Properties

Label 2100.4.k.m.1849.3
Level $2100$
Weight $4$
Character 2100.1849
Analytic conductor $123.904$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{109})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 55x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.3
Root \(4.72015i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1849
Dual form 2100.4.k.m.1849.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +7.00000i q^{7} -9.00000 q^{9} -56.6418 q^{11} -46.6418i q^{13} -66.0000i q^{17} -52.6418 q^{19} -21.0000 q^{21} -12.0000i q^{23} -27.0000i q^{27} -54.0000 q^{29} -65.9255 q^{31} -169.926i q^{33} +140.716i q^{37} +139.926 q^{39} +270.000 q^{41} -146.716i q^{43} +291.851i q^{47} -49.0000 q^{49} +198.000 q^{51} -374.642i q^{53} -157.926i q^{57} -77.2837 q^{59} +758.000 q^{61} -63.0000i q^{63} +356.000i q^{67} +36.0000 q^{69} +820.344 q^{71} +401.209i q^{73} -396.493i q^{77} -707.851 q^{79} +81.0000 q^{81} +900.986i q^{83} -162.000i q^{87} +636.269 q^{89} +326.493 q^{91} -197.777i q^{93} +120.074i q^{97} +509.777 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9} + 24 q^{11} + 40 q^{19} - 84 q^{21} - 216 q^{29} + 488 q^{31} - 192 q^{39} + 1080 q^{41} - 196 q^{49} + 792 q^{51} + 192 q^{59} + 3032 q^{61} + 144 q^{69} + 24 q^{71} - 1328 q^{79} + 324 q^{81}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −56.6418 −1.55256 −0.776280 0.630388i \(-0.782896\pi\)
−0.776280 + 0.630388i \(0.782896\pi\)
\(12\) 0 0
\(13\) − 46.6418i − 0.995086i −0.867439 0.497543i \(-0.834236\pi\)
0.867439 0.497543i \(-0.165764\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 66.0000i − 0.941609i −0.882238 0.470804i \(-0.843964\pi\)
0.882238 0.470804i \(-0.156036\pi\)
\(18\) 0 0
\(19\) −52.6418 −0.635625 −0.317812 0.948154i \(-0.602948\pi\)
−0.317812 + 0.948154i \(0.602948\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) − 12.0000i − 0.108790i −0.998519 0.0543951i \(-0.982677\pi\)
0.998519 0.0543951i \(-0.0173230\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 27.0000i − 0.192450i
\(28\) 0 0
\(29\) −54.0000 −0.345778 −0.172889 0.984941i \(-0.555310\pi\)
−0.172889 + 0.984941i \(0.555310\pi\)
\(30\) 0 0
\(31\) −65.9255 −0.381954 −0.190977 0.981595i \(-0.561166\pi\)
−0.190977 + 0.981595i \(0.561166\pi\)
\(32\) 0 0
\(33\) − 169.926i − 0.896371i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 140.716i 0.625233i 0.949879 + 0.312616i \(0.101205\pi\)
−0.949879 + 0.312616i \(0.898795\pi\)
\(38\) 0 0
\(39\) 139.926 0.574513
\(40\) 0 0
\(41\) 270.000 1.02846 0.514231 0.857652i \(-0.328078\pi\)
0.514231 + 0.857652i \(0.328078\pi\)
\(42\) 0 0
\(43\) − 146.716i − 0.520326i −0.965565 0.260163i \(-0.916224\pi\)
0.965565 0.260163i \(-0.0837763\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 291.851i 0.905763i 0.891571 + 0.452881i \(0.149604\pi\)
−0.891571 + 0.452881i \(0.850396\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 198.000 0.543638
\(52\) 0 0
\(53\) − 374.642i − 0.970963i −0.874247 0.485481i \(-0.838644\pi\)
0.874247 0.485481i \(-0.161356\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 157.926i − 0.366978i
\(58\) 0 0
\(59\) −77.2837 −0.170534 −0.0852668 0.996358i \(-0.527174\pi\)
−0.0852668 + 0.996358i \(0.527174\pi\)
\(60\) 0 0
\(61\) 758.000 1.59102 0.795508 0.605943i \(-0.207204\pi\)
0.795508 + 0.605943i \(0.207204\pi\)
\(62\) 0 0
\(63\) − 63.0000i − 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 356.000i 0.649139i 0.945862 + 0.324570i \(0.105219\pi\)
−0.945862 + 0.324570i \(0.894781\pi\)
\(68\) 0 0
\(69\) 36.0000 0.0628100
\(70\) 0 0
\(71\) 820.344 1.37122 0.685612 0.727967i \(-0.259535\pi\)
0.685612 + 0.727967i \(0.259535\pi\)
\(72\) 0 0
\(73\) 401.209i 0.643260i 0.946865 + 0.321630i \(0.104231\pi\)
−0.946865 + 0.321630i \(0.895769\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 396.493i − 0.586812i
\(78\) 0 0
\(79\) −707.851 −1.00809 −0.504047 0.863676i \(-0.668156\pi\)
−0.504047 + 0.863676i \(0.668156\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 900.986i 1.19152i 0.803163 + 0.595759i \(0.203149\pi\)
−0.803163 + 0.595759i \(0.796851\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 162.000i − 0.199635i
\(88\) 0 0
\(89\) 636.269 0.757803 0.378901 0.925437i \(-0.376302\pi\)
0.378901 + 0.925437i \(0.376302\pi\)
\(90\) 0 0
\(91\) 326.493 0.376107
\(92\) 0 0
\(93\) − 197.777i − 0.220521i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 120.074i 0.125688i 0.998023 + 0.0628439i \(0.0200170\pi\)
−0.998023 + 0.0628439i \(0.979983\pi\)
\(98\) 0 0
\(99\) 509.777 0.517520
\(100\) 0 0
\(101\) 1668.27 1.64355 0.821777 0.569809i \(-0.192983\pi\)
0.821777 + 0.569809i \(0.192983\pi\)
\(102\) 0 0
\(103\) 1450.27i 1.38737i 0.720278 + 0.693686i \(0.244014\pi\)
−0.720278 + 0.693686i \(0.755986\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 257.284i 0.232454i 0.993223 + 0.116227i \(0.0370800\pi\)
−0.993223 + 0.116227i \(0.962920\pi\)
\(108\) 0 0
\(109\) −2042.54 −1.79486 −0.897430 0.441157i \(-0.854568\pi\)
−0.897430 + 0.441157i \(0.854568\pi\)
\(110\) 0 0
\(111\) −422.149 −0.360978
\(112\) 0 0
\(113\) − 85.2092i − 0.0709363i −0.999371 0.0354682i \(-0.988708\pi\)
0.999371 0.0354682i \(-0.0112922\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 419.777i 0.331695i
\(118\) 0 0
\(119\) 462.000 0.355895
\(120\) 0 0
\(121\) 1877.30 1.41044
\(122\) 0 0
\(123\) 810.000i 0.593782i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 526.418i 0.367812i 0.982944 + 0.183906i \(0.0588741\pi\)
−0.982944 + 0.183906i \(0.941126\pi\)
\(128\) 0 0
\(129\) 440.149 0.300411
\(130\) 0 0
\(131\) −1656.54 −1.10483 −0.552414 0.833570i \(-0.686293\pi\)
−0.552414 + 0.833570i \(0.686293\pi\)
\(132\) 0 0
\(133\) − 368.493i − 0.240243i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 177.805i − 0.110883i −0.998462 0.0554413i \(-0.982343\pi\)
0.998462 0.0554413i \(-0.0176566\pi\)
\(138\) 0 0
\(139\) 963.060 0.587667 0.293833 0.955857i \(-0.405069\pi\)
0.293833 + 0.955857i \(0.405069\pi\)
\(140\) 0 0
\(141\) −875.553 −0.522942
\(142\) 0 0
\(143\) 2641.88i 1.54493i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 147.000i − 0.0824786i
\(148\) 0 0
\(149\) −852.716 −0.468841 −0.234420 0.972135i \(-0.575319\pi\)
−0.234420 + 0.972135i \(0.575319\pi\)
\(150\) 0 0
\(151\) −3166.81 −1.70670 −0.853348 0.521341i \(-0.825432\pi\)
−0.853348 + 0.521341i \(0.825432\pi\)
\(152\) 0 0
\(153\) 594.000i 0.313870i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1327.18i − 0.674653i −0.941388 0.337327i \(-0.890477\pi\)
0.941388 0.337327i \(-0.109523\pi\)
\(158\) 0 0
\(159\) 1123.93 0.560585
\(160\) 0 0
\(161\) 84.0000 0.0411188
\(162\) 0 0
\(163\) − 1759.55i − 0.845514i −0.906243 0.422757i \(-0.861062\pi\)
0.906243 0.422757i \(-0.138938\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3186.27i − 1.47641i −0.674575 0.738206i \(-0.735673\pi\)
0.674575 0.738206i \(-0.264327\pi\)
\(168\) 0 0
\(169\) 21.5388 0.00980375
\(170\) 0 0
\(171\) 473.777 0.211875
\(172\) 0 0
\(173\) − 570.986i − 0.250932i −0.992098 0.125466i \(-0.959957\pi\)
0.992098 0.125466i \(-0.0400426\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 231.851i − 0.0984576i
\(178\) 0 0
\(179\) 1865.24 0.778851 0.389426 0.921058i \(-0.372673\pi\)
0.389426 + 0.921058i \(0.372673\pi\)
\(180\) 0 0
\(181\) 3651.52 1.49953 0.749767 0.661702i \(-0.230166\pi\)
0.749767 + 0.661702i \(0.230166\pi\)
\(182\) 0 0
\(183\) 2274.00i 0.918573i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3738.36i 1.46190i
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 1437.63 0.544623 0.272312 0.962209i \(-0.412212\pi\)
0.272312 + 0.962209i \(0.412212\pi\)
\(192\) 0 0
\(193\) 1347.73i 0.502652i 0.967903 + 0.251326i \(0.0808666\pi\)
−0.967903 + 0.251326i \(0.919133\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1275.09i 0.461149i 0.973055 + 0.230574i \(0.0740605\pi\)
−0.973055 + 0.230574i \(0.925939\pi\)
\(198\) 0 0
\(199\) −790.372 −0.281548 −0.140774 0.990042i \(-0.544959\pi\)
−0.140774 + 0.990042i \(0.544959\pi\)
\(200\) 0 0
\(201\) −1068.00 −0.374781
\(202\) 0 0
\(203\) − 378.000i − 0.130692i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 108.000i 0.0362634i
\(208\) 0 0
\(209\) 2981.73 0.986845
\(210\) 0 0
\(211\) 3343.55 1.09090 0.545449 0.838144i \(-0.316359\pi\)
0.545449 + 0.838144i \(0.316359\pi\)
\(212\) 0 0
\(213\) 2461.03i 0.791677i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 461.479i − 0.144365i
\(218\) 0 0
\(219\) −1203.63 −0.371386
\(220\) 0 0
\(221\) −3078.36 −0.936982
\(222\) 0 0
\(223\) 3091.85i 0.928456i 0.885716 + 0.464228i \(0.153668\pi\)
−0.885716 + 0.464228i \(0.846332\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 6024.63i − 1.76154i −0.473548 0.880768i \(-0.657027\pi\)
0.473548 0.880768i \(-0.342973\pi\)
\(228\) 0 0
\(229\) −1470.30 −0.424280 −0.212140 0.977239i \(-0.568043\pi\)
−0.212140 + 0.977239i \(0.568043\pi\)
\(230\) 0 0
\(231\) 1189.48 0.338796
\(232\) 0 0
\(233\) 2599.03i 0.730765i 0.930857 + 0.365382i \(0.119062\pi\)
−0.930857 + 0.365382i \(0.880938\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 2123.55i − 0.582024i
\(238\) 0 0
\(239\) 395.060 0.106922 0.0534609 0.998570i \(-0.482975\pi\)
0.0534609 + 0.998570i \(0.482975\pi\)
\(240\) 0 0
\(241\) 4140.66 1.10674 0.553368 0.832937i \(-0.313342\pi\)
0.553368 + 0.832937i \(0.313342\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2455.31i 0.632501i
\(248\) 0 0
\(249\) −2702.96 −0.687924
\(250\) 0 0
\(251\) −1013.28 −0.254812 −0.127406 0.991851i \(-0.540665\pi\)
−0.127406 + 0.991851i \(0.540665\pi\)
\(252\) 0 0
\(253\) 679.702i 0.168903i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6981.50i 1.69453i 0.531172 + 0.847264i \(0.321752\pi\)
−0.531172 + 0.847264i \(0.678248\pi\)
\(258\) 0 0
\(259\) −985.014 −0.236316
\(260\) 0 0
\(261\) 486.000 0.115259
\(262\) 0 0
\(263\) 6093.58i 1.42869i 0.699792 + 0.714347i \(0.253276\pi\)
−0.699792 + 0.714347i \(0.746724\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1908.81i 0.437517i
\(268\) 0 0
\(269\) −706.298 −0.160088 −0.0800441 0.996791i \(-0.525506\pi\)
−0.0800441 + 0.996791i \(0.525506\pi\)
\(270\) 0 0
\(271\) 3520.73 0.789186 0.394593 0.918856i \(-0.370886\pi\)
0.394593 + 0.918856i \(0.370886\pi\)
\(272\) 0 0
\(273\) 979.479i 0.217146i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1369.55i 0.297070i 0.988907 + 0.148535i \(0.0474558\pi\)
−0.988907 + 0.148535i \(0.952544\pi\)
\(278\) 0 0
\(279\) 593.330 0.127318
\(280\) 0 0
\(281\) 7204.66 1.52952 0.764758 0.644318i \(-0.222859\pi\)
0.764758 + 0.644318i \(0.222859\pi\)
\(282\) 0 0
\(283\) 189.192i 0.0397395i 0.999803 + 0.0198698i \(0.00632516\pi\)
−0.999803 + 0.0198698i \(0.993675\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1890.00i 0.388722i
\(288\) 0 0
\(289\) 557.000 0.113373
\(290\) 0 0
\(291\) −360.223 −0.0725659
\(292\) 0 0
\(293\) 1816.48i 0.362183i 0.983466 + 0.181092i \(0.0579630\pi\)
−0.983466 + 0.181092i \(0.942037\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1529.33i 0.298790i
\(298\) 0 0
\(299\) −559.702 −0.108256
\(300\) 0 0
\(301\) 1027.01 0.196665
\(302\) 0 0
\(303\) 5004.81i 0.948907i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1766.18i 0.328342i 0.986432 + 0.164171i \(0.0524949\pi\)
−0.986432 + 0.164171i \(0.947505\pi\)
\(308\) 0 0
\(309\) −4350.81 −0.800999
\(310\) 0 0
\(311\) −2542.03 −0.463489 −0.231745 0.972777i \(-0.574443\pi\)
−0.231745 + 0.972777i \(0.574443\pi\)
\(312\) 0 0
\(313\) 8114.97i 1.46545i 0.680525 + 0.732724i \(0.261752\pi\)
−0.680525 + 0.732724i \(0.738248\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4997.15i 0.885388i 0.896673 + 0.442694i \(0.145977\pi\)
−0.896673 + 0.442694i \(0.854023\pi\)
\(318\) 0 0
\(319\) 3058.66 0.536840
\(320\) 0 0
\(321\) −771.851 −0.134207
\(322\) 0 0
\(323\) 3474.36i 0.598510i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 6127.62i − 1.03626i
\(328\) 0 0
\(329\) −2042.96 −0.342346
\(330\) 0 0
\(331\) 2593.64 0.430693 0.215346 0.976538i \(-0.430912\pi\)
0.215346 + 0.976538i \(0.430912\pi\)
\(332\) 0 0
\(333\) − 1266.45i − 0.208411i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9363.97i 1.51361i 0.653638 + 0.756807i \(0.273242\pi\)
−0.653638 + 0.756807i \(0.726758\pi\)
\(338\) 0 0
\(339\) 255.628 0.0409551
\(340\) 0 0
\(341\) 3734.14 0.593006
\(342\) 0 0
\(343\) − 343.000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11371.3i 1.75921i 0.475705 + 0.879605i \(0.342193\pi\)
−0.475705 + 0.879605i \(0.657807\pi\)
\(348\) 0 0
\(349\) 10479.9 1.60738 0.803692 0.595046i \(-0.202866\pi\)
0.803692 + 0.595046i \(0.202866\pi\)
\(350\) 0 0
\(351\) −1259.33 −0.191504
\(352\) 0 0
\(353\) − 4551.49i − 0.686264i −0.939287 0.343132i \(-0.888512\pi\)
0.939287 0.343132i \(-0.111488\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1386.00i 0.205476i
\(358\) 0 0
\(359\) −6705.27 −0.985768 −0.492884 0.870095i \(-0.664057\pi\)
−0.492884 + 0.870095i \(0.664057\pi\)
\(360\) 0 0
\(361\) −4087.84 −0.595981
\(362\) 0 0
\(363\) 5631.89i 0.814319i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 5880.57i 0.836413i 0.908352 + 0.418206i \(0.137341\pi\)
−0.908352 + 0.418206i \(0.862659\pi\)
\(368\) 0 0
\(369\) −2430.00 −0.342820
\(370\) 0 0
\(371\) 2622.49 0.366989
\(372\) 0 0
\(373\) − 13540.7i − 1.87965i −0.341652 0.939827i \(-0.610986\pi\)
0.341652 0.939827i \(-0.389014\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2518.66i 0.344078i
\(378\) 0 0
\(379\) −10982.5 −1.48847 −0.744236 0.667917i \(-0.767186\pi\)
−0.744236 + 0.667917i \(0.767186\pi\)
\(380\) 0 0
\(381\) −1579.26 −0.212356
\(382\) 0 0
\(383\) − 11647.9i − 1.55399i −0.629505 0.776996i \(-0.716742\pi\)
0.629505 0.776996i \(-0.283258\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1320.45i 0.173442i
\(388\) 0 0
\(389\) 5323.17 0.693819 0.346909 0.937899i \(-0.387231\pi\)
0.346909 + 0.937899i \(0.387231\pi\)
\(390\) 0 0
\(391\) −792.000 −0.102438
\(392\) 0 0
\(393\) − 4969.62i − 0.637873i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 3272.35i − 0.413689i −0.978374 0.206845i \(-0.933681\pi\)
0.978374 0.206845i \(-0.0663194\pi\)
\(398\) 0 0
\(399\) 1105.48 0.138705
\(400\) 0 0
\(401\) 8255.73 1.02811 0.514054 0.857758i \(-0.328143\pi\)
0.514054 + 0.857758i \(0.328143\pi\)
\(402\) 0 0
\(403\) 3074.89i 0.380077i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 7970.43i − 0.970712i
\(408\) 0 0
\(409\) −15949.6 −1.92826 −0.964131 0.265427i \(-0.914487\pi\)
−0.964131 + 0.265427i \(0.914487\pi\)
\(410\) 0 0
\(411\) 533.415 0.0640181
\(412\) 0 0
\(413\) − 540.986i − 0.0644556i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2889.18i 0.339290i
\(418\) 0 0
\(419\) 5743.16 0.669623 0.334811 0.942285i \(-0.391327\pi\)
0.334811 + 0.942285i \(0.391327\pi\)
\(420\) 0 0
\(421\) 3396.92 0.393244 0.196622 0.980479i \(-0.437003\pi\)
0.196622 + 0.980479i \(0.437003\pi\)
\(422\) 0 0
\(423\) − 2626.66i − 0.301921i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5306.00i 0.601347i
\(428\) 0 0
\(429\) −7925.64 −0.891966
\(430\) 0 0
\(431\) 15383.0 1.71919 0.859596 0.510974i \(-0.170715\pi\)
0.859596 + 0.510974i \(0.170715\pi\)
\(432\) 0 0
\(433\) 17906.1i 1.98732i 0.112409 + 0.993662i \(0.464143\pi\)
−0.112409 + 0.993662i \(0.535857\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 631.702i 0.0691497i
\(438\) 0 0
\(439\) −13900.3 −1.51122 −0.755609 0.655023i \(-0.772659\pi\)
−0.755609 + 0.655023i \(0.772659\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 4219.35i 0.452522i 0.974067 + 0.226261i \(0.0726502\pi\)
−0.974067 + 0.226261i \(0.927350\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 2558.15i − 0.270685i
\(448\) 0 0
\(449\) 6709.89 0.705254 0.352627 0.935764i \(-0.385288\pi\)
0.352627 + 0.935764i \(0.385288\pi\)
\(450\) 0 0
\(451\) −15293.3 −1.59675
\(452\) 0 0
\(453\) − 9500.42i − 0.985362i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 17330.9i − 1.77398i −0.461793 0.886988i \(-0.652794\pi\)
0.461793 0.886988i \(-0.347206\pi\)
\(458\) 0 0
\(459\) −1782.00 −0.181213
\(460\) 0 0
\(461\) −4891.43 −0.494179 −0.247090 0.968993i \(-0.579474\pi\)
−0.247090 + 0.968993i \(0.579474\pi\)
\(462\) 0 0
\(463\) 16496.6i 1.65585i 0.560835 + 0.827927i \(0.310480\pi\)
−0.560835 + 0.827927i \(0.689520\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6046.48i 0.599138i 0.954075 + 0.299569i \(0.0968429\pi\)
−0.954075 + 0.299569i \(0.903157\pi\)
\(468\) 0 0
\(469\) −2492.00 −0.245352
\(470\) 0 0
\(471\) 3981.54 0.389511
\(472\) 0 0
\(473\) 8310.28i 0.807838i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3371.78i 0.323654i
\(478\) 0 0
\(479\) 16334.5 1.55813 0.779063 0.626945i \(-0.215695\pi\)
0.779063 + 0.626945i \(0.215695\pi\)
\(480\) 0 0
\(481\) 6563.27 0.622161
\(482\) 0 0
\(483\) 252.000i 0.0237400i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 14770.5i − 1.37437i −0.726483 0.687184i \(-0.758847\pi\)
0.726483 0.687184i \(-0.241153\pi\)
\(488\) 0 0
\(489\) 5278.66 0.488158
\(490\) 0 0
\(491\) 6343.84 0.583082 0.291541 0.956558i \(-0.405832\pi\)
0.291541 + 0.956558i \(0.405832\pi\)
\(492\) 0 0
\(493\) 3564.00i 0.325587i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5742.41i 0.518274i
\(498\) 0 0
\(499\) 2904.24 0.260544 0.130272 0.991478i \(-0.458415\pi\)
0.130272 + 0.991478i \(0.458415\pi\)
\(500\) 0 0
\(501\) 9558.81 0.852407
\(502\) 0 0
\(503\) 5224.11i 0.463085i 0.972825 + 0.231542i \(0.0743772\pi\)
−0.972825 + 0.231542i \(0.925623\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 64.6165i 0.00566020i
\(508\) 0 0
\(509\) −8188.94 −0.713101 −0.356550 0.934276i \(-0.616047\pi\)
−0.356550 + 0.934276i \(0.616047\pi\)
\(510\) 0 0
\(511\) −2808.46 −0.243129
\(512\) 0 0
\(513\) 1421.33i 0.122326i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 16531.0i − 1.40625i
\(518\) 0 0
\(519\) 1712.96 0.144876
\(520\) 0 0
\(521\) 14331.3 1.20512 0.602559 0.798074i \(-0.294148\pi\)
0.602559 + 0.798074i \(0.294148\pi\)
\(522\) 0 0
\(523\) 14696.2i 1.22872i 0.789026 + 0.614360i \(0.210586\pi\)
−0.789026 + 0.614360i \(0.789414\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4351.08i 0.359651i
\(528\) 0 0
\(529\) 12023.0 0.988165
\(530\) 0 0
\(531\) 695.553 0.0568445
\(532\) 0 0
\(533\) − 12593.3i − 1.02341i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5595.71i 0.449670i
\(538\) 0 0
\(539\) 2775.45 0.221794
\(540\) 0 0
\(541\) 988.510 0.0785571 0.0392785 0.999228i \(-0.487494\pi\)
0.0392785 + 0.999228i \(0.487494\pi\)
\(542\) 0 0
\(543\) 10954.6i 0.865756i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19765.7i 1.54501i 0.635007 + 0.772507i \(0.280997\pi\)
−0.635007 + 0.772507i \(0.719003\pi\)
\(548\) 0 0
\(549\) −6822.00 −0.530339
\(550\) 0 0
\(551\) 2842.66 0.219785
\(552\) 0 0
\(553\) − 4954.96i − 0.381024i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 4856.65i − 0.369448i −0.982790 0.184724i \(-0.940861\pi\)
0.982790 0.184724i \(-0.0591392\pi\)
\(558\) 0 0
\(559\) −6843.12 −0.517769
\(560\) 0 0
\(561\) −11215.1 −0.844031
\(562\) 0 0
\(563\) − 1008.35i − 0.0754833i −0.999288 0.0377416i \(-0.987984\pi\)
0.999288 0.0377416i \(-0.0120164\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 567.000i 0.0419961i
\(568\) 0 0
\(569\) 18032.3 1.32857 0.664284 0.747480i \(-0.268737\pi\)
0.664284 + 0.747480i \(0.268737\pi\)
\(570\) 0 0
\(571\) −12329.6 −0.903640 −0.451820 0.892109i \(-0.649225\pi\)
−0.451820 + 0.892109i \(0.649225\pi\)
\(572\) 0 0
\(573\) 4312.88i 0.314439i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 19227.0i − 1.38723i −0.720348 0.693613i \(-0.756018\pi\)
0.720348 0.693613i \(-0.243982\pi\)
\(578\) 0 0
\(579\) −4043.19 −0.290206
\(580\) 0 0
\(581\) −6306.90 −0.450352
\(582\) 0 0
\(583\) 21220.4i 1.50748i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 5388.00i − 0.378853i −0.981895 0.189426i \(-0.939337\pi\)
0.981895 0.189426i \(-0.0606628\pi\)
\(588\) 0 0
\(589\) 3470.44 0.242779
\(590\) 0 0
\(591\) −3825.27 −0.266244
\(592\) 0 0
\(593\) − 14921.6i − 1.03332i −0.856191 0.516660i \(-0.827175\pi\)
0.856191 0.516660i \(-0.172825\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 2371.12i − 0.162552i
\(598\) 0 0
\(599\) 25631.9 1.74840 0.874199 0.485568i \(-0.161387\pi\)
0.874199 + 0.485568i \(0.161387\pi\)
\(600\) 0 0
\(601\) −11924.1 −0.809310 −0.404655 0.914470i \(-0.632608\pi\)
−0.404655 + 0.914470i \(0.632608\pi\)
\(602\) 0 0
\(603\) − 3204.00i − 0.216380i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 9262.72i − 0.619377i −0.950838 0.309689i \(-0.899775\pi\)
0.950838 0.309689i \(-0.100225\pi\)
\(608\) 0 0
\(609\) 1134.00 0.0754548
\(610\) 0 0
\(611\) 13612.5 0.901312
\(612\) 0 0
\(613\) 17791.9i 1.17228i 0.810209 + 0.586142i \(0.199354\pi\)
−0.810209 + 0.586142i \(0.800646\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2381.69i 0.155402i 0.996977 + 0.0777012i \(0.0247580\pi\)
−0.996977 + 0.0777012i \(0.975242\pi\)
\(618\) 0 0
\(619\) 1439.49 0.0934698 0.0467349 0.998907i \(-0.485118\pi\)
0.0467349 + 0.998907i \(0.485118\pi\)
\(620\) 0 0
\(621\) −324.000 −0.0209367
\(622\) 0 0
\(623\) 4453.89i 0.286422i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 8945.19i 0.569755i
\(628\) 0 0
\(629\) 9287.28 0.588725
\(630\) 0 0
\(631\) 12146.4 0.766306 0.383153 0.923685i \(-0.374838\pi\)
0.383153 + 0.923685i \(0.374838\pi\)
\(632\) 0 0
\(633\) 10030.7i 0.629831i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2285.45i 0.142155i
\(638\) 0 0
\(639\) −7383.10 −0.457075
\(640\) 0 0
\(641\) 10331.8 0.636635 0.318317 0.947984i \(-0.396882\pi\)
0.318317 + 0.947984i \(0.396882\pi\)
\(642\) 0 0
\(643\) − 14572.9i − 0.893776i −0.894590 0.446888i \(-0.852532\pi\)
0.894590 0.446888i \(-0.147468\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5365.80i 0.326045i 0.986622 + 0.163023i \(0.0521244\pi\)
−0.986622 + 0.163023i \(0.947876\pi\)
\(648\) 0 0
\(649\) 4377.49 0.264763
\(650\) 0 0
\(651\) 1384.44 0.0833492
\(652\) 0 0
\(653\) − 31532.8i − 1.88970i −0.327501 0.944851i \(-0.606207\pi\)
0.327501 0.944851i \(-0.393793\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3610.88i − 0.214420i
\(658\) 0 0
\(659\) 4830.39 0.285532 0.142766 0.989756i \(-0.454400\pi\)
0.142766 + 0.989756i \(0.454400\pi\)
\(660\) 0 0
\(661\) −24168.9 −1.42218 −0.711090 0.703101i \(-0.751798\pi\)
−0.711090 + 0.703101i \(0.751798\pi\)
\(662\) 0 0
\(663\) − 9235.08i − 0.540967i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 648.000i 0.0376172i
\(668\) 0 0
\(669\) −9275.55 −0.536044
\(670\) 0 0
\(671\) −42934.5 −2.47015
\(672\) 0 0
\(673\) − 5383.64i − 0.308357i −0.988043 0.154178i \(-0.950727\pi\)
0.988043 0.154178i \(-0.0492730\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 27370.4i − 1.55381i −0.629617 0.776905i \(-0.716788\pi\)
0.629617 0.776905i \(-0.283212\pi\)
\(678\) 0 0
\(679\) −840.521 −0.0475055
\(680\) 0 0
\(681\) 18073.9 1.01702
\(682\) 0 0
\(683\) − 33313.3i − 1.86632i −0.359461 0.933160i \(-0.617040\pi\)
0.359461 0.933160i \(-0.382960\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 4410.89i − 0.244958i
\(688\) 0 0
\(689\) −17474.0 −0.966191
\(690\) 0 0
\(691\) 20185.5 1.11128 0.555639 0.831423i \(-0.312474\pi\)
0.555639 + 0.831423i \(0.312474\pi\)
\(692\) 0 0
\(693\) 3568.44i 0.195604i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 17820.0i − 0.968408i
\(698\) 0 0
\(699\) −7797.10 −0.421907
\(700\) 0 0
\(701\) 12215.2 0.658148 0.329074 0.944304i \(-0.393264\pi\)
0.329074 + 0.944304i \(0.393264\pi\)
\(702\) 0 0
\(703\) − 7407.57i − 0.397413i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11677.9i 0.621205i
\(708\) 0 0
\(709\) 15402.3 0.815859 0.407929 0.913014i \(-0.366251\pi\)
0.407929 + 0.913014i \(0.366251\pi\)
\(710\) 0 0
\(711\) 6370.66 0.336031
\(712\) 0 0
\(713\) 791.106i 0.0415528i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1185.18i 0.0617314i
\(718\) 0 0
\(719\) 20646.6 1.07091 0.535457 0.844563i \(-0.320140\pi\)
0.535457 + 0.844563i \(0.320140\pi\)
\(720\) 0 0
\(721\) −10151.9 −0.524377
\(722\) 0 0
\(723\) 12422.0i 0.638974i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17329.1i 0.884045i 0.897004 + 0.442023i \(0.145739\pi\)
−0.897004 + 0.442023i \(0.854261\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −9683.28 −0.489944
\(732\) 0 0
\(733\) 29890.5i 1.50618i 0.657917 + 0.753091i \(0.271438\pi\)
−0.657917 + 0.753091i \(0.728562\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 20164.5i − 1.00783i
\(738\) 0 0
\(739\) 14143.0 0.704006 0.352003 0.935999i \(-0.385501\pi\)
0.352003 + 0.935999i \(0.385501\pi\)
\(740\) 0 0
\(741\) −7365.94 −0.365175
\(742\) 0 0
\(743\) − 25944.6i − 1.28104i −0.767940 0.640522i \(-0.778718\pi\)
0.767940 0.640522i \(-0.221282\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 8108.87i − 0.397173i
\(748\) 0 0
\(749\) −1800.99 −0.0878593
\(750\) 0 0
\(751\) 6551.50 0.318332 0.159166 0.987252i \(-0.449119\pi\)
0.159166 + 0.987252i \(0.449119\pi\)
\(752\) 0 0
\(753\) − 3039.85i − 0.147116i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 14503.3i − 0.696344i −0.937431 0.348172i \(-0.886803\pi\)
0.937431 0.348172i \(-0.113197\pi\)
\(758\) 0 0
\(759\) −2039.11 −0.0975163
\(760\) 0 0
\(761\) −34740.1 −1.65483 −0.827417 0.561589i \(-0.810190\pi\)
−0.827417 + 0.561589i \(0.810190\pi\)
\(762\) 0 0
\(763\) − 14297.8i − 0.678393i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3604.65i 0.169696i
\(768\) 0 0
\(769\) −8998.86 −0.421986 −0.210993 0.977488i \(-0.567670\pi\)
−0.210993 + 0.977488i \(0.567670\pi\)
\(770\) 0 0
\(771\) −20944.5 −0.978336
\(772\) 0 0
\(773\) − 16966.6i − 0.789450i −0.918799 0.394725i \(-0.870840\pi\)
0.918799 0.394725i \(-0.129160\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 2955.04i − 0.136437i
\(778\) 0 0
\(779\) −14213.3 −0.653715
\(780\) 0 0
\(781\) −46465.8 −2.12891
\(782\) 0 0
\(783\) 1458.00i 0.0665449i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14915.1i 0.675562i 0.941225 + 0.337781i \(0.109676\pi\)
−0.941225 + 0.337781i \(0.890324\pi\)
\(788\) 0 0
\(789\) −18280.7 −0.824856
\(790\) 0 0
\(791\) 596.464 0.0268114
\(792\) 0 0
\(793\) − 35354.5i − 1.58320i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 12855.4i − 0.571344i −0.958327 0.285672i \(-0.907783\pi\)
0.958327 0.285672i \(-0.0922169\pi\)
\(798\) 0 0
\(799\) 19262.2 0.852874
\(800\) 0 0
\(801\) −5726.42 −0.252601
\(802\) 0 0
\(803\) − 22725.2i − 0.998700i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 2118.89i − 0.0924270i
\(808\) 0 0
\(809\) −29152.0 −1.26691 −0.633454 0.773780i \(-0.718363\pi\)
−0.633454 + 0.773780i \(0.718363\pi\)
\(810\) 0 0
\(811\) 36924.7 1.59877 0.799385 0.600820i \(-0.205159\pi\)
0.799385 + 0.600820i \(0.205159\pi\)
\(812\) 0 0
\(813\) 10562.2i 0.455637i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 7723.42i 0.330732i
\(818\) 0 0
\(819\) −2938.44 −0.125369
\(820\) 0 0
\(821\) 37844.0 1.60873 0.804363 0.594138i \(-0.202507\pi\)
0.804363 + 0.594138i \(0.202507\pi\)
\(822\) 0 0
\(823\) − 7667.85i − 0.324769i −0.986728 0.162384i \(-0.948082\pi\)
0.986728 0.162384i \(-0.0519184\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23869.5i 1.00366i 0.864967 + 0.501829i \(0.167339\pi\)
−0.864967 + 0.501829i \(0.832661\pi\)
\(828\) 0 0
\(829\) −33433.6 −1.40072 −0.700359 0.713791i \(-0.746977\pi\)
−0.700359 + 0.713791i \(0.746977\pi\)
\(830\) 0 0
\(831\) −4108.66 −0.171514
\(832\) 0 0
\(833\) 3234.00i 0.134516i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1779.99i 0.0735071i
\(838\) 0 0
\(839\) 31273.0 1.28685 0.643423 0.765511i \(-0.277514\pi\)
0.643423 + 0.765511i \(0.277514\pi\)
\(840\) 0 0
\(841\) −21473.0 −0.880438
\(842\) 0 0
\(843\) 21614.0i 0.883066i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 13141.1i 0.533097i
\(848\) 0 0
\(849\) −567.575 −0.0229436
\(850\) 0 0
\(851\) 1688.60 0.0680192
\(852\) 0 0
\(853\) 9972.48i 0.400294i 0.979766 + 0.200147i \(0.0641420\pi\)
−0.979766 + 0.200147i \(0.935858\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 25152.9i − 1.00257i −0.865281 0.501287i \(-0.832860\pi\)
0.865281 0.501287i \(-0.167140\pi\)
\(858\) 0 0
\(859\) 7874.63 0.312781 0.156390 0.987695i \(-0.450014\pi\)
0.156390 + 0.987695i \(0.450014\pi\)
\(860\) 0 0
\(861\) −5670.00 −0.224429
\(862\) 0 0
\(863\) 1959.42i 0.0772878i 0.999253 + 0.0386439i \(0.0123038\pi\)
−0.999253 + 0.0386439i \(0.987696\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1671.00i 0.0654558i
\(868\) 0 0
\(869\) 40094.0 1.56513
\(870\) 0 0
\(871\) 16604.5 0.645949
\(872\) 0 0
\(873\) − 1080.67i − 0.0418959i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 31261.9i − 1.20369i −0.798612 0.601846i \(-0.794432\pi\)
0.798612 0.601846i \(-0.205568\pi\)
\(878\) 0 0
\(879\) −5449.43 −0.209106
\(880\) 0 0
\(881\) 42459.0 1.62370 0.811850 0.583866i \(-0.198461\pi\)
0.811850 + 0.583866i \(0.198461\pi\)
\(882\) 0 0
\(883\) − 34673.0i − 1.32145i −0.750629 0.660723i \(-0.770250\pi\)
0.750629 0.660723i \(-0.229750\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 38271.3i 1.44873i 0.689415 + 0.724366i \(0.257868\pi\)
−0.689415 + 0.724366i \(0.742132\pi\)
\(888\) 0 0
\(889\) −3684.93 −0.139020
\(890\) 0 0
\(891\) −4587.99 −0.172507
\(892\) 0 0
\(893\) − 15363.6i − 0.575725i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1679.11i − 0.0625014i
\(898\) 0 0
\(899\) 3559.98 0.132071
\(900\) 0 0
\(901\) −24726.4 −0.914267
\(902\) 0 0
\(903\) 3081.04i 0.113544i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 17.6607i 0 0.000646542i 1.00000 0.000323271i \(0.000102900\pi\)
−1.00000 0.000323271i \(0.999897\pi\)
\(908\) 0 0
\(909\) −15014.4 −0.547852
\(910\) 0 0
\(911\) −20346.3 −0.739959 −0.369980 0.929040i \(-0.620635\pi\)
−0.369980 + 0.929040i \(0.620635\pi\)
\(912\) 0 0
\(913\) − 51033.5i − 1.84990i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 11595.8i − 0.417586i
\(918\) 0 0
\(919\) −38074.1 −1.36665 −0.683323 0.730116i \(-0.739466\pi\)
−0.683323 + 0.730116i \(0.739466\pi\)
\(920\) 0 0
\(921\) −5298.53 −0.189568
\(922\) 0 0
\(923\) − 38262.3i − 1.36449i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 13052.4i − 0.462457i
\(928\) 0 0
\(929\) −5169.42 −0.182565 −0.0912826 0.995825i \(-0.529097\pi\)
−0.0912826 + 0.995825i \(0.529097\pi\)
\(930\) 0 0
\(931\) 2579.45 0.0908035
\(932\) 0 0
\(933\) − 7626.09i − 0.267596i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 28753.8i 1.00250i 0.865302 + 0.501252i \(0.167127\pi\)
−0.865302 + 0.501252i \(0.832873\pi\)
\(938\) 0 0
\(939\) −24344.9 −0.846077
\(940\) 0 0
\(941\) −12332.7 −0.427242 −0.213621 0.976917i \(-0.568526\pi\)
−0.213621 + 0.976917i \(0.568526\pi\)
\(942\) 0 0
\(943\) − 3240.00i − 0.111886i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 18195.0i − 0.624350i −0.950025 0.312175i \(-0.898942\pi\)
0.950025 0.312175i \(-0.101058\pi\)
\(948\) 0 0
\(949\) 18713.1 0.640099
\(950\) 0 0
\(951\) −14991.5 −0.511179
\(952\) 0 0
\(953\) − 1331.58i − 0.0452614i −0.999744 0.0226307i \(-0.992796\pi\)
0.999744 0.0226307i \(-0.00720419\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 9175.98i 0.309945i
\(958\) 0 0
\(959\) 1244.64 0.0419097
\(960\) 0 0
\(961\) −25444.8 −0.854111
\(962\) 0 0
\(963\) − 2315.55i − 0.0774846i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 19516.2i 0.649018i 0.945883 + 0.324509i \(0.105199\pi\)
−0.945883 + 0.324509i \(0.894801\pi\)
\(968\) 0 0
\(969\) −10423.1 −0.345550
\(970\) 0 0
\(971\) −16350.7 −0.540390 −0.270195 0.962806i \(-0.587088\pi\)
−0.270195 + 0.962806i \(0.587088\pi\)
\(972\) 0 0
\(973\) 6741.42i 0.222117i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22315.8i 0.730754i 0.930860 + 0.365377i \(0.119060\pi\)
−0.930860 + 0.365377i \(0.880940\pi\)
\(978\) 0 0
\(979\) −36039.5 −1.17653
\(980\) 0 0
\(981\) 18382.8 0.598287
\(982\) 0 0
\(983\) 4913.28i 0.159420i 0.996818 + 0.0797098i \(0.0253994\pi\)
−0.996818 + 0.0797098i \(0.974601\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 6128.87i − 0.197654i
\(988\) 0 0
\(989\) −1760.60 −0.0566064
\(990\) 0 0
\(991\) −30336.3 −0.972418 −0.486209 0.873843i \(-0.661621\pi\)
−0.486209 + 0.873843i \(0.661621\pi\)
\(992\) 0 0
\(993\) 7780.92i 0.248661i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 34353.9i 1.09127i 0.838022 + 0.545637i \(0.183712\pi\)
−0.838022 + 0.545637i \(0.816288\pi\)
\(998\) 0 0
\(999\) 3799.34 0.120326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.k.m.1849.3 4
5.2 odd 4 2100.4.a.r.1.1 2
5.3 odd 4 420.4.a.g.1.1 2
5.4 even 2 inner 2100.4.k.m.1849.1 4
15.8 even 4 1260.4.a.o.1.2 2
20.3 even 4 1680.4.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.4.a.g.1.1 2 5.3 odd 4
1260.4.a.o.1.2 2 15.8 even 4
1680.4.a.bi.1.2 2 20.3 even 4
2100.4.a.r.1.1 2 5.2 odd 4
2100.4.k.m.1849.1 4 5.4 even 2 inner
2100.4.k.m.1849.3 4 1.1 even 1 trivial