Properties

Label 420.4.a.h.1.2
Level $420$
Weight $4$
Character 420.1
Self dual yes
Analytic conductor $24.781$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [420,4,Mod(1,420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("420.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 420.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.7808022024\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-11.4018\) of defining polynomial
Character \(\chi\) \(=\) 420.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} -8.00000 q^{11} +47.6070 q^{13} -15.0000 q^{15} -3.60702 q^{17} -107.214 q^{19} +21.0000 q^{21} -29.6070 q^{23} +25.0000 q^{25} -27.0000 q^{27} +250.035 q^{29} +299.249 q^{31} +24.0000 q^{33} -35.0000 q^{35} -14.0351 q^{37} -142.821 q^{39} -234.856 q^{41} -120.035 q^{43} +45.0000 q^{45} +503.249 q^{47} +49.0000 q^{49} +10.8211 q^{51} +715.642 q^{53} -40.0000 q^{55} +321.642 q^{57} -148.070 q^{59} +137.965 q^{61} -63.0000 q^{63} +238.035 q^{65} +820.821 q^{67} +88.8211 q^{69} -726.463 q^{71} +968.393 q^{73} -75.0000 q^{75} +56.0000 q^{77} +1182.57 q^{79} +81.0000 q^{81} +724.070 q^{83} -18.0351 q^{85} -750.105 q^{87} +325.144 q^{89} -333.249 q^{91} -897.747 q^{93} -536.070 q^{95} +976.463 q^{97} -72.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 10 q^{5} - 14 q^{7} + 18 q^{9} - 16 q^{11} + 4 q^{13} - 30 q^{15} + 84 q^{17} - 32 q^{19} + 42 q^{21} + 32 q^{23} + 50 q^{25} - 54 q^{27} + 44 q^{29} - 40 q^{31} + 48 q^{33} - 70 q^{35}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −8.00000 −0.219281 −0.109640 0.993971i \(-0.534970\pi\)
−0.109640 + 0.993971i \(0.534970\pi\)
\(12\) 0 0
\(13\) 47.6070 1.01568 0.507839 0.861452i \(-0.330445\pi\)
0.507839 + 0.861452i \(0.330445\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 0 0
\(17\) −3.60702 −0.0514606 −0.0257303 0.999669i \(-0.508191\pi\)
−0.0257303 + 0.999669i \(0.508191\pi\)
\(18\) 0 0
\(19\) −107.214 −1.29456 −0.647279 0.762254i \(-0.724093\pi\)
−0.647279 + 0.762254i \(0.724093\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) −29.6070 −0.268413 −0.134206 0.990953i \(-0.542848\pi\)
−0.134206 + 0.990953i \(0.542848\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 250.035 1.60105 0.800523 0.599302i \(-0.204555\pi\)
0.800523 + 0.599302i \(0.204555\pi\)
\(30\) 0 0
\(31\) 299.249 1.73377 0.866883 0.498512i \(-0.166120\pi\)
0.866883 + 0.498512i \(0.166120\pi\)
\(32\) 0 0
\(33\) 24.0000 0.126602
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −14.0351 −0.0623609 −0.0311805 0.999514i \(-0.509927\pi\)
−0.0311805 + 0.999514i \(0.509927\pi\)
\(38\) 0 0
\(39\) −142.821 −0.586402
\(40\) 0 0
\(41\) −234.856 −0.894594 −0.447297 0.894385i \(-0.647613\pi\)
−0.447297 + 0.894385i \(0.647613\pi\)
\(42\) 0 0
\(43\) −120.035 −0.425702 −0.212851 0.977085i \(-0.568275\pi\)
−0.212851 + 0.977085i \(0.568275\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) 503.249 1.56184 0.780919 0.624632i \(-0.214751\pi\)
0.780919 + 0.624632i \(0.214751\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 10.8211 0.0297108
\(52\) 0 0
\(53\) 715.642 1.85474 0.927368 0.374151i \(-0.122066\pi\)
0.927368 + 0.374151i \(0.122066\pi\)
\(54\) 0 0
\(55\) −40.0000 −0.0980654
\(56\) 0 0
\(57\) 321.642 0.747413
\(58\) 0 0
\(59\) −148.070 −0.326730 −0.163365 0.986566i \(-0.552235\pi\)
−0.163365 + 0.986566i \(0.552235\pi\)
\(60\) 0 0
\(61\) 137.965 0.289584 0.144792 0.989462i \(-0.453749\pi\)
0.144792 + 0.989462i \(0.453749\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) 238.035 0.454225
\(66\) 0 0
\(67\) 820.821 1.49671 0.748353 0.663301i \(-0.230845\pi\)
0.748353 + 0.663301i \(0.230845\pi\)
\(68\) 0 0
\(69\) 88.8211 0.154968
\(70\) 0 0
\(71\) −726.463 −1.21430 −0.607150 0.794587i \(-0.707687\pi\)
−0.607150 + 0.794587i \(0.707687\pi\)
\(72\) 0 0
\(73\) 968.393 1.55263 0.776314 0.630347i \(-0.217087\pi\)
0.776314 + 0.630347i \(0.217087\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) 56.0000 0.0828804
\(78\) 0 0
\(79\) 1182.57 1.68417 0.842084 0.539346i \(-0.181328\pi\)
0.842084 + 0.539346i \(0.181328\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 724.070 0.957555 0.478777 0.877936i \(-0.341080\pi\)
0.478777 + 0.877936i \(0.341080\pi\)
\(84\) 0 0
\(85\) −18.0351 −0.0230139
\(86\) 0 0
\(87\) −750.105 −0.924365
\(88\) 0 0
\(89\) 325.144 0.387249 0.193625 0.981076i \(-0.437976\pi\)
0.193625 + 0.981076i \(0.437976\pi\)
\(90\) 0 0
\(91\) −333.249 −0.383890
\(92\) 0 0
\(93\) −897.747 −1.00099
\(94\) 0 0
\(95\) −536.070 −0.578944
\(96\) 0 0
\(97\) 976.463 1.02211 0.511056 0.859548i \(-0.329255\pi\)
0.511056 + 0.859548i \(0.329255\pi\)
\(98\) 0 0
\(99\) −72.0000 −0.0730937
\(100\) 0 0
\(101\) −13.0737 −0.0128800 −0.00644001 0.999979i \(-0.502050\pi\)
−0.00644001 + 0.999979i \(0.502050\pi\)
\(102\) 0 0
\(103\) 712.000 0.681121 0.340560 0.940223i \(-0.389383\pi\)
0.340560 + 0.940223i \(0.389383\pi\)
\(104\) 0 0
\(105\) 105.000 0.0975900
\(106\) 0 0
\(107\) −1814.46 −1.63935 −0.819677 0.572827i \(-0.805847\pi\)
−0.819677 + 0.572827i \(0.805847\pi\)
\(108\) 0 0
\(109\) 1039.57 0.913513 0.456757 0.889592i \(-0.349011\pi\)
0.456757 + 0.889592i \(0.349011\pi\)
\(110\) 0 0
\(111\) 42.1053 0.0360041
\(112\) 0 0
\(113\) −587.572 −0.489151 −0.244576 0.969630i \(-0.578649\pi\)
−0.244576 + 0.969630i \(0.578649\pi\)
\(114\) 0 0
\(115\) −148.035 −0.120038
\(116\) 0 0
\(117\) 428.463 0.338559
\(118\) 0 0
\(119\) 25.2491 0.0194503
\(120\) 0 0
\(121\) −1267.00 −0.951916
\(122\) 0 0
\(123\) 704.568 0.516494
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −580.856 −0.405848 −0.202924 0.979195i \(-0.565044\pi\)
−0.202924 + 0.979195i \(0.565044\pi\)
\(128\) 0 0
\(129\) 360.105 0.245779
\(130\) 0 0
\(131\) −923.860 −0.616168 −0.308084 0.951359i \(-0.599688\pi\)
−0.308084 + 0.951359i \(0.599688\pi\)
\(132\) 0 0
\(133\) 750.498 0.489297
\(134\) 0 0
\(135\) −135.000 −0.0860663
\(136\) 0 0
\(137\) −1744.64 −1.08799 −0.543995 0.839089i \(-0.683089\pi\)
−0.543995 + 0.839089i \(0.683089\pi\)
\(138\) 0 0
\(139\) −2851.64 −1.74009 −0.870045 0.492972i \(-0.835910\pi\)
−0.870045 + 0.492972i \(0.835910\pi\)
\(140\) 0 0
\(141\) −1509.75 −0.901728
\(142\) 0 0
\(143\) −380.856 −0.222719
\(144\) 0 0
\(145\) 1250.18 0.716010
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) −1342.04 −0.737878 −0.368939 0.929454i \(-0.620279\pi\)
−0.368939 + 0.929454i \(0.620279\pi\)
\(150\) 0 0
\(151\) −897.712 −0.483807 −0.241903 0.970300i \(-0.577772\pi\)
−0.241903 + 0.970300i \(0.577772\pi\)
\(152\) 0 0
\(153\) −32.4632 −0.0171535
\(154\) 0 0
\(155\) 1496.25 0.775363
\(156\) 0 0
\(157\) 1266.96 0.644042 0.322021 0.946733i \(-0.395638\pi\)
0.322021 + 0.946733i \(0.395638\pi\)
\(158\) 0 0
\(159\) −2146.93 −1.07083
\(160\) 0 0
\(161\) 207.249 0.101450
\(162\) 0 0
\(163\) 555.179 0.266779 0.133389 0.991064i \(-0.457414\pi\)
0.133389 + 0.991064i \(0.457414\pi\)
\(164\) 0 0
\(165\) 120.000 0.0566181
\(166\) 0 0
\(167\) 656.961 0.304414 0.152207 0.988349i \(-0.451362\pi\)
0.152207 + 0.988349i \(0.451362\pi\)
\(168\) 0 0
\(169\) 69.4281 0.0316013
\(170\) 0 0
\(171\) −964.926 −0.431519
\(172\) 0 0
\(173\) −1115.99 −0.490447 −0.245224 0.969467i \(-0.578861\pi\)
−0.245224 + 0.969467i \(0.578861\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 444.211 0.188638
\(178\) 0 0
\(179\) 1801.99 0.752443 0.376221 0.926530i \(-0.377223\pi\)
0.376221 + 0.926530i \(0.377223\pi\)
\(180\) 0 0
\(181\) 2570.25 1.05550 0.527748 0.849401i \(-0.323036\pi\)
0.527748 + 0.849401i \(0.323036\pi\)
\(182\) 0 0
\(183\) −413.895 −0.167191
\(184\) 0 0
\(185\) −70.1754 −0.0278886
\(186\) 0 0
\(187\) 28.8561 0.0112843
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) −5224.25 −1.97913 −0.989563 0.144099i \(-0.953971\pi\)
−0.989563 + 0.144099i \(0.953971\pi\)
\(192\) 0 0
\(193\) 2109.07 0.786603 0.393302 0.919409i \(-0.371333\pi\)
0.393302 + 0.919409i \(0.371333\pi\)
\(194\) 0 0
\(195\) −714.105 −0.262247
\(196\) 0 0
\(197\) −1338.86 −0.484211 −0.242105 0.970250i \(-0.577838\pi\)
−0.242105 + 0.970250i \(0.577838\pi\)
\(198\) 0 0
\(199\) 2637.10 0.939393 0.469696 0.882828i \(-0.344363\pi\)
0.469696 + 0.882828i \(0.344363\pi\)
\(200\) 0 0
\(201\) −2462.46 −0.864123
\(202\) 0 0
\(203\) −1750.25 −0.605139
\(204\) 0 0
\(205\) −1174.28 −0.400075
\(206\) 0 0
\(207\) −266.463 −0.0894709
\(208\) 0 0
\(209\) 857.712 0.283872
\(210\) 0 0
\(211\) −3.64915 −0.00119061 −0.000595303 1.00000i \(-0.500189\pi\)
−0.000595303 1.00000i \(0.500189\pi\)
\(212\) 0 0
\(213\) 2179.39 0.701077
\(214\) 0 0
\(215\) −600.175 −0.190380
\(216\) 0 0
\(217\) −2094.74 −0.655302
\(218\) 0 0
\(219\) −2905.18 −0.896410
\(220\) 0 0
\(221\) −171.719 −0.0522674
\(222\) 0 0
\(223\) 5381.00 1.61587 0.807933 0.589274i \(-0.200586\pi\)
0.807933 + 0.589274i \(0.200586\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −2159.07 −0.631290 −0.315645 0.948877i \(-0.602221\pi\)
−0.315645 + 0.948877i \(0.602221\pi\)
\(228\) 0 0
\(229\) −423.467 −0.122199 −0.0610993 0.998132i \(-0.519461\pi\)
−0.0610993 + 0.998132i \(0.519461\pi\)
\(230\) 0 0
\(231\) −168.000 −0.0478510
\(232\) 0 0
\(233\) 3336.34 0.938074 0.469037 0.883179i \(-0.344601\pi\)
0.469037 + 0.883179i \(0.344601\pi\)
\(234\) 0 0
\(235\) 2516.25 0.698476
\(236\) 0 0
\(237\) −3547.71 −0.972355
\(238\) 0 0
\(239\) −5800.60 −1.56991 −0.784957 0.619550i \(-0.787315\pi\)
−0.784957 + 0.619550i \(0.787315\pi\)
\(240\) 0 0
\(241\) −4531.56 −1.21122 −0.605609 0.795763i \(-0.707070\pi\)
−0.605609 + 0.795763i \(0.707070\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −5104.14 −1.31485
\(248\) 0 0
\(249\) −2172.21 −0.552844
\(250\) 0 0
\(251\) −2527.71 −0.635647 −0.317823 0.948150i \(-0.602952\pi\)
−0.317823 + 0.948150i \(0.602952\pi\)
\(252\) 0 0
\(253\) 236.856 0.0588578
\(254\) 0 0
\(255\) 54.1053 0.0132871
\(256\) 0 0
\(257\) 508.884 0.123515 0.0617574 0.998091i \(-0.480329\pi\)
0.0617574 + 0.998091i \(0.480329\pi\)
\(258\) 0 0
\(259\) 98.2456 0.0235702
\(260\) 0 0
\(261\) 2250.32 0.533682
\(262\) 0 0
\(263\) −1048.89 −0.245922 −0.122961 0.992412i \(-0.539239\pi\)
−0.122961 + 0.992412i \(0.539239\pi\)
\(264\) 0 0
\(265\) 3578.21 0.829463
\(266\) 0 0
\(267\) −975.432 −0.223578
\(268\) 0 0
\(269\) 4642.72 1.05231 0.526155 0.850389i \(-0.323633\pi\)
0.526155 + 0.850389i \(0.323633\pi\)
\(270\) 0 0
\(271\) −3659.53 −0.820297 −0.410149 0.912019i \(-0.634523\pi\)
−0.410149 + 0.912019i \(0.634523\pi\)
\(272\) 0 0
\(273\) 999.747 0.221639
\(274\) 0 0
\(275\) −200.000 −0.0438562
\(276\) 0 0
\(277\) 5066.18 1.09891 0.549453 0.835525i \(-0.314836\pi\)
0.549453 + 0.835525i \(0.314836\pi\)
\(278\) 0 0
\(279\) 2693.24 0.577922
\(280\) 0 0
\(281\) −1405.72 −0.298428 −0.149214 0.988805i \(-0.547674\pi\)
−0.149214 + 0.988805i \(0.547674\pi\)
\(282\) 0 0
\(283\) 5147.72 1.08127 0.540636 0.841256i \(-0.318184\pi\)
0.540636 + 0.841256i \(0.318184\pi\)
\(284\) 0 0
\(285\) 1608.21 0.334253
\(286\) 0 0
\(287\) 1643.99 0.338125
\(288\) 0 0
\(289\) −4899.99 −0.997352
\(290\) 0 0
\(291\) −2929.39 −0.590116
\(292\) 0 0
\(293\) 6426.65 1.28139 0.640697 0.767794i \(-0.278645\pi\)
0.640697 + 0.767794i \(0.278645\pi\)
\(294\) 0 0
\(295\) −740.351 −0.146118
\(296\) 0 0
\(297\) 216.000 0.0422006
\(298\) 0 0
\(299\) −1409.50 −0.272621
\(300\) 0 0
\(301\) 840.246 0.160900
\(302\) 0 0
\(303\) 39.2211 0.00743628
\(304\) 0 0
\(305\) 689.825 0.129506
\(306\) 0 0
\(307\) 3511.35 0.652780 0.326390 0.945235i \(-0.394168\pi\)
0.326390 + 0.945235i \(0.394168\pi\)
\(308\) 0 0
\(309\) −2136.00 −0.393245
\(310\) 0 0
\(311\) 3487.13 0.635810 0.317905 0.948123i \(-0.397021\pi\)
0.317905 + 0.948123i \(0.397021\pi\)
\(312\) 0 0
\(313\) 3936.53 0.710882 0.355441 0.934699i \(-0.384331\pi\)
0.355441 + 0.934699i \(0.384331\pi\)
\(314\) 0 0
\(315\) −315.000 −0.0563436
\(316\) 0 0
\(317\) −5641.64 −0.999577 −0.499788 0.866148i \(-0.666589\pi\)
−0.499788 + 0.866148i \(0.666589\pi\)
\(318\) 0 0
\(319\) −2000.28 −0.351079
\(320\) 0 0
\(321\) 5443.39 0.946481
\(322\) 0 0
\(323\) 386.723 0.0666187
\(324\) 0 0
\(325\) 1190.18 0.203136
\(326\) 0 0
\(327\) −3118.72 −0.527417
\(328\) 0 0
\(329\) −3522.74 −0.590320
\(330\) 0 0
\(331\) 7988.77 1.32659 0.663297 0.748356i \(-0.269157\pi\)
0.663297 + 0.748356i \(0.269157\pi\)
\(332\) 0 0
\(333\) −126.316 −0.0207870
\(334\) 0 0
\(335\) 4104.11 0.669347
\(336\) 0 0
\(337\) −1701.65 −0.275059 −0.137529 0.990498i \(-0.543916\pi\)
−0.137529 + 0.990498i \(0.543916\pi\)
\(338\) 0 0
\(339\) 1762.72 0.282412
\(340\) 0 0
\(341\) −2393.99 −0.380182
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 444.105 0.0693038
\(346\) 0 0
\(347\) −7223.09 −1.11745 −0.558726 0.829352i \(-0.688710\pi\)
−0.558726 + 0.829352i \(0.688710\pi\)
\(348\) 0 0
\(349\) 9167.31 1.40606 0.703030 0.711160i \(-0.251830\pi\)
0.703030 + 0.711160i \(0.251830\pi\)
\(350\) 0 0
\(351\) −1285.39 −0.195467
\(352\) 0 0
\(353\) −895.102 −0.134962 −0.0674808 0.997721i \(-0.521496\pi\)
−0.0674808 + 0.997721i \(0.521496\pi\)
\(354\) 0 0
\(355\) −3632.32 −0.543052
\(356\) 0 0
\(357\) −75.7474 −0.0112296
\(358\) 0 0
\(359\) 2200.39 0.323487 0.161744 0.986833i \(-0.448288\pi\)
0.161744 + 0.986833i \(0.448288\pi\)
\(360\) 0 0
\(361\) 4635.85 0.675878
\(362\) 0 0
\(363\) 3801.00 0.549589
\(364\) 0 0
\(365\) 4841.96 0.694356
\(366\) 0 0
\(367\) −8403.92 −1.19532 −0.597658 0.801751i \(-0.703902\pi\)
−0.597658 + 0.801751i \(0.703902\pi\)
\(368\) 0 0
\(369\) −2113.71 −0.298198
\(370\) 0 0
\(371\) −5009.49 −0.701024
\(372\) 0 0
\(373\) 5820.17 0.807927 0.403964 0.914775i \(-0.367632\pi\)
0.403964 + 0.914775i \(0.367632\pi\)
\(374\) 0 0
\(375\) −375.000 −0.0516398
\(376\) 0 0
\(377\) 11903.4 1.62615
\(378\) 0 0
\(379\) 154.849 0.0209870 0.0104935 0.999945i \(-0.496660\pi\)
0.0104935 + 0.999945i \(0.496660\pi\)
\(380\) 0 0
\(381\) 1742.57 0.234316
\(382\) 0 0
\(383\) 8189.51 1.09260 0.546298 0.837591i \(-0.316037\pi\)
0.546298 + 0.837591i \(0.316037\pi\)
\(384\) 0 0
\(385\) 280.000 0.0370653
\(386\) 0 0
\(387\) −1080.32 −0.141901
\(388\) 0 0
\(389\) 11037.6 1.43863 0.719317 0.694682i \(-0.244455\pi\)
0.719317 + 0.694682i \(0.244455\pi\)
\(390\) 0 0
\(391\) 106.793 0.0138127
\(392\) 0 0
\(393\) 2771.58 0.355745
\(394\) 0 0
\(395\) 5912.84 0.753183
\(396\) 0 0
\(397\) −4297.16 −0.543246 −0.271623 0.962404i \(-0.587560\pi\)
−0.271623 + 0.962404i \(0.587560\pi\)
\(398\) 0 0
\(399\) −2251.49 −0.282496
\(400\) 0 0
\(401\) −6429.34 −0.800663 −0.400332 0.916370i \(-0.631105\pi\)
−0.400332 + 0.916370i \(0.631105\pi\)
\(402\) 0 0
\(403\) 14246.4 1.76095
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) 112.281 0.0136746
\(408\) 0 0
\(409\) −2714.65 −0.328192 −0.164096 0.986444i \(-0.552471\pi\)
−0.164096 + 0.986444i \(0.552471\pi\)
\(410\) 0 0
\(411\) 5233.92 0.628151
\(412\) 0 0
\(413\) 1036.49 0.123492
\(414\) 0 0
\(415\) 3620.35 0.428231
\(416\) 0 0
\(417\) 8554.91 1.00464
\(418\) 0 0
\(419\) 12058.8 1.40600 0.702999 0.711191i \(-0.251844\pi\)
0.702999 + 0.711191i \(0.251844\pi\)
\(420\) 0 0
\(421\) −15177.7 −1.75704 −0.878522 0.477702i \(-0.841470\pi\)
−0.878522 + 0.477702i \(0.841470\pi\)
\(422\) 0 0
\(423\) 4529.24 0.520613
\(424\) 0 0
\(425\) −90.1754 −0.0102921
\(426\) 0 0
\(427\) −965.754 −0.109452
\(428\) 0 0
\(429\) 1142.57 0.128587
\(430\) 0 0
\(431\) −6139.60 −0.686158 −0.343079 0.939307i \(-0.611470\pi\)
−0.343079 + 0.939307i \(0.611470\pi\)
\(432\) 0 0
\(433\) −7673.29 −0.851628 −0.425814 0.904811i \(-0.640012\pi\)
−0.425814 + 0.904811i \(0.640012\pi\)
\(434\) 0 0
\(435\) −3750.53 −0.413388
\(436\) 0 0
\(437\) 3174.29 0.347475
\(438\) 0 0
\(439\) −6200.11 −0.674066 −0.337033 0.941493i \(-0.609423\pi\)
−0.337033 + 0.941493i \(0.609423\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −7082.66 −0.759610 −0.379805 0.925067i \(-0.624009\pi\)
−0.379805 + 0.925067i \(0.624009\pi\)
\(444\) 0 0
\(445\) 1625.72 0.173183
\(446\) 0 0
\(447\) 4026.11 0.426014
\(448\) 0 0
\(449\) 1677.35 0.176301 0.0881506 0.996107i \(-0.471904\pi\)
0.0881506 + 0.996107i \(0.471904\pi\)
\(450\) 0 0
\(451\) 1878.85 0.196168
\(452\) 0 0
\(453\) 2693.14 0.279326
\(454\) 0 0
\(455\) −1666.25 −0.171681
\(456\) 0 0
\(457\) −4232.65 −0.433250 −0.216625 0.976255i \(-0.569505\pi\)
−0.216625 + 0.976255i \(0.569505\pi\)
\(458\) 0 0
\(459\) 97.3895 0.00990360
\(460\) 0 0
\(461\) 7543.64 0.762131 0.381066 0.924548i \(-0.375557\pi\)
0.381066 + 0.924548i \(0.375557\pi\)
\(462\) 0 0
\(463\) 1533.63 0.153939 0.0769695 0.997033i \(-0.475476\pi\)
0.0769695 + 0.997033i \(0.475476\pi\)
\(464\) 0 0
\(465\) −4488.74 −0.447656
\(466\) 0 0
\(467\) −16601.1 −1.64498 −0.822492 0.568776i \(-0.807417\pi\)
−0.822492 + 0.568776i \(0.807417\pi\)
\(468\) 0 0
\(469\) −5745.75 −0.565701
\(470\) 0 0
\(471\) −3800.88 −0.371838
\(472\) 0 0
\(473\) 960.281 0.0933483
\(474\) 0 0
\(475\) −2680.35 −0.258911
\(476\) 0 0
\(477\) 6440.78 0.618245
\(478\) 0 0
\(479\) −6104.39 −0.582290 −0.291145 0.956679i \(-0.594036\pi\)
−0.291145 + 0.956679i \(0.594036\pi\)
\(480\) 0 0
\(481\) −668.169 −0.0633386
\(482\) 0 0
\(483\) −621.747 −0.0585724
\(484\) 0 0
\(485\) 4882.32 0.457102
\(486\) 0 0
\(487\) 15817.6 1.47180 0.735898 0.677093i \(-0.236760\pi\)
0.735898 + 0.677093i \(0.236760\pi\)
\(488\) 0 0
\(489\) −1665.54 −0.154025
\(490\) 0 0
\(491\) 7648.25 0.702975 0.351488 0.936193i \(-0.385676\pi\)
0.351488 + 0.936193i \(0.385676\pi\)
\(492\) 0 0
\(493\) −901.881 −0.0823908
\(494\) 0 0
\(495\) −360.000 −0.0326885
\(496\) 0 0
\(497\) 5085.24 0.458962
\(498\) 0 0
\(499\) −5096.55 −0.457220 −0.228610 0.973518i \(-0.573418\pi\)
−0.228610 + 0.973518i \(0.573418\pi\)
\(500\) 0 0
\(501\) −1970.88 −0.175754
\(502\) 0 0
\(503\) 2139.61 0.189663 0.0948317 0.995493i \(-0.469769\pi\)
0.0948317 + 0.995493i \(0.469769\pi\)
\(504\) 0 0
\(505\) −65.3685 −0.00576012
\(506\) 0 0
\(507\) −208.284 −0.0182450
\(508\) 0 0
\(509\) 16551.0 1.44128 0.720638 0.693312i \(-0.243849\pi\)
0.720638 + 0.693312i \(0.243849\pi\)
\(510\) 0 0
\(511\) −6778.75 −0.586838
\(512\) 0 0
\(513\) 2894.78 0.249138
\(514\) 0 0
\(515\) 3560.00 0.304606
\(516\) 0 0
\(517\) −4025.99 −0.342482
\(518\) 0 0
\(519\) 3347.98 0.283160
\(520\) 0 0
\(521\) −10252.9 −0.862166 −0.431083 0.902312i \(-0.641868\pi\)
−0.431083 + 0.902312i \(0.641868\pi\)
\(522\) 0 0
\(523\) −4139.62 −0.346105 −0.173053 0.984913i \(-0.555363\pi\)
−0.173053 + 0.984913i \(0.555363\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) −1079.40 −0.0892206
\(528\) 0 0
\(529\) −11290.4 −0.927955
\(530\) 0 0
\(531\) −1332.63 −0.108910
\(532\) 0 0
\(533\) −11180.8 −0.908620
\(534\) 0 0
\(535\) −9072.32 −0.733141
\(536\) 0 0
\(537\) −5405.98 −0.434423
\(538\) 0 0
\(539\) −392.000 −0.0313259
\(540\) 0 0
\(541\) −17964.3 −1.42763 −0.713815 0.700335i \(-0.753034\pi\)
−0.713815 + 0.700335i \(0.753034\pi\)
\(542\) 0 0
\(543\) −7710.74 −0.609391
\(544\) 0 0
\(545\) 5197.86 0.408535
\(546\) 0 0
\(547\) −9606.29 −0.750888 −0.375444 0.926845i \(-0.622510\pi\)
−0.375444 + 0.926845i \(0.622510\pi\)
\(548\) 0 0
\(549\) 1241.68 0.0965279
\(550\) 0 0
\(551\) −26807.3 −2.07265
\(552\) 0 0
\(553\) −8277.98 −0.636556
\(554\) 0 0
\(555\) 210.526 0.0161015
\(556\) 0 0
\(557\) 14761.5 1.12292 0.561459 0.827505i \(-0.310240\pi\)
0.561459 + 0.827505i \(0.310240\pi\)
\(558\) 0 0
\(559\) −5714.51 −0.432376
\(560\) 0 0
\(561\) −86.5684 −0.00651501
\(562\) 0 0
\(563\) 14119.8 1.05698 0.528491 0.848939i \(-0.322758\pi\)
0.528491 + 0.848939i \(0.322758\pi\)
\(564\) 0 0
\(565\) −2937.86 −0.218755
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) 3622.62 0.266903 0.133452 0.991055i \(-0.457394\pi\)
0.133452 + 0.991055i \(0.457394\pi\)
\(570\) 0 0
\(571\) 1247.31 0.0914158 0.0457079 0.998955i \(-0.485446\pi\)
0.0457079 + 0.998955i \(0.485446\pi\)
\(572\) 0 0
\(573\) 15672.7 1.14265
\(574\) 0 0
\(575\) −740.175 −0.0536825
\(576\) 0 0
\(577\) −8345.35 −0.602117 −0.301058 0.953606i \(-0.597340\pi\)
−0.301058 + 0.953606i \(0.597340\pi\)
\(578\) 0 0
\(579\) −6327.22 −0.454146
\(580\) 0 0
\(581\) −5068.49 −0.361922
\(582\) 0 0
\(583\) −5725.14 −0.406708
\(584\) 0 0
\(585\) 2142.32 0.151408
\(586\) 0 0
\(587\) 6191.99 0.435384 0.217692 0.976017i \(-0.430147\pi\)
0.217692 + 0.976017i \(0.430147\pi\)
\(588\) 0 0
\(589\) −32083.7 −2.24446
\(590\) 0 0
\(591\) 4016.57 0.279559
\(592\) 0 0
\(593\) −17840.9 −1.23548 −0.617738 0.786384i \(-0.711951\pi\)
−0.617738 + 0.786384i \(0.711951\pi\)
\(594\) 0 0
\(595\) 126.246 0.00869843
\(596\) 0 0
\(597\) −7911.31 −0.542359
\(598\) 0 0
\(599\) −8996.65 −0.613678 −0.306839 0.951761i \(-0.599271\pi\)
−0.306839 + 0.951761i \(0.599271\pi\)
\(600\) 0 0
\(601\) 11346.7 0.770122 0.385061 0.922891i \(-0.374180\pi\)
0.385061 + 0.922891i \(0.374180\pi\)
\(602\) 0 0
\(603\) 7387.39 0.498902
\(604\) 0 0
\(605\) −6335.00 −0.425710
\(606\) 0 0
\(607\) 1461.98 0.0977593 0.0488796 0.998805i \(-0.484435\pi\)
0.0488796 + 0.998805i \(0.484435\pi\)
\(608\) 0 0
\(609\) 5250.74 0.349377
\(610\) 0 0
\(611\) 23958.2 1.58633
\(612\) 0 0
\(613\) −8018.02 −0.528295 −0.264147 0.964482i \(-0.585091\pi\)
−0.264147 + 0.964482i \(0.585091\pi\)
\(614\) 0 0
\(615\) 3522.84 0.230983
\(616\) 0 0
\(617\) −21890.6 −1.42833 −0.714166 0.699976i \(-0.753194\pi\)
−0.714166 + 0.699976i \(0.753194\pi\)
\(618\) 0 0
\(619\) 17702.0 1.14944 0.574719 0.818351i \(-0.305111\pi\)
0.574719 + 0.818351i \(0.305111\pi\)
\(620\) 0 0
\(621\) 799.389 0.0516560
\(622\) 0 0
\(623\) −2276.01 −0.146366
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −2573.14 −0.163893
\(628\) 0 0
\(629\) 50.6248 0.00320913
\(630\) 0 0
\(631\) −12482.9 −0.787538 −0.393769 0.919209i \(-0.628829\pi\)
−0.393769 + 0.919209i \(0.628829\pi\)
\(632\) 0 0
\(633\) 10.9474 0.000687397 0
\(634\) 0 0
\(635\) −2904.28 −0.181501
\(636\) 0 0
\(637\) 2332.74 0.145097
\(638\) 0 0
\(639\) −6538.17 −0.404767
\(640\) 0 0
\(641\) 2433.03 0.149920 0.0749602 0.997187i \(-0.476117\pi\)
0.0749602 + 0.997187i \(0.476117\pi\)
\(642\) 0 0
\(643\) 25638.6 1.57246 0.786228 0.617937i \(-0.212031\pi\)
0.786228 + 0.617937i \(0.212031\pi\)
\(644\) 0 0
\(645\) 1800.53 0.109916
\(646\) 0 0
\(647\) −1377.10 −0.0836777 −0.0418388 0.999124i \(-0.513322\pi\)
−0.0418388 + 0.999124i \(0.513322\pi\)
\(648\) 0 0
\(649\) 1184.56 0.0716458
\(650\) 0 0
\(651\) 6284.23 0.378339
\(652\) 0 0
\(653\) −30887.6 −1.85103 −0.925517 0.378707i \(-0.876369\pi\)
−0.925517 + 0.378707i \(0.876369\pi\)
\(654\) 0 0
\(655\) −4619.30 −0.275559
\(656\) 0 0
\(657\) 8715.54 0.517543
\(658\) 0 0
\(659\) 8566.50 0.506378 0.253189 0.967417i \(-0.418520\pi\)
0.253189 + 0.967417i \(0.418520\pi\)
\(660\) 0 0
\(661\) −31788.0 −1.87052 −0.935258 0.353968i \(-0.884832\pi\)
−0.935258 + 0.353968i \(0.884832\pi\)
\(662\) 0 0
\(663\) 515.158 0.0301766
\(664\) 0 0
\(665\) 3752.49 0.218820
\(666\) 0 0
\(667\) −7402.79 −0.429741
\(668\) 0 0
\(669\) −16143.0 −0.932921
\(670\) 0 0
\(671\) −1103.72 −0.0635002
\(672\) 0 0
\(673\) −12617.1 −0.722667 −0.361334 0.932437i \(-0.617678\pi\)
−0.361334 + 0.932437i \(0.617678\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) 18994.5 1.07831 0.539157 0.842205i \(-0.318743\pi\)
0.539157 + 0.842205i \(0.318743\pi\)
\(678\) 0 0
\(679\) −6835.24 −0.386322
\(680\) 0 0
\(681\) 6477.22 0.364475
\(682\) 0 0
\(683\) 2154.07 0.120678 0.0603391 0.998178i \(-0.480782\pi\)
0.0603391 + 0.998178i \(0.480782\pi\)
\(684\) 0 0
\(685\) −8723.19 −0.486564
\(686\) 0 0
\(687\) 1270.40 0.0705514
\(688\) 0 0
\(689\) 34069.6 1.88381
\(690\) 0 0
\(691\) 26566.9 1.46260 0.731298 0.682059i \(-0.238915\pi\)
0.731298 + 0.682059i \(0.238915\pi\)
\(692\) 0 0
\(693\) 504.000 0.0276268
\(694\) 0 0
\(695\) −14258.2 −0.778192
\(696\) 0 0
\(697\) 847.130 0.0460364
\(698\) 0 0
\(699\) −10009.0 −0.541597
\(700\) 0 0
\(701\) 12469.2 0.671831 0.335915 0.941892i \(-0.390954\pi\)
0.335915 + 0.941892i \(0.390954\pi\)
\(702\) 0 0
\(703\) 1504.76 0.0807298
\(704\) 0 0
\(705\) −7548.74 −0.403265
\(706\) 0 0
\(707\) 91.5159 0.00486819
\(708\) 0 0
\(709\) −16393.4 −0.868358 −0.434179 0.900827i \(-0.642961\pi\)
−0.434179 + 0.900827i \(0.642961\pi\)
\(710\) 0 0
\(711\) 10643.1 0.561390
\(712\) 0 0
\(713\) −8859.87 −0.465364
\(714\) 0 0
\(715\) −1904.28 −0.0996029
\(716\) 0 0
\(717\) 17401.8 0.906390
\(718\) 0 0
\(719\) 30451.8 1.57950 0.789750 0.613428i \(-0.210210\pi\)
0.789750 + 0.613428i \(0.210210\pi\)
\(720\) 0 0
\(721\) −4984.00 −0.257439
\(722\) 0 0
\(723\) 13594.7 0.699296
\(724\) 0 0
\(725\) 6250.88 0.320209
\(726\) 0 0
\(727\) −31913.8 −1.62809 −0.814043 0.580804i \(-0.802738\pi\)
−0.814043 + 0.580804i \(0.802738\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 432.969 0.0219069
\(732\) 0 0
\(733\) −5065.68 −0.255260 −0.127630 0.991822i \(-0.540737\pi\)
−0.127630 + 0.991822i \(0.540737\pi\)
\(734\) 0 0
\(735\) −735.000 −0.0368856
\(736\) 0 0
\(737\) −6566.57 −0.328199
\(738\) 0 0
\(739\) 30785.2 1.53241 0.766206 0.642595i \(-0.222142\pi\)
0.766206 + 0.642595i \(0.222142\pi\)
\(740\) 0 0
\(741\) 15312.4 0.759131
\(742\) 0 0
\(743\) −31310.8 −1.54601 −0.773004 0.634402i \(-0.781247\pi\)
−0.773004 + 0.634402i \(0.781247\pi\)
\(744\) 0 0
\(745\) −6710.18 −0.329989
\(746\) 0 0
\(747\) 6516.63 0.319185
\(748\) 0 0
\(749\) 12701.2 0.619617
\(750\) 0 0
\(751\) 19339.4 0.939688 0.469844 0.882749i \(-0.344310\pi\)
0.469844 + 0.882749i \(0.344310\pi\)
\(752\) 0 0
\(753\) 7583.12 0.366991
\(754\) 0 0
\(755\) −4488.56 −0.216365
\(756\) 0 0
\(757\) 27657.0 1.32789 0.663943 0.747783i \(-0.268882\pi\)
0.663943 + 0.747783i \(0.268882\pi\)
\(758\) 0 0
\(759\) −710.568 −0.0339816
\(760\) 0 0
\(761\) −33018.3 −1.57281 −0.786407 0.617708i \(-0.788061\pi\)
−0.786407 + 0.617708i \(0.788061\pi\)
\(762\) 0 0
\(763\) −7277.00 −0.345276
\(764\) 0 0
\(765\) −162.316 −0.00767129
\(766\) 0 0
\(767\) −7049.18 −0.331853
\(768\) 0 0
\(769\) −32218.5 −1.51083 −0.755416 0.655245i \(-0.772565\pi\)
−0.755416 + 0.655245i \(0.772565\pi\)
\(770\) 0 0
\(771\) −1526.65 −0.0713113
\(772\) 0 0
\(773\) −17244.8 −0.802395 −0.401197 0.915992i \(-0.631406\pi\)
−0.401197 + 0.915992i \(0.631406\pi\)
\(774\) 0 0
\(775\) 7481.23 0.346753
\(776\) 0 0
\(777\) −294.737 −0.0136083
\(778\) 0 0
\(779\) 25179.9 1.15810
\(780\) 0 0
\(781\) 5811.71 0.266273
\(782\) 0 0
\(783\) −6750.95 −0.308122
\(784\) 0 0
\(785\) 6334.81 0.288024
\(786\) 0 0
\(787\) 29840.4 1.35158 0.675791 0.737093i \(-0.263802\pi\)
0.675791 + 0.737093i \(0.263802\pi\)
\(788\) 0 0
\(789\) 3146.67 0.141983
\(790\) 0 0
\(791\) 4113.00 0.184882
\(792\) 0 0
\(793\) 6568.10 0.294124
\(794\) 0 0
\(795\) −10734.6 −0.478891
\(796\) 0 0
\(797\) 38261.5 1.70049 0.850246 0.526386i \(-0.176453\pi\)
0.850246 + 0.526386i \(0.176453\pi\)
\(798\) 0 0
\(799\) −1815.23 −0.0803732
\(800\) 0 0
\(801\) 2926.29 0.129083
\(802\) 0 0
\(803\) −7747.14 −0.340462
\(804\) 0 0
\(805\) 1036.25 0.0453700
\(806\) 0 0
\(807\) −13928.1 −0.607551
\(808\) 0 0
\(809\) −9614.18 −0.417820 −0.208910 0.977935i \(-0.566992\pi\)
−0.208910 + 0.977935i \(0.566992\pi\)
\(810\) 0 0
\(811\) 6295.26 0.272573 0.136286 0.990669i \(-0.456483\pi\)
0.136286 + 0.990669i \(0.456483\pi\)
\(812\) 0 0
\(813\) 10978.6 0.473599
\(814\) 0 0
\(815\) 2775.89 0.119307
\(816\) 0 0
\(817\) 12869.4 0.551095
\(818\) 0 0
\(819\) −2999.24 −0.127963
\(820\) 0 0
\(821\) −1947.06 −0.0827684 −0.0413842 0.999143i \(-0.513177\pi\)
−0.0413842 + 0.999143i \(0.513177\pi\)
\(822\) 0 0
\(823\) 21340.5 0.903867 0.451933 0.892052i \(-0.350734\pi\)
0.451933 + 0.892052i \(0.350734\pi\)
\(824\) 0 0
\(825\) 600.000 0.0253204
\(826\) 0 0
\(827\) 26708.7 1.12304 0.561519 0.827464i \(-0.310217\pi\)
0.561519 + 0.827464i \(0.310217\pi\)
\(828\) 0 0
\(829\) −41080.8 −1.72110 −0.860551 0.509364i \(-0.829881\pi\)
−0.860551 + 0.509364i \(0.829881\pi\)
\(830\) 0 0
\(831\) −15198.5 −0.634454
\(832\) 0 0
\(833\) −176.744 −0.00735151
\(834\) 0 0
\(835\) 3284.81 0.136138
\(836\) 0 0
\(837\) −8079.73 −0.333663
\(838\) 0 0
\(839\) 21123.1 0.869189 0.434595 0.900626i \(-0.356892\pi\)
0.434595 + 0.900626i \(0.356892\pi\)
\(840\) 0 0
\(841\) 38128.5 1.56335
\(842\) 0 0
\(843\) 4217.16 0.172297
\(844\) 0 0
\(845\) 347.140 0.0141325
\(846\) 0 0
\(847\) 8869.00 0.359790
\(848\) 0 0
\(849\) −15443.2 −0.624273
\(850\) 0 0
\(851\) 415.537 0.0167385
\(852\) 0 0
\(853\) −32643.6 −1.31031 −0.655156 0.755494i \(-0.727397\pi\)
−0.655156 + 0.755494i \(0.727397\pi\)
\(854\) 0 0
\(855\) −4824.63 −0.192981
\(856\) 0 0
\(857\) −16653.4 −0.663790 −0.331895 0.943316i \(-0.607688\pi\)
−0.331895 + 0.943316i \(0.607688\pi\)
\(858\) 0 0
\(859\) 29551.0 1.17377 0.586885 0.809671i \(-0.300354\pi\)
0.586885 + 0.809671i \(0.300354\pi\)
\(860\) 0 0
\(861\) −4931.98 −0.195216
\(862\) 0 0
\(863\) −15877.7 −0.626284 −0.313142 0.949706i \(-0.601382\pi\)
−0.313142 + 0.949706i \(0.601382\pi\)
\(864\) 0 0
\(865\) −5579.96 −0.219335
\(866\) 0 0
\(867\) 14700.0 0.575821
\(868\) 0 0
\(869\) −9460.55 −0.369306
\(870\) 0 0
\(871\) 39076.8 1.52017
\(872\) 0 0
\(873\) 8788.17 0.340704
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −15580.5 −0.599905 −0.299952 0.953954i \(-0.596971\pi\)
−0.299952 + 0.953954i \(0.596971\pi\)
\(878\) 0 0
\(879\) −19279.9 −0.739814
\(880\) 0 0
\(881\) 19212.6 0.734720 0.367360 0.930079i \(-0.380262\pi\)
0.367360 + 0.930079i \(0.380262\pi\)
\(882\) 0 0
\(883\) −5438.36 −0.207266 −0.103633 0.994616i \(-0.533047\pi\)
−0.103633 + 0.994616i \(0.533047\pi\)
\(884\) 0 0
\(885\) 2221.05 0.0843614
\(886\) 0 0
\(887\) −14961.8 −0.566367 −0.283183 0.959066i \(-0.591390\pi\)
−0.283183 + 0.959066i \(0.591390\pi\)
\(888\) 0 0
\(889\) 4065.99 0.153396
\(890\) 0 0
\(891\) −648.000 −0.0243646
\(892\) 0 0
\(893\) −53955.4 −2.02189
\(894\) 0 0
\(895\) 9009.96 0.336503
\(896\) 0 0
\(897\) 4228.51 0.157398
\(898\) 0 0
\(899\) 74822.8 2.77584
\(900\) 0 0
\(901\) −2581.33 −0.0954458
\(902\) 0 0
\(903\) −2520.74 −0.0928958
\(904\) 0 0
\(905\) 12851.2 0.472032
\(906\) 0 0
\(907\) 33326.6 1.22006 0.610029 0.792379i \(-0.291158\pi\)
0.610029 + 0.792379i \(0.291158\pi\)
\(908\) 0 0
\(909\) −117.663 −0.00429334
\(910\) 0 0
\(911\) −1597.21 −0.0580879 −0.0290439 0.999578i \(-0.509246\pi\)
−0.0290439 + 0.999578i \(0.509246\pi\)
\(912\) 0 0
\(913\) −5792.56 −0.209973
\(914\) 0 0
\(915\) −2069.47 −0.0747702
\(916\) 0 0
\(917\) 6467.02 0.232890
\(918\) 0 0
\(919\) 5165.28 0.185405 0.0927023 0.995694i \(-0.470450\pi\)
0.0927023 + 0.995694i \(0.470450\pi\)
\(920\) 0 0
\(921\) −10534.1 −0.376883
\(922\) 0 0
\(923\) −34584.7 −1.23334
\(924\) 0 0
\(925\) −350.877 −0.0124722
\(926\) 0 0
\(927\) 6408.00 0.227040
\(928\) 0 0
\(929\) −46519.1 −1.64289 −0.821444 0.570290i \(-0.806831\pi\)
−0.821444 + 0.570290i \(0.806831\pi\)
\(930\) 0 0
\(931\) −5253.49 −0.184937
\(932\) 0 0
\(933\) −10461.4 −0.367085
\(934\) 0 0
\(935\) 144.281 0.00504651
\(936\) 0 0
\(937\) 12275.1 0.427973 0.213987 0.976837i \(-0.431355\pi\)
0.213987 + 0.976837i \(0.431355\pi\)
\(938\) 0 0
\(939\) −11809.6 −0.410428
\(940\) 0 0
\(941\) 31881.3 1.10446 0.552232 0.833690i \(-0.313776\pi\)
0.552232 + 0.833690i \(0.313776\pi\)
\(942\) 0 0
\(943\) 6953.39 0.240120
\(944\) 0 0
\(945\) 945.000 0.0325300
\(946\) 0 0
\(947\) −53055.6 −1.82057 −0.910283 0.413987i \(-0.864136\pi\)
−0.910283 + 0.413987i \(0.864136\pi\)
\(948\) 0 0
\(949\) 46102.3 1.57697
\(950\) 0 0
\(951\) 16924.9 0.577106
\(952\) 0 0
\(953\) 31377.1 1.06653 0.533265 0.845948i \(-0.320965\pi\)
0.533265 + 0.845948i \(0.320965\pi\)
\(954\) 0 0
\(955\) −26121.2 −0.885092
\(956\) 0 0
\(957\) 6000.84 0.202696
\(958\) 0 0
\(959\) 12212.5 0.411221
\(960\) 0 0
\(961\) 59759.0 2.00594
\(962\) 0 0
\(963\) −16330.2 −0.546451
\(964\) 0 0
\(965\) 10545.4 0.351780
\(966\) 0 0
\(967\) 12719.5 0.422989 0.211494 0.977379i \(-0.432167\pi\)
0.211494 + 0.977379i \(0.432167\pi\)
\(968\) 0 0
\(969\) −1160.17 −0.0384623
\(970\) 0 0
\(971\) 58288.2 1.92642 0.963212 0.268742i \(-0.0866079\pi\)
0.963212 + 0.268742i \(0.0866079\pi\)
\(972\) 0 0
\(973\) 19961.4 0.657692
\(974\) 0 0
\(975\) −3570.53 −0.117280
\(976\) 0 0
\(977\) 29987.3 0.981965 0.490983 0.871169i \(-0.336638\pi\)
0.490983 + 0.871169i \(0.336638\pi\)
\(978\) 0 0
\(979\) −2601.15 −0.0849164
\(980\) 0 0
\(981\) 9356.15 0.304504
\(982\) 0 0
\(983\) 21551.4 0.699270 0.349635 0.936886i \(-0.386306\pi\)
0.349635 + 0.936886i \(0.386306\pi\)
\(984\) 0 0
\(985\) −6694.28 −0.216546
\(986\) 0 0
\(987\) 10568.2 0.340821
\(988\) 0 0
\(989\) 3553.88 0.114264
\(990\) 0 0
\(991\) 31116.1 0.997413 0.498707 0.866771i \(-0.333809\pi\)
0.498707 + 0.866771i \(0.333809\pi\)
\(992\) 0 0
\(993\) −23966.3 −0.765909
\(994\) 0 0
\(995\) 13185.5 0.420109
\(996\) 0 0
\(997\) −58953.1 −1.87268 −0.936340 0.351093i \(-0.885810\pi\)
−0.936340 + 0.351093i \(0.885810\pi\)
\(998\) 0 0
\(999\) 378.947 0.0120014
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.4.a.h.1.2 2
3.2 odd 2 1260.4.a.m.1.2 2
4.3 odd 2 1680.4.a.bp.1.2 2
5.2 odd 4 2100.4.k.k.1849.3 4
5.3 odd 4 2100.4.k.k.1849.2 4
5.4 even 2 2100.4.a.u.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.4.a.h.1.2 2 1.1 even 1 trivial
1260.4.a.m.1.2 2 3.2 odd 2
1680.4.a.bp.1.2 2 4.3 odd 2
2100.4.a.u.1.1 2 5.4 even 2
2100.4.k.k.1849.2 4 5.3 odd 4
2100.4.k.k.1849.3 4 5.2 odd 4