-0.101858\pi\)
0.202199 + 0.979344i \(0.435191\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −75.0000 + 129.904i −0.193798 + 0.335669i
\(388\) 0 0
\(389\) 339.000 + 587.165i 0.871465 + 1.50942i 0.860481 + 0.509482i \(0.170163\pi\)
0.0109843 + 0.999940i \(0.496504\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 36.0000 0.0916031
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 414.000 + 239.023i 1.04282 + 0.602073i 0.920631 0.390434i \(-0.127675\pi\)
0.122190 + 0.992507i \(0.461008\pi\)
\(398\) 0 0
\(399\) −175.500 + 70.1481i −0.439850 + 0.175810i
\(400\) 0 0
\(401\) 117.000 202.650i 0.291771 0.505361i −0.682458 0.730925i \(-0.739089\pi\)
0.974228 + 0.225563i \(0.0724223\pi\)
\(402\) 0 0
\(403\) −18.0000 31.1769i −0.0446650 0.0773621i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 84.0000 0.206388
\(408\) 0 0
\(409\) −388.500 + 224.301i −0.949878 + 0.548412i −0.893043 0.449971i \(-0.851434\pi\)
−0.0568348 + 0.998384i \(0.518101\pi\)
\(410\) 0 0
\(411\) −234.000 135.100i −0.569343 0.328710i
\(412\) 0 0
\(413\) 135.000 171.473i 0.326877 0.415189i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 13.5000 + 23.3827i 0.0323741 + 0.0560736i
\(418\) 0 0
\(419\) 800.207i 1.90980i −0.296923 0.954902i \(-0.595960\pi\)
0.296923 0.954902i \(-0.404040\pi\)
\(420\) 0 0
\(421\) −151.000 −0.358670 −0.179335 0.983788i \(-0.557395\pi\)
−0.179335 + 0.983788i \(0.557395\pi\)
\(422\) 0 0
\(423\) −81.0000 + 46.7654i −0.191489 + 0.110556i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −420.000 60.6218i −0.983607 0.141971i
\(428\) 0 0
\(429\) 18.0000 31.1769i 0.0419580 0.0726735i
\(430\) 0 0
\(431\) 297.000 + 514.419i 0.689095 + 1.19355i 0.972131 + 0.234438i \(0.0753251\pi\)
−0.283036 + 0.959109i \(0.591342\pi\)
\(432\) 0 0
\(433\) 311.769i 0.720021i 0.932948 + 0.360011i \(0.117227\pi\)
−0.932948 + 0.360011i \(0.882773\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −324.000 + 187.061i −0.741419 + 0.428058i
\(438\) 0 0
\(439\) −484.500 279.726i −1.10364 0.637190i −0.166469 0.986047i \(-0.553236\pi\)
−0.937176 + 0.348857i \(0.886570\pi\)
\(440\) 0 0
\(441\) −34.5000 142.894i −0.0782313 0.324023i
\(442\) 0 0
\(443\) 207.000 358.535i 0.467269 0.809333i −0.532032 0.846724i \(-0.678571\pi\)
0.999301 + 0.0373912i \(0.0119048\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 234.000 0.521158 0.260579 0.965453i \(-0.416087\pi\)
0.260579 + 0.965453i \(0.416087\pi\)
\(450\) 0 0
\(451\) −432.000 + 249.415i −0.957871 + 0.553027i
\(452\) 0 0
\(453\) −145.500 84.0045i −0.321192 0.185440i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 41.5000 71.8801i 0.0908096 0.157287i −0.817042 0.576578i \(-0.804388\pi\)
0.907852 + 0.419291i \(0.137721\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 457.261i 0.991890i −0.868354 0.495945i \(-0.834822\pi\)
0.868354 0.495945i \(-0.165178\pi\)
\(462\) 0 0
\(463\) −517.000 −1.11663 −0.558315 0.829629i \(-0.688552\pi\)
−0.558315 + 0.829629i \(0.688552\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −477.000 275.396i −1.02141 0.589713i −0.106900 0.994270i \(-0.534093\pi\)
−0.914513 + 0.404557i \(0.867426\pi\)
\(468\) 0 0
\(469\) −621.500 489.304i −1.32516 1.04329i
\(470\) 0 0
\(471\) −46.5000 + 80.5404i −0.0987261 + 0.170999i
\(472\) 0 0
\(473\) 300.000 + 519.615i 0.634249 + 1.09855i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 252.000 0.528302
\(478\) 0 0
\(479\) 297.000 171.473i 0.620042 0.357981i −0.156844 0.987623i \(-0.550132\pi\)
0.776885 + 0.629642i \(0.216798\pi\)
\(480\) 0 0
\(481\) −10.5000 6.06218i −0.0218295 0.0126033i
\(482\) 0 0
\(483\) −108.000 270.200i −0.223602 0.559420i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 355.000 + 614.878i 0.728953 + 1.26258i 0.957326 + 0.289010i \(0.0933260\pi\)
−0.228373 + 0.973574i \(0.573341\pi\)
\(488\) 0 0
\(489\) 386.247i 0.789872i
\(490\) 0 0
\(491\) 498.000 1.01426 0.507128 0.861871i \(-0.330707\pi\)
0.507128 + 0.861871i \(0.330707\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −195.000 + 77.9423i −0.392354 + 0.156826i
\(498\) 0 0
\(499\) 434.500 752.576i 0.870741 1.50817i 0.00951049 0.999955i \(-0.496973\pi\)
0.861231 0.508214i \(-0.169694\pi\)
\(500\) 0 0
\(501\) −144.000 249.415i −0.287425 0.497835i
\(502\) 0 0
\(503\) 550.792i 1.09501i 0.836801 + 0.547507i \(0.184423\pi\)
−0.836801 + 0.547507i \(0.815577\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 249.000 143.760i 0.491124 0.283551i
\(508\) 0 0
\(509\) 315.000 + 181.865i 0.618861 + 0.357299i 0.776425 0.630209i \(-0.217031\pi\)
−0.157565 + 0.987509i \(0.550364\pi\)
\(510\) 0 0
\(511\) −52.5000 + 66.6840i −0.102740 + 0.130497i
\(512\) 0 0
\(513\) −40.5000 + 70.1481i −0.0789474 + 0.136741i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 374.123i 0.723642i
\(518\) 0 0
\(519\) −234.000 −0.450867
\(520\) 0 0
\(521\) 270.000 155.885i 0.518234 0.299203i −0.217978 0.975954i \(-0.569946\pi\)
0.736212 + 0.676751i \(0.236613\pi\)
\(522\) 0 0
\(523\) −300.000 173.205i −0.573614 0.331176i 0.184978 0.982743i \(-0.440779\pi\)
−0.758591 + 0.651567i \(0.774112\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.5000 40.7032i −0.0444234 0.0769437i
\(530\) 0 0
\(531\) 93.5307i 0.176141i
\(532\) 0 0
\(533\) 72.0000 0.135084
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 243.000 + 140.296i 0.452514 + 0.261259i
\(538\) 0 0
\(539\) −564.000 166.277i −1.04638 0.308491i
\(540\) 0 0
\(541\) −68.5000 + 118.645i −0.126617 + 0.219308i −0.922364 0.386322i \(-0.873745\pi\)
0.795747 + 0.605630i \(0.207079\pi\)
\(542\) 0 0
\(543\) −240.000 415.692i −0.441989 0.765547i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 758.000 1.38574 0.692870 0.721062i \(-0.256346\pi\)
0.692870 + 0.721062i \(0.256346\pi\)
\(548\) 0 0
\(549\) −157.500 + 90.9327i −0.286885 + 0.165633i
\(550\) 0 0
\(551\) 81.0000 + 46.7654i 0.147005 + 0.0848736i
\(552\) 0 0
\(553\) −95.0000 + 658.179i −0.171790 + 1.19020i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 333.000 + 576.773i 0.597846 + 1.03550i 0.993139 + 0.116944i \(0.0373098\pi\)
−0.395293 + 0.918555i \(0.629357\pi\)
\(558\) 0 0
\(559\) 86.6025i 0.154924i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 279.000 161.081i 0.495560 0.286111i −0.231318 0.972878i \(-0.574304\pi\)
0.726878 + 0.686767i \(0.240971\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −49.5000 38.9711i −0.0873016 0.0687322i
\(568\) 0 0
\(569\) −342.000 + 592.361i −0.601054 + 1.04106i 0.391607 + 0.920132i \(0.371919\pi\)
−0.992662 + 0.120924i \(0.961414\pi\)
\(570\) 0 0
\(571\) 27.5000 + 47.6314i 0.0481611 + 0.0834175i 0.889101 0.457711i \(-0.151331\pi\)
−0.840940 + 0.541129i \(0.817997\pi\)
\(572\) 0 0
\(573\) 270.200i 0.471553i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −138.000 + 79.6743i −0.239168 + 0.138084i −0.614794 0.788687i \(-0.710761\pi\)
0.375626 + 0.926771i \(0.377428\pi\)
\(578\) 0 0
\(579\) −195.000 112.583i −0.336788 0.194444i
\(580\) 0 0
\(581\) 27.0000 + 67.5500i 0.0464716 + 0.116265i
\(582\) 0 0
\(583\) 504.000 872.954i 0.864494 1.49735i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 249.415i 0.424898i 0.977172 + 0.212449i \(0.0681440\pi\)
−0.977172 + 0.212449i \(0.931856\pi\)
\(588\) 0 0
\(589\) 324.000 0.550085
\(590\) 0 0
\(591\) −225.000 + 129.904i −0.380711 + 0.219803i
\(592\) 0 0
\(593\) 963.000 + 555.988i 1.62395 + 0.937586i 0.985850 + 0.167629i \(0.0536110\pi\)
0.638096 + 0.769957i \(0.279722\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.50000 + 7.79423i −0.00753769 + 0.0130557i
\(598\) 0 0
\(599\) −432.000 748.246i −0.721202 1.24916i −0.960518 0.278217i \(-0.910257\pi\)
0.239316 0.970942i \(-0.423077\pi\)
\(600\) 0 0
\(601\) 829.652i 1.38045i −0.723593 0.690227i \(-0.757511\pi\)
0.723593 0.690227i \(-0.242489\pi\)
\(602\) 0 0
\(603\) −339.000 −0.562189
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 763.500 + 440.807i 1.25783 + 0.726206i 0.972651 0.232270i \(-0.0746153\pi\)
0.285174 + 0.958476i \(0.407949\pi\)
\(608\) 0 0
\(609\) −45.0000 + 57.1577i −0.0738916 + 0.0938550i
\(610\) 0 0
\(611\) 27.0000 46.7654i 0.0441899 0.0765391i
\(612\) 0 0
\(613\) 23.0000 + 39.8372i 0.0375204 + 0.0649872i 0.884176 0.467154i \(-0.154721\pi\)
−0.846655 + 0.532142i \(0.821387\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 174.000 0.282010 0.141005 0.990009i \(-0.454967\pi\)
0.141005 + 0.990009i \(0.454967\pi\)
\(618\) 0 0
\(619\) −762.000 + 439.941i −1.23102 + 0.710728i −0.967242 0.253856i \(-0.918301\pi\)
−0.263776 + 0.964584i \(0.584968\pi\)
\(620\) 0 0
\(621\) −108.000 62.3538i −0.173913 0.100409i
\(622\) 0 0
\(623\) 1224.00 + 176.669i 1.96469 + 0.283578i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 162.000 + 280.592i 0.258373 + 0.447516i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 875.000 1.38669 0.693344 0.720607i \(-0.256137\pi\)
0.693344 + 0.720607i \(0.256137\pi\)
\(632\) 0 0
\(633\) −457.500 + 264.138i −0.722749 + 0.417279i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 58.5000 + 61.4878i 0.0918367 + 0.0965272i
\(638\) 0 0
\(639\) −45.0000 + 77.9423i −0.0704225 + 0.121975i
\(640\) 0 0
\(641\) 486.000 + 841.777i 0.758190 + 1.31322i 0.943773 + 0.330595i \(0.107250\pi\)
−0.185582 + 0.982629i \(0.559417\pi\)
\(642\) 0 0
\(643\) 195.722i 0.304388i −0.988351 0.152194i \(-0.951366\pi\)
0.988351 0.152194i \(-0.0486339\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 189.000 109.119i 0.292117 0.168654i −0.346779 0.937947i \(-0.612725\pi\)
0.638896 + 0.769293i \(0.279391\pi\)
\(648\) 0 0
\(649\) −324.000 187.061i −0.499230 0.288230i
\(650\) 0 0
\(651\) −36.0000 + 249.415i −0.0552995 + 0.383126i
\(652\) 0 0
\(653\) −150.000 + 259.808i −0.229709 + 0.397868i −0.957722 0.287696i \(-0.907111\pi\)
0.728013 + 0.685564i \(0.240444\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 36.3731i 0.0553624i
\(658\) 0 0
\(659\) 678.000 1.02883 0.514416 0.857541i \(-0.328009\pi\)
0.514416 + 0.857541i \(0.328009\pi\)
\(660\) 0 0
\(661\) 109.500 63.2199i 0.165658 0.0956427i −0.414879 0.909877i \(-0.636176\pi\)
0.580537 + 0.814234i \(0.302843\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −72.0000 + 124.708i −0.107946 + 0.186968i
\(668\) 0 0
\(669\) −19.5000 33.7750i −0.0291480 0.0504858i
\(670\) 0 0
\(671\) 727.461i 1.08415i
\(672\) 0 0
\(673\) −407.000 −0.604755 −0.302377 0.953188i \(-0.597780\pi\)
−0.302377 + 0.953188i \(0.597780\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 954.000 + 550.792i 1.40916 + 0.813578i 0.995307 0.0967669i \(-0.0308501\pi\)
0.413851 + 0.910345i \(0.364183\pi\)
\(678\) 0 0
\(679\) −292.500 731.791i −0.430781 1.07775i
\(680\) 0 0
\(681\) −333.000 + 576.773i −0.488987 + 0.846950i
\(682\) 0 0
\(683\) −21.0000 36.3731i −0.0307467 0.0532549i 0.850243 0.526391i \(-0.176455\pi\)
−0.880989 + 0.473136i \(0.843122\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 411.000 0.598253
\(688\) 0 0
\(689\) −126.000 + 72.7461i −0.182874 + 0.105582i
\(690\) 0 0
\(691\) 295.500 + 170.607i 0.427641 + 0.246899i 0.698341 0.715765i \(-0.253922\pi\)
−0.270700 + 0.962664i \(0.587255\pi\)
\(692\) 0 0
\(693\) −234.000 + 93.5307i −0.337662 + 0.134965i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 519.615i 0.743369i
\(700\) 0 0
\(701\) 1182.00 1.68616 0.843081 0.537786i \(-0.180739\pi\)
0.843081 + 0.537786i \(0.180739\pi\)
\(702\) 0 0
\(703\) 94.5000 54.5596i 0.134424 0.0776097i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 90.0000 114.315i 0.127298 0.161691i
\(708\) 0 0
\(709\) −291.500 + 504.893i −0.411142 + 0.712120i −0.995015 0.0997257i \(-0.968203\pi\)
0.583873 + 0.811845i \(0.301537\pi\)
\(710\) 0 0
\(711\) 142.500 + 246.817i 0.200422 + 0.347141i
\(712\) 0 0
\(713\) 498.831i 0.699622i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 360.000 207.846i 0.502092 0.289883i
\(718\) 0 0
\(719\) 522.000 + 301.377i 0.726008 + 0.419161i 0.816960 0.576694i \(-0.195658\pi\)
−0.0909518 + 0.995855i \(0.528991\pi\)
\(720\) 0 0
\(721\) −36.0000 5.19615i −0.0499307 0.00720687i
\(722\) 0 0
\(723\) 184.500 319.563i 0.255187 0.441996i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 84.8705i 0.116741i −0.998295 0.0583704i \(-0.981410\pi\)
0.998295 0.0583704i \(-0.0185904\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 187.500 + 108.253i 0.255798 + 0.147685i 0.622416 0.782686i \(-0.286151\pi\)
−0.366618 + 0.930371i \(0.619484\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −678.000 + 1174.33i −0.919946 + 1.59339i
\(738\) 0 0
\(739\) 243.500 + 421.754i 0.329499 + 0.570710i 0.982413 0.186723i \(-0.0597867\pi\)
−0.652913 + 0.757433i \(0.726453\pi\)
\(740\) 0 0
\(741\) 46.7654i 0.0631112i
\(742\) 0 0
\(743\) 480.000 0.646030 0.323015 0.946394i \(-0.395304\pi\)
0.323015 + 0.946394i \(0.395304\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 27.0000 + 15.5885i 0.0361446 + 0.0208681i
\(748\) 0 0
\(749\) −12.0000 + 83.1384i −0.0160214 + 0.110999i
\(750\) 0 0
\(751\) −150.500 + 260.674i −0.200399 + 0.347102i −0.948657 0.316306i \(-0.897557\pi\)
0.748258 + 0.663408i \(0.230891\pi\)
\(752\) 0 0
\(753\) 99.0000 + 171.473i 0.131474 + 0.227720i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 811.000 1.07133 0.535667 0.844429i \(-0.320060\pi\)
0.535667 + 0.844429i \(0.320060\pi\)
\(758\) 0 0
\(759\) −432.000 + 249.415i −0.569170 + 0.328610i
\(760\) 0 0
\(761\) 828.000 + 478.046i 1.08804 + 0.628181i 0.933054 0.359735i \(-0.117133\pi\)
0.154988 + 0.987916i \(0.450466\pi\)
\(762\) 0 0
\(763\) 93.5000 + 73.6122i 0.122543 + 0.0964773i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.0000 + 46.7654i 0.0352021 + 0.0609718i
\(768\) 0 0
\(769\) 1344.07i 1.74782i −0.486090 0.873909i \(-0.661577\pi\)
0.486090 0.873909i \(-0.338423\pi\)
\(770\) 0 0
\(771\) −666.000 −0.863813
\(772\) 0 0
\(773\) −630.000 + 363.731i −0.815006 + 0.470544i −0.848691 0.528888i \(-0.822609\pi\)
0.0336850 + 0.999433i \(0.489276\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 31.5000 + 78.8083i 0.0405405 + 0.101426i
\(778\) 0 0
\(779\) −324.000 + 561.184i −0.415918 + 0.720391i
\(780\) 0 0
\(781\) 180.000 + 311.769i 0.230474 + 0.399192i
\(782\) 0 0
\(783\) 31.1769i 0.0398173i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −772.500 + 446.003i −0.981576 + 0.566713i −0.902745 0.430175i \(-0.858452\pi\)
−0.0788301 + 0.996888i \(0.525118\pi\)
\(788\) 0 0
\(789\) −288.000 166.277i −0.365019 0.210744i
\(790\) 0 0
\(791\) 351.000 140.296i 0.443742 0.177366i
\(792\) 0 0
\(793\) 52.5000 90.9327i 0.0662043 0.114669i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1351.00i 1.69511i −0.530711 0.847553i \(-0.678075\pi\)
0.530711 0.847553i \(-0.321925\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 459.000 265.004i 0.573034 0.330841i
\(802\) 0 0
\(803\) 126.000 + 72.7461i 0.156912 + 0.0905929i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −63.0000 + 109.119i −0.0780669 + 0.135216i
\(808\) 0 0
\(809\) 96.0000 + 166.277i 0.118665 + 0.205534i 0.919239 0.393700i \(-0.128805\pi\)
−0.800574 + 0.599234i \(0.795472\pi\)
\(810\) 0 0
\(811\) 1234.95i 1.52275i 0.648310 + 0.761376i \(0.275476\pi\)
−0.648310 + 0.761376i \(0.724524\pi\)
\(812\) 0 0
\(813\) −420.000 −0.516605
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 675.000 + 389.711i 0.826193 + 0.477003i
\(818\) 0 0
\(819\) 36.0000 + 5.19615i 0.0439560 + 0.00634451i
\(820\) 0 0
\(821\) −498.000 + 862.561i −0.606577 + 1.05062i 0.385223 + 0.922824i \(0.374125\pi\)
−0.991800 + 0.127799i \(0.959209\pi\)
\(822\) 0 0
\(823\) −467.500 809.734i −0.568044 0.983881i −0.996759 0.0804411i \(-0.974367\pi\)
0.428716 0.903439i \(-0.358966\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 228.000 0.275695 0.137848 0.990453i \(-0.455982\pi\)
0.137848 + 0.990453i \(0.455982\pi\)
\(828\) 0 0
\(829\) −304.500 + 175.803i −0.367310 + 0.212067i −0.672283 0.740295i \(-0.734686\pi\)
0.304973 + 0.952361i \(0.401353\pi\)
\(830\) 0 0
\(831\) 172.500 + 99.5929i 0.207581 + 0.119847i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 54.0000 + 93.5307i 0.0645161 + 0.111745i
\(838\) 0 0
\(839\) 852.169i 1.01570i −0.861447 0.507848i \(-0.830441\pi\)
0.861447 0.507848i \(-0.169559\pi\)
\(840\) 0 0
\(841\) −805.000 −0.957194
\(842\) 0 0
\(843\) 792.000 457.261i 0.939502 0.542422i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −23.0000 + 159.349i −0.0271547 + 0.188133i
\(848\) 0 0
\(849\) −172.500 + 298.779i −0.203180 + 0.351918i
\(850\) 0 0
\(851\) 84.0000 + 145.492i 0.0987074 + 0.170966i
\(852\) 0 0
\(853\) 1344.07i 1.57570i 0.615868 + 0.787850i \(0.288806\pi\)
−0.615868 + 0.787850i \(0.711194\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −855.000 + 493.634i −0.997666 + 0.576003i −0.907557 0.419929i \(-0.862055\pi\)
−0.0901093 + 0.995932i \(0.528722\pi\)
\(858\) 0 0
\(859\) 1194.00 + 689.356i 1.38999 + 0.802510i 0.993313 0.115449i \(-0.0368307\pi\)
0.396675 + 0.917959i \(0.370164\pi\)
\(860\) 0 0
\(861\) −396.000 311.769i −0.459930 0.362101i
\(862\) 0 0
\(863\) 750.000 1299.04i 0.869061 1.50526i 0.00610429 0.999981i \(-0.498057\pi\)
0.862957 0.505277i \(-0.168610\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 500.563i 0.577350i
\(868\) 0 0
\(869\) 1140.00 1.31185
\(870\) 0 0
\(871\) 169.500 97.8609i 0.194604 0.112355i
\(872\) 0 0
\(873\) −292.500 168.875i −0.335052 0.193442i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −362.500 + 627.868i −0.413341 + 0.715928i −0.995253 0.0973244i \(-0.968972\pi\)
0.581912 + 0.813252i \(0.302305\pi\)
\(878\) 0 0
\(879\) 171.000 + 296.181i 0.194539 + 0.336952i
\(880\) 0 0
\(881\) 280.592i 0.318493i −0.987239 0.159246i \(-0.949094\pi\)
0.987239 0.159246i \(-0.0509064\pi\)
\(882\) 0 0
\(883\) 691.000 0.782559 0.391280 0.920272i \(-0.372032\pi\)
0.391280 + 0.920272i \(0.372032\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −279.000 161.081i −0.314543 0.181602i 0.334414 0.942426i \(-0.391461\pi\)
−0.648958 + 0.760824i \(0.724795\pi\)
\(888\) 0 0
\(889\) −708.500 + 283.190i −0.796963 + 0.318549i
\(890\) 0 0
\(891\) −54.0000 + 93.5307i −0.0606061 + 0.104973i
\(892\) 0 0
\(893\) 243.000 + 420.888i 0.272116 + 0.471320i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 72.0000 0.0802676
\(898\) 0 0
\(899\) 108.000 62.3538i 0.120133 0.0693591i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −375.000 + 476.314i −0.415282 + 0.527479i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 470.500 + 814.930i 0.518743 + 0.898489i 0.999763 + 0.0217796i \(0.00693322\pi\)
−0.481020 + 0.876710i \(0.659733\pi\)
\(908\) 0 0
\(909\) 62.3538i 0.0685961i
\(910\) 0 0
\(911\) 780.000 0.856202 0.428101 0.903731i \(-0.359183\pi\)
0.428101 + 0.903731i \(0.359183\pi\)
\(912\) 0 0
\(913\) 108.000 62.3538i 0.118291 0.0682955i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 144.000 + 20.7846i 0.157034 + 0.0226659i
\(918\) 0 0
\(919\) −809.000 + 1401.23i −0.880305 + 1.52473i −0.0293023 + 0.999571i \(0.509329\pi\)
−0.851002 + 0.525162i \(0.824005\pi\)
\(920\) 0 0
\(921\) −414.000 717.069i −0.449511 0.778577i
\(922\) 0 0
\(923\) 51.9615i 0.0562963i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −13.5000 + 7.79423i −0.0145631 + 0.00840801i
\(928\) 0 0
\(929\) 225.000 + 129.904i 0.242196 + 0.139832i 0.616186 0.787601i \(-0.288677\pi\)
−0.373990 + 0.927433i \(0.622010\pi\)
\(930\) 0 0
\(931\) −742.500 + 179.267i −0.797530 + 0.192553i
\(932\) 0 0
\(933\) 207.000 358.535i 0.221865 0.384281i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6.92820i 0.00739403i 0.999993 + 0.00369701i \(0.00117680\pi\)
−0.999993 + 0.00369701i \(0.998823\pi\)
\(938\) 0 0
\(939\) 552.000 0.587859
\(940\) 0 0
\(941\) 621.000 358.535i 0.659936 0.381014i −0.132316 0.991208i \(-0.542242\pi\)
0.792253 + 0.610193i \(0.208908\pi\)
\(942\) 0 0
\(943\) −864.000 498.831i −0.916225 0.528983i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −135.000 + 233.827i −0.142555 + 0.246913i −0.928458 0.371437i \(-0.878865\pi\)
0.785903 + 0.618350i \(0.212199\pi\)
\(948\) 0 0
\(949\) −10.5000 18.1865i −0.0110643 0.0191639i
\(950\) 0 0
\(951\) 114.315i 0.120205i
\(952\) 0 0
\(953\) −1266.00 −1.32844 −0.664218 0.747539i \(-0.731235\pi\)
−0.664218 + 0.747539i \(0.731235\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 108.000 + 62.3538i 0.112853 + 0.0651555i
\(958\) 0 0
\(959\) −858.000 675.500i −0.894682 0.704379i
\(960\) 0 0
\(961\) −264.500 + 458.127i −0.275234 + 0.476719i
\(962\) 0 0
\(963\) 18.0000 + 31.1769i 0.0186916 + 0.0323748i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1151.00 1.19028 0.595140 0.803622i \(-0.297097\pi\)
0.595140 + 0.803622i \(0.297097\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 441.000 + 254.611i 0.454171 + 0.262216i 0.709590 0.704615i \(-0.248880\pi\)
−0.255419 + 0.966830i \(0.582213\pi\)
\(972\) 0 0
\(973\) 40.5000 + 101.325i 0.0416238 + 0.104137i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 681.000 + 1179.53i 0.697032 + 1.20729i 0.969491 + 0.245127i \(0.0788297\pi\)
−0.272459 + 0.962167i \(0.587837\pi\)
\(978\) 0 0
\(979\) 2120.03i 2.16551i
\(980\) 0 0
\(981\) 51.0000 0.0519878
\(982\) 0 0
\(983\) 864.000 498.831i 0.878942 0.507457i 0.00863259 0.999963i \(-0.497252\pi\)
0.870309 + 0.492505i \(0.163919\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −351.000 + 140.296i −0.355623 + 0.142144i
\(988\) 0 0
\(989\) −600.000 + 1039.23i −0.606673 + 1.05079i
\(990\) 0 0
\(991\) −581.000 1006.32i −0.586276 1.01546i −0.994715 0.102675i \(-0.967260\pi\)
0.408438 0.912786i \(-0.366073\pi\)
\(992\) 0 0
\(993\) 386.247i 0.388970i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1306.50 754.308i 1.31043 0.756578i 0.328264 0.944586i \(-0.393536\pi\)
0.982167 + 0.188008i \(0.0602032\pi\)
\(998\) 0 0
\(999\) 31.5000 + 18.1865i 0.0315315 + 0.0182047i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.bd.e.901.1 yes 2
5.2 odd 4 2100.3.be.b.649.1 4
5.3 odd 4 2100.3.be.b.649.2 4
5.4 even 2 2100.3.bd.a.901.1 2
7.3 odd 6 inner 2100.3.bd.e.1501.1 yes 2
35.3 even 12 2100.3.be.b.1249.1 4
35.17 even 12 2100.3.be.b.1249.2 4
35.24 odd 6 2100.3.bd.a.1501.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2100.3.bd.a.901.1 2 5.4 even 2
2100.3.bd.a.1501.1 yes 2 35.24 odd 6
2100.3.bd.e.901.1 yes 2 1.1 even 1 trivial
2100.3.bd.e.1501.1 yes 2 7.3 odd 6 inner
2100.3.be.b.649.1 4 5.2 odd 4
2100.3.be.b.649.2 4 5.3 odd 4
2100.3.be.b.1249.1 4 35.3 even 12
2100.3.be.b.1249.2 4 35.17 even 12