Properties

Label 2100.4.a.u.1.1
Level $2100$
Weight $4$
Character 2100.1
Self dual yes
Analytic conductor $123.904$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.904011012\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 420)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-11.4018\) of defining polynomial
Character \(\chi\) \(=\) 2100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +7.00000 q^{7} +9.00000 q^{9} -8.00000 q^{11} -47.6070 q^{13} +3.60702 q^{17} -107.214 q^{19} +21.0000 q^{21} +29.6070 q^{23} +27.0000 q^{27} +250.035 q^{29} +299.249 q^{31} -24.0000 q^{33} +14.0351 q^{37} -142.821 q^{39} -234.856 q^{41} +120.035 q^{43} -503.249 q^{47} +49.0000 q^{49} +10.8211 q^{51} -715.642 q^{53} -321.642 q^{57} -148.070 q^{59} +137.965 q^{61} +63.0000 q^{63} -820.821 q^{67} +88.8211 q^{69} -726.463 q^{71} -968.393 q^{73} -56.0000 q^{77} +1182.57 q^{79} +81.0000 q^{81} -724.070 q^{83} +750.105 q^{87} +325.144 q^{89} -333.249 q^{91} +897.747 q^{93} -976.463 q^{97} -72.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 14 q^{7} + 18 q^{9} - 16 q^{11} - 4 q^{13} - 84 q^{17} - 32 q^{19} + 42 q^{21} - 32 q^{23} + 54 q^{27} + 44 q^{29} - 40 q^{31} - 48 q^{33} - 428 q^{37} - 12 q^{39} + 260 q^{41} - 216 q^{43}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −8.00000 −0.219281 −0.109640 0.993971i \(-0.534970\pi\)
−0.109640 + 0.993971i \(0.534970\pi\)
\(12\) 0 0
\(13\) −47.6070 −1.01568 −0.507839 0.861452i \(-0.669555\pi\)
−0.507839 + 0.861452i \(0.669555\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.60702 0.0514606 0.0257303 0.999669i \(-0.491809\pi\)
0.0257303 + 0.999669i \(0.491809\pi\)
\(18\) 0 0
\(19\) −107.214 −1.29456 −0.647279 0.762254i \(-0.724093\pi\)
−0.647279 + 0.762254i \(0.724093\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 29.6070 0.268413 0.134206 0.990953i \(-0.457152\pi\)
0.134206 + 0.990953i \(0.457152\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 250.035 1.60105 0.800523 0.599302i \(-0.204555\pi\)
0.800523 + 0.599302i \(0.204555\pi\)
\(30\) 0 0
\(31\) 299.249 1.73377 0.866883 0.498512i \(-0.166120\pi\)
0.866883 + 0.498512i \(0.166120\pi\)
\(32\) 0 0
\(33\) −24.0000 −0.126602
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 14.0351 0.0623609 0.0311805 0.999514i \(-0.490073\pi\)
0.0311805 + 0.999514i \(0.490073\pi\)
\(38\) 0 0
\(39\) −142.821 −0.586402
\(40\) 0 0
\(41\) −234.856 −0.894594 −0.447297 0.894385i \(-0.647613\pi\)
−0.447297 + 0.894385i \(0.647613\pi\)
\(42\) 0 0
\(43\) 120.035 0.425702 0.212851 0.977085i \(-0.431725\pi\)
0.212851 + 0.977085i \(0.431725\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −503.249 −1.56184 −0.780919 0.624632i \(-0.785249\pi\)
−0.780919 + 0.624632i \(0.785249\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 10.8211 0.0297108
\(52\) 0 0
\(53\) −715.642 −1.85474 −0.927368 0.374151i \(-0.877934\pi\)
−0.927368 + 0.374151i \(0.877934\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −321.642 −0.747413
\(58\) 0 0
\(59\) −148.070 −0.326730 −0.163365 0.986566i \(-0.552235\pi\)
−0.163365 + 0.986566i \(0.552235\pi\)
\(60\) 0 0
\(61\) 137.965 0.289584 0.144792 0.989462i \(-0.453749\pi\)
0.144792 + 0.989462i \(0.453749\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −820.821 −1.49671 −0.748353 0.663301i \(-0.769155\pi\)
−0.748353 + 0.663301i \(0.769155\pi\)
\(68\) 0 0
\(69\) 88.8211 0.154968
\(70\) 0 0
\(71\) −726.463 −1.21430 −0.607150 0.794587i \(-0.707687\pi\)
−0.607150 + 0.794587i \(0.707687\pi\)
\(72\) 0 0
\(73\) −968.393 −1.55263 −0.776314 0.630347i \(-0.782913\pi\)
−0.776314 + 0.630347i \(0.782913\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −56.0000 −0.0828804
\(78\) 0 0
\(79\) 1182.57 1.68417 0.842084 0.539346i \(-0.181328\pi\)
0.842084 + 0.539346i \(0.181328\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −724.070 −0.957555 −0.478777 0.877936i \(-0.658920\pi\)
−0.478777 + 0.877936i \(0.658920\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 750.105 0.924365
\(88\) 0 0
\(89\) 325.144 0.387249 0.193625 0.981076i \(-0.437976\pi\)
0.193625 + 0.981076i \(0.437976\pi\)
\(90\) 0 0
\(91\) −333.249 −0.383890
\(92\) 0 0
\(93\) 897.747 1.00099
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −976.463 −1.02211 −0.511056 0.859548i \(-0.670745\pi\)
−0.511056 + 0.859548i \(0.670745\pi\)
\(98\) 0 0
\(99\) −72.0000 −0.0730937
\(100\) 0 0
\(101\) −13.0737 −0.0128800 −0.00644001 0.999979i \(-0.502050\pi\)
−0.00644001 + 0.999979i \(0.502050\pi\)
\(102\) 0 0
\(103\) −712.000 −0.681121 −0.340560 0.940223i \(-0.610617\pi\)
−0.340560 + 0.940223i \(0.610617\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1814.46 1.63935 0.819677 0.572827i \(-0.194153\pi\)
0.819677 + 0.572827i \(0.194153\pi\)
\(108\) 0 0
\(109\) 1039.57 0.913513 0.456757 0.889592i \(-0.349011\pi\)
0.456757 + 0.889592i \(0.349011\pi\)
\(110\) 0 0
\(111\) 42.1053 0.0360041
\(112\) 0 0
\(113\) 587.572 0.489151 0.244576 0.969630i \(-0.421351\pi\)
0.244576 + 0.969630i \(0.421351\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −428.463 −0.338559
\(118\) 0 0
\(119\) 25.2491 0.0194503
\(120\) 0 0
\(121\) −1267.00 −0.951916
\(122\) 0 0
\(123\) −704.568 −0.516494
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 580.856 0.405848 0.202924 0.979195i \(-0.434956\pi\)
0.202924 + 0.979195i \(0.434956\pi\)
\(128\) 0 0
\(129\) 360.105 0.245779
\(130\) 0 0
\(131\) −923.860 −0.616168 −0.308084 0.951359i \(-0.599688\pi\)
−0.308084 + 0.951359i \(0.599688\pi\)
\(132\) 0 0
\(133\) −750.498 −0.489297
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1744.64 1.08799 0.543995 0.839089i \(-0.316911\pi\)
0.543995 + 0.839089i \(0.316911\pi\)
\(138\) 0 0
\(139\) −2851.64 −1.74009 −0.870045 0.492972i \(-0.835910\pi\)
−0.870045 + 0.492972i \(0.835910\pi\)
\(140\) 0 0
\(141\) −1509.75 −0.901728
\(142\) 0 0
\(143\) 380.856 0.222719
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) −1342.04 −0.737878 −0.368939 0.929454i \(-0.620279\pi\)
−0.368939 + 0.929454i \(0.620279\pi\)
\(150\) 0 0
\(151\) −897.712 −0.483807 −0.241903 0.970300i \(-0.577772\pi\)
−0.241903 + 0.970300i \(0.577772\pi\)
\(152\) 0 0
\(153\) 32.4632 0.0171535
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1266.96 −0.644042 −0.322021 0.946733i \(-0.604362\pi\)
−0.322021 + 0.946733i \(0.604362\pi\)
\(158\) 0 0
\(159\) −2146.93 −1.07083
\(160\) 0 0
\(161\) 207.249 0.101450
\(162\) 0 0
\(163\) −555.179 −0.266779 −0.133389 0.991064i \(-0.542586\pi\)
−0.133389 + 0.991064i \(0.542586\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −656.961 −0.304414 −0.152207 0.988349i \(-0.548638\pi\)
−0.152207 + 0.988349i \(0.548638\pi\)
\(168\) 0 0
\(169\) 69.4281 0.0316013
\(170\) 0 0
\(171\) −964.926 −0.431519
\(172\) 0 0
\(173\) 1115.99 0.490447 0.245224 0.969467i \(-0.421139\pi\)
0.245224 + 0.969467i \(0.421139\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −444.211 −0.188638
\(178\) 0 0
\(179\) 1801.99 0.752443 0.376221 0.926530i \(-0.377223\pi\)
0.376221 + 0.926530i \(0.377223\pi\)
\(180\) 0 0
\(181\) 2570.25 1.05550 0.527748 0.849401i \(-0.323036\pi\)
0.527748 + 0.849401i \(0.323036\pi\)
\(182\) 0 0
\(183\) 413.895 0.167191
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −28.8561 −0.0112843
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) −5224.25 −1.97913 −0.989563 0.144099i \(-0.953971\pi\)
−0.989563 + 0.144099i \(0.953971\pi\)
\(192\) 0 0
\(193\) −2109.07 −0.786603 −0.393302 0.919409i \(-0.628667\pi\)
−0.393302 + 0.919409i \(0.628667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1338.86 0.484211 0.242105 0.970250i \(-0.422162\pi\)
0.242105 + 0.970250i \(0.422162\pi\)
\(198\) 0 0
\(199\) 2637.10 0.939393 0.469696 0.882828i \(-0.344363\pi\)
0.469696 + 0.882828i \(0.344363\pi\)
\(200\) 0 0
\(201\) −2462.46 −0.864123
\(202\) 0 0
\(203\) 1750.25 0.605139
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 266.463 0.0894709
\(208\) 0 0
\(209\) 857.712 0.283872
\(210\) 0 0
\(211\) −3.64915 −0.00119061 −0.000595303 1.00000i \(-0.500189\pi\)
−0.000595303 1.00000i \(0.500189\pi\)
\(212\) 0 0
\(213\) −2179.39 −0.701077
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2094.74 0.655302
\(218\) 0 0
\(219\) −2905.18 −0.896410
\(220\) 0 0
\(221\) −171.719 −0.0522674
\(222\) 0 0
\(223\) −5381.00 −1.61587 −0.807933 0.589274i \(-0.799414\pi\)
−0.807933 + 0.589274i \(0.799414\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2159.07 0.631290 0.315645 0.948877i \(-0.397779\pi\)
0.315645 + 0.948877i \(0.397779\pi\)
\(228\) 0 0
\(229\) −423.467 −0.122199 −0.0610993 0.998132i \(-0.519461\pi\)
−0.0610993 + 0.998132i \(0.519461\pi\)
\(230\) 0 0
\(231\) −168.000 −0.0478510
\(232\) 0 0
\(233\) −3336.34 −0.938074 −0.469037 0.883179i \(-0.655399\pi\)
−0.469037 + 0.883179i \(0.655399\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3547.71 0.972355
\(238\) 0 0
\(239\) −5800.60 −1.56991 −0.784957 0.619550i \(-0.787315\pi\)
−0.784957 + 0.619550i \(0.787315\pi\)
\(240\) 0 0
\(241\) −4531.56 −1.21122 −0.605609 0.795763i \(-0.707070\pi\)
−0.605609 + 0.795763i \(0.707070\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5104.14 1.31485
\(248\) 0 0
\(249\) −2172.21 −0.552844
\(250\) 0 0
\(251\) −2527.71 −0.635647 −0.317823 0.948150i \(-0.602952\pi\)
−0.317823 + 0.948150i \(0.602952\pi\)
\(252\) 0 0
\(253\) −236.856 −0.0588578
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −508.884 −0.123515 −0.0617574 0.998091i \(-0.519671\pi\)
−0.0617574 + 0.998091i \(0.519671\pi\)
\(258\) 0 0
\(259\) 98.2456 0.0235702
\(260\) 0 0
\(261\) 2250.32 0.533682
\(262\) 0 0
\(263\) 1048.89 0.245922 0.122961 0.992412i \(-0.460761\pi\)
0.122961 + 0.992412i \(0.460761\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 975.432 0.223578
\(268\) 0 0
\(269\) 4642.72 1.05231 0.526155 0.850389i \(-0.323633\pi\)
0.526155 + 0.850389i \(0.323633\pi\)
\(270\) 0 0
\(271\) −3659.53 −0.820297 −0.410149 0.912019i \(-0.634523\pi\)
−0.410149 + 0.912019i \(0.634523\pi\)
\(272\) 0 0
\(273\) −999.747 −0.221639
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5066.18 −1.09891 −0.549453 0.835525i \(-0.685164\pi\)
−0.549453 + 0.835525i \(0.685164\pi\)
\(278\) 0 0
\(279\) 2693.24 0.577922
\(280\) 0 0
\(281\) −1405.72 −0.298428 −0.149214 0.988805i \(-0.547674\pi\)
−0.149214 + 0.988805i \(0.547674\pi\)
\(282\) 0 0
\(283\) −5147.72 −1.08127 −0.540636 0.841256i \(-0.681816\pi\)
−0.540636 + 0.841256i \(0.681816\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1643.99 −0.338125
\(288\) 0 0
\(289\) −4899.99 −0.997352
\(290\) 0 0
\(291\) −2929.39 −0.590116
\(292\) 0 0
\(293\) −6426.65 −1.28139 −0.640697 0.767794i \(-0.721355\pi\)
−0.640697 + 0.767794i \(0.721355\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −216.000 −0.0422006
\(298\) 0 0
\(299\) −1409.50 −0.272621
\(300\) 0 0
\(301\) 840.246 0.160900
\(302\) 0 0
\(303\) −39.2211 −0.00743628
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −3511.35 −0.652780 −0.326390 0.945235i \(-0.605832\pi\)
−0.326390 + 0.945235i \(0.605832\pi\)
\(308\) 0 0
\(309\) −2136.00 −0.393245
\(310\) 0 0
\(311\) 3487.13 0.635810 0.317905 0.948123i \(-0.397021\pi\)
0.317905 + 0.948123i \(0.397021\pi\)
\(312\) 0 0
\(313\) −3936.53 −0.710882 −0.355441 0.934699i \(-0.615669\pi\)
−0.355441 + 0.934699i \(0.615669\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5641.64 0.999577 0.499788 0.866148i \(-0.333411\pi\)
0.499788 + 0.866148i \(0.333411\pi\)
\(318\) 0 0
\(319\) −2000.28 −0.351079
\(320\) 0 0
\(321\) 5443.39 0.946481
\(322\) 0 0
\(323\) −386.723 −0.0666187
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3118.72 0.527417
\(328\) 0 0
\(329\) −3522.74 −0.590320
\(330\) 0 0
\(331\) 7988.77 1.32659 0.663297 0.748356i \(-0.269157\pi\)
0.663297 + 0.748356i \(0.269157\pi\)
\(332\) 0 0
\(333\) 126.316 0.0207870
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1701.65 0.275059 0.137529 0.990498i \(-0.456084\pi\)
0.137529 + 0.990498i \(0.456084\pi\)
\(338\) 0 0
\(339\) 1762.72 0.282412
\(340\) 0 0
\(341\) −2393.99 −0.380182
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7223.09 1.11745 0.558726 0.829352i \(-0.311290\pi\)
0.558726 + 0.829352i \(0.311290\pi\)
\(348\) 0 0
\(349\) 9167.31 1.40606 0.703030 0.711160i \(-0.251830\pi\)
0.703030 + 0.711160i \(0.251830\pi\)
\(350\) 0 0
\(351\) −1285.39 −0.195467
\(352\) 0 0
\(353\) 895.102 0.134962 0.0674808 0.997721i \(-0.478504\pi\)
0.0674808 + 0.997721i \(0.478504\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 75.7474 0.0112296
\(358\) 0 0
\(359\) 2200.39 0.323487 0.161744 0.986833i \(-0.448288\pi\)
0.161744 + 0.986833i \(0.448288\pi\)
\(360\) 0 0
\(361\) 4635.85 0.675878
\(362\) 0 0
\(363\) −3801.00 −0.549589
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8403.92 1.19532 0.597658 0.801751i \(-0.296098\pi\)
0.597658 + 0.801751i \(0.296098\pi\)
\(368\) 0 0
\(369\) −2113.71 −0.298198
\(370\) 0 0
\(371\) −5009.49 −0.701024
\(372\) 0 0
\(373\) −5820.17 −0.807927 −0.403964 0.914775i \(-0.632368\pi\)
−0.403964 + 0.914775i \(0.632368\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11903.4 −1.62615
\(378\) 0 0
\(379\) 154.849 0.0209870 0.0104935 0.999945i \(-0.496660\pi\)
0.0104935 + 0.999945i \(0.496660\pi\)
\(380\) 0 0
\(381\) 1742.57 0.234316
\(382\) 0 0
\(383\) −8189.51 −1.09260 −0.546298 0.837591i \(-0.683963\pi\)
−0.546298 + 0.837591i \(0.683963\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1080.32 0.141901
\(388\) 0 0
\(389\) 11037.6 1.43863 0.719317 0.694682i \(-0.244455\pi\)
0.719317 + 0.694682i \(0.244455\pi\)
\(390\) 0 0
\(391\) 106.793 0.0138127
\(392\) 0 0
\(393\) −2771.58 −0.355745
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4297.16 0.543246 0.271623 0.962404i \(-0.412440\pi\)
0.271623 + 0.962404i \(0.412440\pi\)
\(398\) 0 0
\(399\) −2251.49 −0.282496
\(400\) 0 0
\(401\) −6429.34 −0.800663 −0.400332 0.916370i \(-0.631105\pi\)
−0.400332 + 0.916370i \(0.631105\pi\)
\(402\) 0 0
\(403\) −14246.4 −1.76095
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −112.281 −0.0136746
\(408\) 0 0
\(409\) −2714.65 −0.328192 −0.164096 0.986444i \(-0.552471\pi\)
−0.164096 + 0.986444i \(0.552471\pi\)
\(410\) 0 0
\(411\) 5233.92 0.628151
\(412\) 0 0
\(413\) −1036.49 −0.123492
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −8554.91 −1.00464
\(418\) 0 0
\(419\) 12058.8 1.40600 0.702999 0.711191i \(-0.251844\pi\)
0.702999 + 0.711191i \(0.251844\pi\)
\(420\) 0 0
\(421\) −15177.7 −1.75704 −0.878522 0.477702i \(-0.841470\pi\)
−0.878522 + 0.477702i \(0.841470\pi\)
\(422\) 0 0
\(423\) −4529.24 −0.520613
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 965.754 0.109452
\(428\) 0 0
\(429\) 1142.57 0.128587
\(430\) 0 0
\(431\) −6139.60 −0.686158 −0.343079 0.939307i \(-0.611470\pi\)
−0.343079 + 0.939307i \(0.611470\pi\)
\(432\) 0 0
\(433\) 7673.29 0.851628 0.425814 0.904811i \(-0.359988\pi\)
0.425814 + 0.904811i \(0.359988\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3174.29 −0.347475
\(438\) 0 0
\(439\) −6200.11 −0.674066 −0.337033 0.941493i \(-0.609423\pi\)
−0.337033 + 0.941493i \(0.609423\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 7082.66 0.759610 0.379805 0.925067i \(-0.375991\pi\)
0.379805 + 0.925067i \(0.375991\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4026.11 −0.426014
\(448\) 0 0
\(449\) 1677.35 0.176301 0.0881506 0.996107i \(-0.471904\pi\)
0.0881506 + 0.996107i \(0.471904\pi\)
\(450\) 0 0
\(451\) 1878.85 0.196168
\(452\) 0 0
\(453\) −2693.14 −0.279326
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4232.65 0.433250 0.216625 0.976255i \(-0.430495\pi\)
0.216625 + 0.976255i \(0.430495\pi\)
\(458\) 0 0
\(459\) 97.3895 0.00990360
\(460\) 0 0
\(461\) 7543.64 0.762131 0.381066 0.924548i \(-0.375557\pi\)
0.381066 + 0.924548i \(0.375557\pi\)
\(462\) 0 0
\(463\) −1533.63 −0.153939 −0.0769695 0.997033i \(-0.524524\pi\)
−0.0769695 + 0.997033i \(0.524524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16601.1 1.64498 0.822492 0.568776i \(-0.192583\pi\)
0.822492 + 0.568776i \(0.192583\pi\)
\(468\) 0 0
\(469\) −5745.75 −0.565701
\(470\) 0 0
\(471\) −3800.88 −0.371838
\(472\) 0 0
\(473\) −960.281 −0.0933483
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6440.78 −0.618245
\(478\) 0 0
\(479\) −6104.39 −0.582290 −0.291145 0.956679i \(-0.594036\pi\)
−0.291145 + 0.956679i \(0.594036\pi\)
\(480\) 0 0
\(481\) −668.169 −0.0633386
\(482\) 0 0
\(483\) 621.747 0.0585724
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −15817.6 −1.47180 −0.735898 0.677093i \(-0.763240\pi\)
−0.735898 + 0.677093i \(0.763240\pi\)
\(488\) 0 0
\(489\) −1665.54 −0.154025
\(490\) 0 0
\(491\) 7648.25 0.702975 0.351488 0.936193i \(-0.385676\pi\)
0.351488 + 0.936193i \(0.385676\pi\)
\(492\) 0 0
\(493\) 901.881 0.0823908
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5085.24 −0.458962
\(498\) 0 0
\(499\) −5096.55 −0.457220 −0.228610 0.973518i \(-0.573418\pi\)
−0.228610 + 0.973518i \(0.573418\pi\)
\(500\) 0 0
\(501\) −1970.88 −0.175754
\(502\) 0 0
\(503\) −2139.61 −0.189663 −0.0948317 0.995493i \(-0.530231\pi\)
−0.0948317 + 0.995493i \(0.530231\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 208.284 0.0182450
\(508\) 0 0
\(509\) 16551.0 1.44128 0.720638 0.693312i \(-0.243849\pi\)
0.720638 + 0.693312i \(0.243849\pi\)
\(510\) 0 0
\(511\) −6778.75 −0.586838
\(512\) 0 0
\(513\) −2894.78 −0.249138
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4025.99 0.342482
\(518\) 0 0
\(519\) 3347.98 0.283160
\(520\) 0 0
\(521\) −10252.9 −0.862166 −0.431083 0.902312i \(-0.641868\pi\)
−0.431083 + 0.902312i \(0.641868\pi\)
\(522\) 0 0
\(523\) 4139.62 0.346105 0.173053 0.984913i \(-0.444637\pi\)
0.173053 + 0.984913i \(0.444637\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1079.40 0.0892206
\(528\) 0 0
\(529\) −11290.4 −0.927955
\(530\) 0 0
\(531\) −1332.63 −0.108910
\(532\) 0 0
\(533\) 11180.8 0.908620
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5405.98 0.434423
\(538\) 0 0
\(539\) −392.000 −0.0313259
\(540\) 0 0
\(541\) −17964.3 −1.42763 −0.713815 0.700335i \(-0.753034\pi\)
−0.713815 + 0.700335i \(0.753034\pi\)
\(542\) 0 0
\(543\) 7710.74 0.609391
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9606.29 0.750888 0.375444 0.926845i \(-0.377490\pi\)
0.375444 + 0.926845i \(0.377490\pi\)
\(548\) 0 0
\(549\) 1241.68 0.0965279
\(550\) 0 0
\(551\) −26807.3 −2.07265
\(552\) 0 0
\(553\) 8277.98 0.636556
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14761.5 −1.12292 −0.561459 0.827505i \(-0.689760\pi\)
−0.561459 + 0.827505i \(0.689760\pi\)
\(558\) 0 0
\(559\) −5714.51 −0.432376
\(560\) 0 0
\(561\) −86.5684 −0.00651501
\(562\) 0 0
\(563\) −14119.8 −1.05698 −0.528491 0.848939i \(-0.677242\pi\)
−0.528491 + 0.848939i \(0.677242\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 567.000 0.0419961
\(568\) 0 0
\(569\) 3622.62 0.266903 0.133452 0.991055i \(-0.457394\pi\)
0.133452 + 0.991055i \(0.457394\pi\)
\(570\) 0 0
\(571\) 1247.31 0.0914158 0.0457079 0.998955i \(-0.485446\pi\)
0.0457079 + 0.998955i \(0.485446\pi\)
\(572\) 0 0
\(573\) −15672.7 −1.14265
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8345.35 0.602117 0.301058 0.953606i \(-0.402660\pi\)
0.301058 + 0.953606i \(0.402660\pi\)
\(578\) 0 0
\(579\) −6327.22 −0.454146
\(580\) 0 0
\(581\) −5068.49 −0.361922
\(582\) 0 0
\(583\) 5725.14 0.406708
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6191.99 −0.435384 −0.217692 0.976017i \(-0.569853\pi\)
−0.217692 + 0.976017i \(0.569853\pi\)
\(588\) 0 0
\(589\) −32083.7 −2.24446
\(590\) 0 0
\(591\) 4016.57 0.279559
\(592\) 0 0
\(593\) 17840.9 1.23548 0.617738 0.786384i \(-0.288049\pi\)
0.617738 + 0.786384i \(0.288049\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7911.31 0.542359
\(598\) 0 0
\(599\) −8996.65 −0.613678 −0.306839 0.951761i \(-0.599271\pi\)
−0.306839 + 0.951761i \(0.599271\pi\)
\(600\) 0 0
\(601\) 11346.7 0.770122 0.385061 0.922891i \(-0.374180\pi\)
0.385061 + 0.922891i \(0.374180\pi\)
\(602\) 0 0
\(603\) −7387.39 −0.498902
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1461.98 −0.0977593 −0.0488796 0.998805i \(-0.515565\pi\)
−0.0488796 + 0.998805i \(0.515565\pi\)
\(608\) 0 0
\(609\) 5250.74 0.349377
\(610\) 0 0
\(611\) 23958.2 1.58633
\(612\) 0 0
\(613\) 8018.02 0.528295 0.264147 0.964482i \(-0.414909\pi\)
0.264147 + 0.964482i \(0.414909\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21890.6 1.42833 0.714166 0.699976i \(-0.246806\pi\)
0.714166 + 0.699976i \(0.246806\pi\)
\(618\) 0 0
\(619\) 17702.0 1.14944 0.574719 0.818351i \(-0.305111\pi\)
0.574719 + 0.818351i \(0.305111\pi\)
\(620\) 0 0
\(621\) 799.389 0.0516560
\(622\) 0 0
\(623\) 2276.01 0.146366
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2573.14 0.163893
\(628\) 0 0
\(629\) 50.6248 0.00320913
\(630\) 0 0
\(631\) −12482.9 −0.787538 −0.393769 0.919209i \(-0.628829\pi\)
−0.393769 + 0.919209i \(0.628829\pi\)
\(632\) 0 0
\(633\) −10.9474 −0.000687397 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2332.74 −0.145097
\(638\) 0 0
\(639\) −6538.17 −0.404767
\(640\) 0 0
\(641\) 2433.03 0.149920 0.0749602 0.997187i \(-0.476117\pi\)
0.0749602 + 0.997187i \(0.476117\pi\)
\(642\) 0 0
\(643\) −25638.6 −1.57246 −0.786228 0.617937i \(-0.787969\pi\)
−0.786228 + 0.617937i \(0.787969\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1377.10 0.0836777 0.0418388 0.999124i \(-0.486678\pi\)
0.0418388 + 0.999124i \(0.486678\pi\)
\(648\) 0 0
\(649\) 1184.56 0.0716458
\(650\) 0 0
\(651\) 6284.23 0.378339
\(652\) 0 0
\(653\) 30887.6 1.85103 0.925517 0.378707i \(-0.123631\pi\)
0.925517 + 0.378707i \(0.123631\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8715.54 −0.517543
\(658\) 0 0
\(659\) 8566.50 0.506378 0.253189 0.967417i \(-0.418520\pi\)
0.253189 + 0.967417i \(0.418520\pi\)
\(660\) 0 0
\(661\) −31788.0 −1.87052 −0.935258 0.353968i \(-0.884832\pi\)
−0.935258 + 0.353968i \(0.884832\pi\)
\(662\) 0 0
\(663\) −515.158 −0.0301766
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7402.79 0.429741
\(668\) 0 0
\(669\) −16143.0 −0.932921
\(670\) 0 0
\(671\) −1103.72 −0.0635002
\(672\) 0 0
\(673\) 12617.1 0.722667 0.361334 0.932437i \(-0.382322\pi\)
0.361334 + 0.932437i \(0.382322\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18994.5 −1.07831 −0.539157 0.842205i \(-0.681257\pi\)
−0.539157 + 0.842205i \(0.681257\pi\)
\(678\) 0 0
\(679\) −6835.24 −0.386322
\(680\) 0 0
\(681\) 6477.22 0.364475
\(682\) 0 0
\(683\) −2154.07 −0.120678 −0.0603391 0.998178i \(-0.519218\pi\)
−0.0603391 + 0.998178i \(0.519218\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1270.40 −0.0705514
\(688\) 0 0
\(689\) 34069.6 1.88381
\(690\) 0 0
\(691\) 26566.9 1.46260 0.731298 0.682059i \(-0.238915\pi\)
0.731298 + 0.682059i \(0.238915\pi\)
\(692\) 0 0
\(693\) −504.000 −0.0276268
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −847.130 −0.0460364
\(698\) 0 0
\(699\) −10009.0 −0.541597
\(700\) 0 0
\(701\) 12469.2 0.671831 0.335915 0.941892i \(-0.390954\pi\)
0.335915 + 0.941892i \(0.390954\pi\)
\(702\) 0 0
\(703\) −1504.76 −0.0807298
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −91.5159 −0.00486819
\(708\) 0 0
\(709\) −16393.4 −0.868358 −0.434179 0.900827i \(-0.642961\pi\)
−0.434179 + 0.900827i \(0.642961\pi\)
\(710\) 0 0
\(711\) 10643.1 0.561390
\(712\) 0 0
\(713\) 8859.87 0.465364
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −17401.8 −0.906390
\(718\) 0 0
\(719\) 30451.8 1.57950 0.789750 0.613428i \(-0.210210\pi\)
0.789750 + 0.613428i \(0.210210\pi\)
\(720\) 0 0
\(721\) −4984.00 −0.257439
\(722\) 0 0
\(723\) −13594.7 −0.699296
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 31913.8 1.62809 0.814043 0.580804i \(-0.197262\pi\)
0.814043 + 0.580804i \(0.197262\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 432.969 0.0219069
\(732\) 0 0
\(733\) 5065.68 0.255260 0.127630 0.991822i \(-0.459263\pi\)
0.127630 + 0.991822i \(0.459263\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6566.57 0.328199
\(738\) 0 0
\(739\) 30785.2 1.53241 0.766206 0.642595i \(-0.222142\pi\)
0.766206 + 0.642595i \(0.222142\pi\)
\(740\) 0 0
\(741\) 15312.4 0.759131
\(742\) 0 0
\(743\) 31310.8 1.54601 0.773004 0.634402i \(-0.218753\pi\)
0.773004 + 0.634402i \(0.218753\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6516.63 −0.319185
\(748\) 0 0
\(749\) 12701.2 0.619617
\(750\) 0 0
\(751\) 19339.4 0.939688 0.469844 0.882749i \(-0.344310\pi\)
0.469844 + 0.882749i \(0.344310\pi\)
\(752\) 0 0
\(753\) −7583.12 −0.366991
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −27657.0 −1.32789 −0.663943 0.747783i \(-0.731118\pi\)
−0.663943 + 0.747783i \(0.731118\pi\)
\(758\) 0 0
\(759\) −710.568 −0.0339816
\(760\) 0 0
\(761\) −33018.3 −1.57281 −0.786407 0.617708i \(-0.788061\pi\)
−0.786407 + 0.617708i \(0.788061\pi\)
\(762\) 0 0
\(763\) 7277.00 0.345276
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7049.18 0.331853
\(768\) 0 0
\(769\) −32218.5 −1.51083 −0.755416 0.655245i \(-0.772565\pi\)
−0.755416 + 0.655245i \(0.772565\pi\)
\(770\) 0 0
\(771\) −1526.65 −0.0713113
\(772\) 0 0
\(773\) 17244.8 0.802395 0.401197 0.915992i \(-0.368594\pi\)
0.401197 + 0.915992i \(0.368594\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 294.737 0.0136083
\(778\) 0 0
\(779\) 25179.9 1.15810
\(780\) 0 0
\(781\) 5811.71 0.266273
\(782\) 0 0
\(783\) 6750.95 0.308122
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −29840.4 −1.35158 −0.675791 0.737093i \(-0.736198\pi\)
−0.675791 + 0.737093i \(0.736198\pi\)
\(788\) 0 0
\(789\) 3146.67 0.141983
\(790\) 0 0
\(791\) 4113.00 0.184882
\(792\) 0 0
\(793\) −6568.10 −0.294124
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −38261.5 −1.70049 −0.850246 0.526386i \(-0.823547\pi\)
−0.850246 + 0.526386i \(0.823547\pi\)
\(798\) 0 0
\(799\) −1815.23 −0.0803732
\(800\) 0 0
\(801\) 2926.29 0.129083
\(802\) 0 0
\(803\) 7747.14 0.340462
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 13928.1 0.607551
\(808\) 0 0
\(809\) −9614.18 −0.417820 −0.208910 0.977935i \(-0.566992\pi\)
−0.208910 + 0.977935i \(0.566992\pi\)
\(810\) 0 0
\(811\) 6295.26 0.272573 0.136286 0.990669i \(-0.456483\pi\)
0.136286 + 0.990669i \(0.456483\pi\)
\(812\) 0 0
\(813\) −10978.6 −0.473599
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −12869.4 −0.551095
\(818\) 0 0
\(819\) −2999.24 −0.127963
\(820\) 0 0
\(821\) −1947.06 −0.0827684 −0.0413842 0.999143i \(-0.513177\pi\)
−0.0413842 + 0.999143i \(0.513177\pi\)
\(822\) 0 0
\(823\) −21340.5 −0.903867 −0.451933 0.892052i \(-0.649266\pi\)
−0.451933 + 0.892052i \(0.649266\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26708.7 −1.12304 −0.561519 0.827464i \(-0.689783\pi\)
−0.561519 + 0.827464i \(0.689783\pi\)
\(828\) 0 0
\(829\) −41080.8 −1.72110 −0.860551 0.509364i \(-0.829881\pi\)
−0.860551 + 0.509364i \(0.829881\pi\)
\(830\) 0 0
\(831\) −15198.5 −0.634454
\(832\) 0 0
\(833\) 176.744 0.00735151
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8079.73 0.333663
\(838\) 0 0
\(839\) 21123.1 0.869189 0.434595 0.900626i \(-0.356892\pi\)
0.434595 + 0.900626i \(0.356892\pi\)
\(840\) 0 0
\(841\) 38128.5 1.56335
\(842\) 0 0
\(843\) −4217.16 −0.172297
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −8869.00 −0.359790
\(848\) 0 0
\(849\) −15443.2 −0.624273
\(850\) 0 0
\(851\) 415.537 0.0167385
\(852\) 0 0
\(853\) 32643.6 1.31031 0.655156 0.755494i \(-0.272603\pi\)
0.655156 + 0.755494i \(0.272603\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16653.4 0.663790 0.331895 0.943316i \(-0.392312\pi\)
0.331895 + 0.943316i \(0.392312\pi\)
\(858\) 0 0
\(859\) 29551.0 1.17377 0.586885 0.809671i \(-0.300354\pi\)
0.586885 + 0.809671i \(0.300354\pi\)
\(860\) 0 0
\(861\) −4931.98 −0.195216
\(862\) 0 0
\(863\) 15877.7 0.626284 0.313142 0.949706i \(-0.398618\pi\)
0.313142 + 0.949706i \(0.398618\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −14700.0 −0.575821
\(868\) 0 0
\(869\) −9460.55 −0.369306
\(870\) 0 0
\(871\) 39076.8 1.52017
\(872\) 0 0
\(873\) −8788.17 −0.340704
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 15580.5 0.599905 0.299952 0.953954i \(-0.403029\pi\)
0.299952 + 0.953954i \(0.403029\pi\)
\(878\) 0 0
\(879\) −19279.9 −0.739814
\(880\) 0 0
\(881\) 19212.6 0.734720 0.367360 0.930079i \(-0.380262\pi\)
0.367360 + 0.930079i \(0.380262\pi\)
\(882\) 0 0
\(883\) 5438.36 0.207266 0.103633 0.994616i \(-0.466953\pi\)
0.103633 + 0.994616i \(0.466953\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14961.8 0.566367 0.283183 0.959066i \(-0.408610\pi\)
0.283183 + 0.959066i \(0.408610\pi\)
\(888\) 0 0
\(889\) 4065.99 0.153396
\(890\) 0 0
\(891\) −648.000 −0.0243646
\(892\) 0 0
\(893\) 53955.4 2.02189
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −4228.51 −0.157398
\(898\) 0 0
\(899\) 74822.8 2.77584
\(900\) 0 0
\(901\) −2581.33 −0.0954458
\(902\) 0 0
\(903\) 2520.74 0.0928958
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −33326.6 −1.22006 −0.610029 0.792379i \(-0.708842\pi\)
−0.610029 + 0.792379i \(0.708842\pi\)
\(908\) 0 0
\(909\) −117.663 −0.00429334
\(910\) 0 0
\(911\) −1597.21 −0.0580879 −0.0290439 0.999578i \(-0.509246\pi\)
−0.0290439 + 0.999578i \(0.509246\pi\)
\(912\) 0 0
\(913\) 5792.56 0.209973
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6467.02 −0.232890
\(918\) 0 0
\(919\) 5165.28 0.185405 0.0927023 0.995694i \(-0.470450\pi\)
0.0927023 + 0.995694i \(0.470450\pi\)
\(920\) 0 0
\(921\) −10534.1 −0.376883
\(922\) 0 0
\(923\) 34584.7 1.23334
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6408.00 −0.227040
\(928\) 0 0
\(929\) −46519.1 −1.64289 −0.821444 0.570290i \(-0.806831\pi\)
−0.821444 + 0.570290i \(0.806831\pi\)
\(930\) 0 0
\(931\) −5253.49 −0.184937
\(932\) 0 0
\(933\) 10461.4 0.367085
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −12275.1 −0.427973 −0.213987 0.976837i \(-0.568645\pi\)
−0.213987 + 0.976837i \(0.568645\pi\)
\(938\) 0 0
\(939\) −11809.6 −0.410428
\(940\) 0 0
\(941\) 31881.3 1.10446 0.552232 0.833690i \(-0.313776\pi\)
0.552232 + 0.833690i \(0.313776\pi\)
\(942\) 0 0
\(943\) −6953.39 −0.240120
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 53055.6 1.82057 0.910283 0.413987i \(-0.135864\pi\)
0.910283 + 0.413987i \(0.135864\pi\)
\(948\) 0 0
\(949\) 46102.3 1.57697
\(950\) 0 0
\(951\) 16924.9 0.577106
\(952\) 0 0
\(953\) −31377.1 −1.06653 −0.533265 0.845948i \(-0.679035\pi\)
−0.533265 + 0.845948i \(0.679035\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −6000.84 −0.202696
\(958\) 0 0
\(959\) 12212.5 0.411221
\(960\) 0 0
\(961\) 59759.0 2.00594
\(962\) 0 0
\(963\) 16330.2 0.546451
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12719.5 −0.422989 −0.211494 0.977379i \(-0.567833\pi\)
−0.211494 + 0.977379i \(0.567833\pi\)
\(968\) 0 0
\(969\) −1160.17 −0.0384623
\(970\) 0 0
\(971\) 58288.2 1.92642 0.963212 0.268742i \(-0.0866079\pi\)
0.963212 + 0.268742i \(0.0866079\pi\)
\(972\) 0 0
\(973\) −19961.4 −0.657692
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −29987.3 −0.981965 −0.490983 0.871169i \(-0.663362\pi\)
−0.490983 + 0.871169i \(0.663362\pi\)
\(978\) 0 0
\(979\) −2601.15 −0.0849164
\(980\) 0 0
\(981\) 9356.15 0.304504
\(982\) 0 0
\(983\) −21551.4 −0.699270 −0.349635 0.936886i \(-0.613694\pi\)
−0.349635 + 0.936886i \(0.613694\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −10568.2 −0.340821
\(988\) 0 0
\(989\) 3553.88 0.114264
\(990\) 0 0
\(991\) 31116.1 0.997413 0.498707 0.866771i \(-0.333809\pi\)
0.498707 + 0.866771i \(0.333809\pi\)
\(992\) 0 0
\(993\) 23966.3 0.765909
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 58953.1 1.87268 0.936340 0.351093i \(-0.114190\pi\)
0.936340 + 0.351093i \(0.114190\pi\)
\(998\) 0 0
\(999\) 378.947 0.0120014
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.a.u.1.1 2
5.2 odd 4 2100.4.k.k.1849.2 4
5.3 odd 4 2100.4.k.k.1849.3 4
5.4 even 2 420.4.a.h.1.2 2
15.14 odd 2 1260.4.a.m.1.2 2
20.19 odd 2 1680.4.a.bp.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.4.a.h.1.2 2 5.4 even 2
1260.4.a.m.1.2 2 15.14 odd 2
1680.4.a.bp.1.2 2 20.19 odd 2
2100.4.a.u.1.1 2 1.1 even 1 trivial
2100.4.k.k.1849.2 4 5.2 odd 4
2100.4.k.k.1849.3 4 5.3 odd 4