Properties

Label 1260.4.a.o.1.2
Level $1260$
Weight $4$
Character 1260.1
Self dual yes
Analytic conductor $74.342$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,4,Mod(1,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1260.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.3424066072\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{109}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 420)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.72015\) of defining polynomial
Character \(\chi\) \(=\) 1260.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +7.00000 q^{7} +56.6418 q^{11} +46.6418 q^{13} +66.0000 q^{17} +52.6418 q^{19} -12.0000 q^{23} +25.0000 q^{25} -54.0000 q^{29} -65.9255 q^{31} +35.0000 q^{35} +140.716 q^{37} -270.000 q^{41} +146.716 q^{43} -291.851 q^{47} +49.0000 q^{49} -374.642 q^{53} +283.209 q^{55} -77.2837 q^{59} +758.000 q^{61} +233.209 q^{65} +356.000 q^{67} -820.344 q^{71} -401.209 q^{73} +396.493 q^{77} +707.851 q^{79} +900.986 q^{83} +330.000 q^{85} +636.269 q^{89} +326.493 q^{91} +263.209 q^{95} +120.074 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5} + 14 q^{7} - 12 q^{11} - 32 q^{13} + 132 q^{17} - 20 q^{19} - 24 q^{23} + 50 q^{25} - 108 q^{29} + 244 q^{31} + 70 q^{35} + 532 q^{37} - 540 q^{41} + 544 q^{43} + 168 q^{47} + 98 q^{49} - 624 q^{53}+ \cdots + 616 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 56.6418 1.55256 0.776280 0.630388i \(-0.217104\pi\)
0.776280 + 0.630388i \(0.217104\pi\)
\(12\) 0 0
\(13\) 46.6418 0.995086 0.497543 0.867439i \(-0.334236\pi\)
0.497543 + 0.867439i \(0.334236\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 66.0000 0.941609 0.470804 0.882238i \(-0.343964\pi\)
0.470804 + 0.882238i \(0.343964\pi\)
\(18\) 0 0
\(19\) 52.6418 0.635625 0.317812 0.948154i \(-0.397052\pi\)
0.317812 + 0.948154i \(0.397052\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −12.0000 −0.108790 −0.0543951 0.998519i \(-0.517323\pi\)
−0.0543951 + 0.998519i \(0.517323\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −54.0000 −0.345778 −0.172889 0.984941i \(-0.555310\pi\)
−0.172889 + 0.984941i \(0.555310\pi\)
\(30\) 0 0
\(31\) −65.9255 −0.381954 −0.190977 0.981595i \(-0.561166\pi\)
−0.190977 + 0.981595i \(0.561166\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) 140.716 0.625233 0.312616 0.949879i \(-0.398795\pi\)
0.312616 + 0.949879i \(0.398795\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −270.000 −1.02846 −0.514231 0.857652i \(-0.671922\pi\)
−0.514231 + 0.857652i \(0.671922\pi\)
\(42\) 0 0
\(43\) 146.716 0.520326 0.260163 0.965565i \(-0.416224\pi\)
0.260163 + 0.965565i \(0.416224\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −291.851 −0.905763 −0.452881 0.891571i \(-0.649604\pi\)
−0.452881 + 0.891571i \(0.649604\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −374.642 −0.970963 −0.485481 0.874247i \(-0.661356\pi\)
−0.485481 + 0.874247i \(0.661356\pi\)
\(54\) 0 0
\(55\) 283.209 0.694326
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −77.2837 −0.170534 −0.0852668 0.996358i \(-0.527174\pi\)
−0.0852668 + 0.996358i \(0.527174\pi\)
\(60\) 0 0
\(61\) 758.000 1.59102 0.795508 0.605943i \(-0.207204\pi\)
0.795508 + 0.605943i \(0.207204\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 233.209 0.445016
\(66\) 0 0
\(67\) 356.000 0.649139 0.324570 0.945862i \(-0.394781\pi\)
0.324570 + 0.945862i \(0.394781\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −820.344 −1.37122 −0.685612 0.727967i \(-0.740465\pi\)
−0.685612 + 0.727967i \(0.740465\pi\)
\(72\) 0 0
\(73\) −401.209 −0.643260 −0.321630 0.946865i \(-0.604231\pi\)
−0.321630 + 0.946865i \(0.604231\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 396.493 0.586812
\(78\) 0 0
\(79\) 707.851 1.00809 0.504047 0.863676i \(-0.331844\pi\)
0.504047 + 0.863676i \(0.331844\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 900.986 1.19152 0.595759 0.803163i \(-0.296851\pi\)
0.595759 + 0.803163i \(0.296851\pi\)
\(84\) 0 0
\(85\) 330.000 0.421100
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 636.269 0.757803 0.378901 0.925437i \(-0.376302\pi\)
0.378901 + 0.925437i \(0.376302\pi\)
\(90\) 0 0
\(91\) 326.493 0.376107
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 263.209 0.284260
\(96\) 0 0
\(97\) 120.074 0.125688 0.0628439 0.998023i \(-0.479983\pi\)
0.0628439 + 0.998023i \(0.479983\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1668.27 −1.64355 −0.821777 0.569809i \(-0.807017\pi\)
−0.821777 + 0.569809i \(0.807017\pi\)
\(102\) 0 0
\(103\) −1450.27 −1.38737 −0.693686 0.720278i \(-0.744014\pi\)
−0.693686 + 0.720278i \(0.744014\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −257.284 −0.232454 −0.116227 0.993223i \(-0.537080\pi\)
−0.116227 + 0.993223i \(0.537080\pi\)
\(108\) 0 0
\(109\) 2042.54 1.79486 0.897430 0.441157i \(-0.145432\pi\)
0.897430 + 0.441157i \(0.145432\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −85.2092 −0.0709363 −0.0354682 0.999371i \(-0.511292\pi\)
−0.0354682 + 0.999371i \(0.511292\pi\)
\(114\) 0 0
\(115\) −60.0000 −0.0486524
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 462.000 0.355895
\(120\) 0 0
\(121\) 1877.30 1.41044
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 526.418 0.367812 0.183906 0.982944i \(-0.441126\pi\)
0.183906 + 0.982944i \(0.441126\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1656.54 1.10483 0.552414 0.833570i \(-0.313707\pi\)
0.552414 + 0.833570i \(0.313707\pi\)
\(132\) 0 0
\(133\) 368.493 0.240243
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 177.805 0.110883 0.0554413 0.998462i \(-0.482343\pi\)
0.0554413 + 0.998462i \(0.482343\pi\)
\(138\) 0 0
\(139\) −963.060 −0.587667 −0.293833 0.955857i \(-0.594931\pi\)
−0.293833 + 0.955857i \(0.594931\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2641.88 1.54493
\(144\) 0 0
\(145\) −270.000 −0.154636
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −852.716 −0.468841 −0.234420 0.972135i \(-0.575319\pi\)
−0.234420 + 0.972135i \(0.575319\pi\)
\(150\) 0 0
\(151\) −3166.81 −1.70670 −0.853348 0.521341i \(-0.825432\pi\)
−0.853348 + 0.521341i \(0.825432\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −329.628 −0.170815
\(156\) 0 0
\(157\) −1327.18 −0.674653 −0.337327 0.941388i \(-0.609523\pi\)
−0.337327 + 0.941388i \(0.609523\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −84.0000 −0.0411188
\(162\) 0 0
\(163\) 1759.55 0.845514 0.422757 0.906243i \(-0.361062\pi\)
0.422757 + 0.906243i \(0.361062\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3186.27 1.47641 0.738206 0.674575i \(-0.235673\pi\)
0.738206 + 0.674575i \(0.235673\pi\)
\(168\) 0 0
\(169\) −21.5388 −0.00980375
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −570.986 −0.250932 −0.125466 0.992098i \(-0.540043\pi\)
−0.125466 + 0.992098i \(0.540043\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1865.24 0.778851 0.389426 0.921058i \(-0.372673\pi\)
0.389426 + 0.921058i \(0.372673\pi\)
\(180\) 0 0
\(181\) 3651.52 1.49953 0.749767 0.661702i \(-0.230166\pi\)
0.749767 + 0.661702i \(0.230166\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 703.582 0.279613
\(186\) 0 0
\(187\) 3738.36 1.46190
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1437.63 −0.544623 −0.272312 0.962209i \(-0.587788\pi\)
−0.272312 + 0.962209i \(0.587788\pi\)
\(192\) 0 0
\(193\) −1347.73 −0.502652 −0.251326 0.967903i \(-0.580867\pi\)
−0.251326 + 0.967903i \(0.580867\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1275.09 −0.461149 −0.230574 0.973055i \(-0.574061\pi\)
−0.230574 + 0.973055i \(0.574061\pi\)
\(198\) 0 0
\(199\) 790.372 0.281548 0.140774 0.990042i \(-0.455041\pi\)
0.140774 + 0.990042i \(0.455041\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −378.000 −0.130692
\(204\) 0 0
\(205\) −1350.00 −0.459942
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2981.73 0.986845
\(210\) 0 0
\(211\) 3343.55 1.09090 0.545449 0.838144i \(-0.316359\pi\)
0.545449 + 0.838144i \(0.316359\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 733.582 0.232697
\(216\) 0 0
\(217\) −461.479 −0.144365
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3078.36 0.936982
\(222\) 0 0
\(223\) −3091.85 −0.928456 −0.464228 0.885716i \(-0.653668\pi\)
−0.464228 + 0.885716i \(0.653668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6024.63 1.76154 0.880768 0.473548i \(-0.157027\pi\)
0.880768 + 0.473548i \(0.157027\pi\)
\(228\) 0 0
\(229\) 1470.30 0.424280 0.212140 0.977239i \(-0.431957\pi\)
0.212140 + 0.977239i \(0.431957\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2599.03 0.730765 0.365382 0.930857i \(-0.380938\pi\)
0.365382 + 0.930857i \(0.380938\pi\)
\(234\) 0 0
\(235\) −1459.26 −0.405069
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 395.060 0.106922 0.0534609 0.998570i \(-0.482975\pi\)
0.0534609 + 0.998570i \(0.482975\pi\)
\(240\) 0 0
\(241\) 4140.66 1.10674 0.553368 0.832937i \(-0.313342\pi\)
0.553368 + 0.832937i \(0.313342\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) 2455.31 0.632501
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1013.28 0.254812 0.127406 0.991851i \(-0.459335\pi\)
0.127406 + 0.991851i \(0.459335\pi\)
\(252\) 0 0
\(253\) −679.702 −0.168903
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6981.50 −1.69453 −0.847264 0.531172i \(-0.821752\pi\)
−0.847264 + 0.531172i \(0.821752\pi\)
\(258\) 0 0
\(259\) 985.014 0.236316
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6093.58 1.42869 0.714347 0.699792i \(-0.246724\pi\)
0.714347 + 0.699792i \(0.246724\pi\)
\(264\) 0 0
\(265\) −1873.21 −0.434228
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −706.298 −0.160088 −0.0800441 0.996791i \(-0.525506\pi\)
−0.0800441 + 0.996791i \(0.525506\pi\)
\(270\) 0 0
\(271\) 3520.73 0.789186 0.394593 0.918856i \(-0.370886\pi\)
0.394593 + 0.918856i \(0.370886\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1416.05 0.310512
\(276\) 0 0
\(277\) 1369.55 0.297070 0.148535 0.988907i \(-0.452544\pi\)
0.148535 + 0.988907i \(0.452544\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7204.66 −1.52952 −0.764758 0.644318i \(-0.777141\pi\)
−0.764758 + 0.644318i \(0.777141\pi\)
\(282\) 0 0
\(283\) −189.192 −0.0397395 −0.0198698 0.999803i \(-0.506325\pi\)
−0.0198698 + 0.999803i \(0.506325\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1890.00 −0.388722
\(288\) 0 0
\(289\) −557.000 −0.113373
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1816.48 0.362183 0.181092 0.983466i \(-0.442037\pi\)
0.181092 + 0.983466i \(0.442037\pi\)
\(294\) 0 0
\(295\) −386.418 −0.0762649
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −559.702 −0.108256
\(300\) 0 0
\(301\) 1027.01 0.196665
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3790.00 0.711524
\(306\) 0 0
\(307\) 1766.18 0.328342 0.164171 0.986432i \(-0.447505\pi\)
0.164171 + 0.986432i \(0.447505\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2542.03 0.463489 0.231745 0.972777i \(-0.425557\pi\)
0.231745 + 0.972777i \(0.425557\pi\)
\(312\) 0 0
\(313\) −8114.97 −1.46545 −0.732724 0.680525i \(-0.761752\pi\)
−0.732724 + 0.680525i \(0.761752\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4997.15 −0.885388 −0.442694 0.896673i \(-0.645977\pi\)
−0.442694 + 0.896673i \(0.645977\pi\)
\(318\) 0 0
\(319\) −3058.66 −0.536840
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3474.36 0.598510
\(324\) 0 0
\(325\) 1166.05 0.199017
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2042.96 −0.342346
\(330\) 0 0
\(331\) 2593.64 0.430693 0.215346 0.976538i \(-0.430912\pi\)
0.215346 + 0.976538i \(0.430912\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1780.00 0.290304
\(336\) 0 0
\(337\) 9363.97 1.51361 0.756807 0.653638i \(-0.226758\pi\)
0.756807 + 0.653638i \(0.226758\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3734.14 −0.593006
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11371.3 −1.75921 −0.879605 0.475705i \(-0.842193\pi\)
−0.879605 + 0.475705i \(0.842193\pi\)
\(348\) 0 0
\(349\) −10479.9 −1.60738 −0.803692 0.595046i \(-0.797134\pi\)
−0.803692 + 0.595046i \(0.797134\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4551.49 −0.686264 −0.343132 0.939287i \(-0.611488\pi\)
−0.343132 + 0.939287i \(0.611488\pi\)
\(354\) 0 0
\(355\) −4101.72 −0.613230
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6705.27 −0.985768 −0.492884 0.870095i \(-0.664057\pi\)
−0.492884 + 0.870095i \(0.664057\pi\)
\(360\) 0 0
\(361\) −4087.84 −0.595981
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2006.05 −0.287675
\(366\) 0 0
\(367\) 5880.57 0.836413 0.418206 0.908352i \(-0.362659\pi\)
0.418206 + 0.908352i \(0.362659\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2622.49 −0.366989
\(372\) 0 0
\(373\) 13540.7 1.87965 0.939827 0.341652i \(-0.110986\pi\)
0.939827 + 0.341652i \(0.110986\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2518.66 −0.344078
\(378\) 0 0
\(379\) 10982.5 1.48847 0.744236 0.667917i \(-0.232814\pi\)
0.744236 + 0.667917i \(0.232814\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11647.9 −1.55399 −0.776996 0.629505i \(-0.783258\pi\)
−0.776996 + 0.629505i \(0.783258\pi\)
\(384\) 0 0
\(385\) 1982.46 0.262430
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5323.17 0.693819 0.346909 0.937899i \(-0.387231\pi\)
0.346909 + 0.937899i \(0.387231\pi\)
\(390\) 0 0
\(391\) −792.000 −0.102438
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3539.26 0.450834
\(396\) 0 0
\(397\) −3272.35 −0.413689 −0.206845 0.978374i \(-0.566319\pi\)
−0.206845 + 0.978374i \(0.566319\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8255.73 −1.02811 −0.514054 0.857758i \(-0.671857\pi\)
−0.514054 + 0.857758i \(0.671857\pi\)
\(402\) 0 0
\(403\) −3074.89 −0.380077
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7970.43 0.970712
\(408\) 0 0
\(409\) 15949.6 1.92826 0.964131 0.265427i \(-0.0855128\pi\)
0.964131 + 0.265427i \(0.0855128\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −540.986 −0.0644556
\(414\) 0 0
\(415\) 4504.93 0.532863
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5743.16 0.669623 0.334811 0.942285i \(-0.391327\pi\)
0.334811 + 0.942285i \(0.391327\pi\)
\(420\) 0 0
\(421\) 3396.92 0.393244 0.196622 0.980479i \(-0.437003\pi\)
0.196622 + 0.980479i \(0.437003\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1650.00 0.188322
\(426\) 0 0
\(427\) 5306.00 0.601347
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15383.0 −1.71919 −0.859596 0.510974i \(-0.829285\pi\)
−0.859596 + 0.510974i \(0.829285\pi\)
\(432\) 0 0
\(433\) −17906.1 −1.98732 −0.993662 0.112409i \(-0.964143\pi\)
−0.993662 + 0.112409i \(0.964143\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −631.702 −0.0691497
\(438\) 0 0
\(439\) 13900.3 1.51122 0.755609 0.655023i \(-0.227341\pi\)
0.755609 + 0.655023i \(0.227341\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4219.35 0.452522 0.226261 0.974067i \(-0.427350\pi\)
0.226261 + 0.974067i \(0.427350\pi\)
\(444\) 0 0
\(445\) 3181.35 0.338900
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6709.89 0.705254 0.352627 0.935764i \(-0.385288\pi\)
0.352627 + 0.935764i \(0.385288\pi\)
\(450\) 0 0
\(451\) −15293.3 −1.59675
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1632.46 0.168200
\(456\) 0 0
\(457\) −17330.9 −1.77398 −0.886988 0.461793i \(-0.847206\pi\)
−0.886988 + 0.461793i \(0.847206\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4891.43 0.494179 0.247090 0.968993i \(-0.420526\pi\)
0.247090 + 0.968993i \(0.420526\pi\)
\(462\) 0 0
\(463\) −16496.6 −1.65585 −0.827927 0.560835i \(-0.810480\pi\)
−0.827927 + 0.560835i \(0.810480\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6046.48 −0.599138 −0.299569 0.954075i \(-0.596843\pi\)
−0.299569 + 0.954075i \(0.596843\pi\)
\(468\) 0 0
\(469\) 2492.00 0.245352
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8310.28 0.807838
\(474\) 0 0
\(475\) 1316.05 0.127125
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 16334.5 1.55813 0.779063 0.626945i \(-0.215695\pi\)
0.779063 + 0.626945i \(0.215695\pi\)
\(480\) 0 0
\(481\) 6563.27 0.622161
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 600.372 0.0562093
\(486\) 0 0
\(487\) −14770.5 −1.37437 −0.687184 0.726483i \(-0.741153\pi\)
−0.687184 + 0.726483i \(0.741153\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6343.84 −0.583082 −0.291541 0.956558i \(-0.594168\pi\)
−0.291541 + 0.956558i \(0.594168\pi\)
\(492\) 0 0
\(493\) −3564.00 −0.325587
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5742.41 −0.518274
\(498\) 0 0
\(499\) −2904.24 −0.260544 −0.130272 0.991478i \(-0.541585\pi\)
−0.130272 + 0.991478i \(0.541585\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5224.11 0.463085 0.231542 0.972825i \(-0.425623\pi\)
0.231542 + 0.972825i \(0.425623\pi\)
\(504\) 0 0
\(505\) −8341.35 −0.735020
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8188.94 −0.713101 −0.356550 0.934276i \(-0.616047\pi\)
−0.356550 + 0.934276i \(0.616047\pi\)
\(510\) 0 0
\(511\) −2808.46 −0.243129
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7251.35 −0.620452
\(516\) 0 0
\(517\) −16531.0 −1.40625
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14331.3 −1.20512 −0.602559 0.798074i \(-0.705852\pi\)
−0.602559 + 0.798074i \(0.705852\pi\)
\(522\) 0 0
\(523\) −14696.2 −1.22872 −0.614360 0.789026i \(-0.710586\pi\)
−0.614360 + 0.789026i \(0.710586\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4351.08 −0.359651
\(528\) 0 0
\(529\) −12023.0 −0.988165
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12593.3 −1.02341
\(534\) 0 0
\(535\) −1286.42 −0.103956
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2775.45 0.221794
\(540\) 0 0
\(541\) 988.510 0.0785571 0.0392785 0.999228i \(-0.487494\pi\)
0.0392785 + 0.999228i \(0.487494\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10212.7 0.802686
\(546\) 0 0
\(547\) 19765.7 1.54501 0.772507 0.635007i \(-0.219003\pi\)
0.772507 + 0.635007i \(0.219003\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2842.66 −0.219785
\(552\) 0 0
\(553\) 4954.96 0.381024
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4856.65 0.369448 0.184724 0.982790i \(-0.440861\pi\)
0.184724 + 0.982790i \(0.440861\pi\)
\(558\) 0 0
\(559\) 6843.12 0.517769
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1008.35 −0.0754833 −0.0377416 0.999288i \(-0.512016\pi\)
−0.0377416 + 0.999288i \(0.512016\pi\)
\(564\) 0 0
\(565\) −426.046 −0.0317237
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18032.3 1.32857 0.664284 0.747480i \(-0.268737\pi\)
0.664284 + 0.747480i \(0.268737\pi\)
\(570\) 0 0
\(571\) −12329.6 −0.903640 −0.451820 0.892109i \(-0.649225\pi\)
−0.451820 + 0.892109i \(0.649225\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −300.000 −0.0217580
\(576\) 0 0
\(577\) −19227.0 −1.38723 −0.693613 0.720348i \(-0.743982\pi\)
−0.693613 + 0.720348i \(0.743982\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6306.90 0.450352
\(582\) 0 0
\(583\) −21220.4 −1.50748
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5388.00 0.378853 0.189426 0.981895i \(-0.439337\pi\)
0.189426 + 0.981895i \(0.439337\pi\)
\(588\) 0 0
\(589\) −3470.44 −0.242779
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14921.6 −1.03332 −0.516660 0.856191i \(-0.672825\pi\)
−0.516660 + 0.856191i \(0.672825\pi\)
\(594\) 0 0
\(595\) 2310.00 0.159161
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25631.9 1.74840 0.874199 0.485568i \(-0.161387\pi\)
0.874199 + 0.485568i \(0.161387\pi\)
\(600\) 0 0
\(601\) −11924.1 −0.809310 −0.404655 0.914470i \(-0.632608\pi\)
−0.404655 + 0.914470i \(0.632608\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9386.49 0.630769
\(606\) 0 0
\(607\) −9262.72 −0.619377 −0.309689 0.950838i \(-0.600225\pi\)
−0.309689 + 0.950838i \(0.600225\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13612.5 −0.901312
\(612\) 0 0
\(613\) −17791.9 −1.17228 −0.586142 0.810209i \(-0.699354\pi\)
−0.586142 + 0.810209i \(0.699354\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2381.69 −0.155402 −0.0777012 0.996977i \(-0.524758\pi\)
−0.0777012 + 0.996977i \(0.524758\pi\)
\(618\) 0 0
\(619\) −1439.49 −0.0934698 −0.0467349 0.998907i \(-0.514882\pi\)
−0.0467349 + 0.998907i \(0.514882\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4453.89 0.286422
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9287.28 0.588725
\(630\) 0 0
\(631\) 12146.4 0.766306 0.383153 0.923685i \(-0.374838\pi\)
0.383153 + 0.923685i \(0.374838\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2632.09 0.164490
\(636\) 0 0
\(637\) 2285.45 0.142155
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10331.8 −0.636635 −0.318317 0.947984i \(-0.603118\pi\)
−0.318317 + 0.947984i \(0.603118\pi\)
\(642\) 0 0
\(643\) 14572.9 0.893776 0.446888 0.894590i \(-0.352532\pi\)
0.446888 + 0.894590i \(0.352532\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5365.80 −0.326045 −0.163023 0.986622i \(-0.552124\pi\)
−0.163023 + 0.986622i \(0.552124\pi\)
\(648\) 0 0
\(649\) −4377.49 −0.264763
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −31532.8 −1.88970 −0.944851 0.327501i \(-0.893793\pi\)
−0.944851 + 0.327501i \(0.893793\pi\)
\(654\) 0 0
\(655\) 8282.69 0.494094
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4830.39 0.285532 0.142766 0.989756i \(-0.454400\pi\)
0.142766 + 0.989756i \(0.454400\pi\)
\(660\) 0 0
\(661\) −24168.9 −1.42218 −0.711090 0.703101i \(-0.751798\pi\)
−0.711090 + 0.703101i \(0.751798\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1842.46 0.107440
\(666\) 0 0
\(667\) 648.000 0.0376172
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 42934.5 2.47015
\(672\) 0 0
\(673\) 5383.64 0.308357 0.154178 0.988043i \(-0.450727\pi\)
0.154178 + 0.988043i \(0.450727\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27370.4 1.55381 0.776905 0.629617i \(-0.216788\pi\)
0.776905 + 0.629617i \(0.216788\pi\)
\(678\) 0 0
\(679\) 840.521 0.0475055
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −33313.3 −1.86632 −0.933160 0.359461i \(-0.882960\pi\)
−0.933160 + 0.359461i \(0.882960\pi\)
\(684\) 0 0
\(685\) 889.025 0.0495882
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17474.0 −0.966191
\(690\) 0 0
\(691\) 20185.5 1.11128 0.555639 0.831423i \(-0.312474\pi\)
0.555639 + 0.831423i \(0.312474\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4815.30 −0.262813
\(696\) 0 0
\(697\) −17820.0 −0.968408
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12215.2 −0.658148 −0.329074 0.944304i \(-0.606736\pi\)
−0.329074 + 0.944304i \(0.606736\pi\)
\(702\) 0 0
\(703\) 7407.57 0.397413
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11677.9 −0.621205
\(708\) 0 0
\(709\) −15402.3 −0.815859 −0.407929 0.913014i \(-0.633749\pi\)
−0.407929 + 0.913014i \(0.633749\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 791.106 0.0415528
\(714\) 0 0
\(715\) 13209.4 0.690914
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20646.6 1.07091 0.535457 0.844563i \(-0.320140\pi\)
0.535457 + 0.844563i \(0.320140\pi\)
\(720\) 0 0
\(721\) −10151.9 −0.524377
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1350.00 −0.0691555
\(726\) 0 0
\(727\) 17329.1 0.884045 0.442023 0.897004i \(-0.354261\pi\)
0.442023 + 0.897004i \(0.354261\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9683.28 0.489944
\(732\) 0 0
\(733\) −29890.5 −1.50618 −0.753091 0.657917i \(-0.771438\pi\)
−0.753091 + 0.657917i \(0.771438\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20164.5 1.00783
\(738\) 0 0
\(739\) −14143.0 −0.704006 −0.352003 0.935999i \(-0.614499\pi\)
−0.352003 + 0.935999i \(0.614499\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25944.6 −1.28104 −0.640522 0.767940i \(-0.721282\pi\)
−0.640522 + 0.767940i \(0.721282\pi\)
\(744\) 0 0
\(745\) −4263.58 −0.209672
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1800.99 −0.0878593
\(750\) 0 0
\(751\) 6551.50 0.318332 0.159166 0.987252i \(-0.449119\pi\)
0.159166 + 0.987252i \(0.449119\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15834.0 −0.763258
\(756\) 0 0
\(757\) −14503.3 −0.696344 −0.348172 0.937431i \(-0.613197\pi\)
−0.348172 + 0.937431i \(0.613197\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34740.1 1.65483 0.827417 0.561589i \(-0.189810\pi\)
0.827417 + 0.561589i \(0.189810\pi\)
\(762\) 0 0
\(763\) 14297.8 0.678393
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3604.65 −0.169696
\(768\) 0 0
\(769\) 8998.86 0.421986 0.210993 0.977488i \(-0.432330\pi\)
0.210993 + 0.977488i \(0.432330\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −16966.6 −0.789450 −0.394725 0.918799i \(-0.629160\pi\)
−0.394725 + 0.918799i \(0.629160\pi\)
\(774\) 0 0
\(775\) −1648.14 −0.0763908
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14213.3 −0.653715
\(780\) 0 0
\(781\) −46465.8 −2.12891
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6635.90 −0.301714
\(786\) 0 0
\(787\) 14915.1 0.675562 0.337781 0.941225i \(-0.390324\pi\)
0.337781 + 0.941225i \(0.390324\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −596.464 −0.0268114
\(792\) 0 0
\(793\) 35354.5 1.58320
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12855.4 0.571344 0.285672 0.958327i \(-0.407783\pi\)
0.285672 + 0.958327i \(0.407783\pi\)
\(798\) 0 0
\(799\) −19262.2 −0.852874
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −22725.2 −0.998700
\(804\) 0 0
\(805\) −420.000 −0.0183889
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −29152.0 −1.26691 −0.633454 0.773780i \(-0.718363\pi\)
−0.633454 + 0.773780i \(0.718363\pi\)
\(810\) 0 0
\(811\) 36924.7 1.59877 0.799385 0.600820i \(-0.205159\pi\)
0.799385 + 0.600820i \(0.205159\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8797.77 0.378126
\(816\) 0 0
\(817\) 7723.42 0.330732
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −37844.0 −1.60873 −0.804363 0.594138i \(-0.797493\pi\)
−0.804363 + 0.594138i \(0.797493\pi\)
\(822\) 0 0
\(823\) 7667.85 0.324769 0.162384 0.986728i \(-0.448082\pi\)
0.162384 + 0.986728i \(0.448082\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −23869.5 −1.00366 −0.501829 0.864967i \(-0.667339\pi\)
−0.501829 + 0.864967i \(0.667339\pi\)
\(828\) 0 0
\(829\) 33433.6 1.40072 0.700359 0.713791i \(-0.253023\pi\)
0.700359 + 0.713791i \(0.253023\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3234.00 0.134516
\(834\) 0 0
\(835\) 15931.3 0.660272
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31273.0 1.28685 0.643423 0.765511i \(-0.277514\pi\)
0.643423 + 0.765511i \(0.277514\pi\)
\(840\) 0 0
\(841\) −21473.0 −0.880438
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −107.694 −0.00438437
\(846\) 0 0
\(847\) 13141.1 0.533097
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1688.60 −0.0680192
\(852\) 0 0
\(853\) −9972.48 −0.400294 −0.200147 0.979766i \(-0.564142\pi\)
−0.200147 + 0.979766i \(0.564142\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25152.9 1.00257 0.501287 0.865281i \(-0.332860\pi\)
0.501287 + 0.865281i \(0.332860\pi\)
\(858\) 0 0
\(859\) −7874.63 −0.312781 −0.156390 0.987695i \(-0.549986\pi\)
−0.156390 + 0.987695i \(0.549986\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1959.42 0.0772878 0.0386439 0.999253i \(-0.487696\pi\)
0.0386439 + 0.999253i \(0.487696\pi\)
\(864\) 0 0
\(865\) −2854.93 −0.112220
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 40094.0 1.56513
\(870\) 0 0
\(871\) 16604.5 0.645949
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −31261.9 −1.20369 −0.601846 0.798612i \(-0.705568\pi\)
−0.601846 + 0.798612i \(0.705568\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −42459.0 −1.62370 −0.811850 0.583866i \(-0.801539\pi\)
−0.811850 + 0.583866i \(0.801539\pi\)
\(882\) 0 0
\(883\) 34673.0 1.32145 0.660723 0.750629i \(-0.270250\pi\)
0.660723 + 0.750629i \(0.270250\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38271.3 −1.44873 −0.724366 0.689415i \(-0.757868\pi\)
−0.724366 + 0.689415i \(0.757868\pi\)
\(888\) 0 0
\(889\) 3684.93 0.139020
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15363.6 −0.575725
\(894\) 0 0
\(895\) 9326.19 0.348313
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3559.98 0.132071
\(900\) 0 0
\(901\) −24726.4 −0.914267
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18257.6 0.670612
\(906\) 0 0
\(907\) 17.6607 0.000646542 0 0.000323271 1.00000i \(-0.499897\pi\)
0.000323271 1.00000i \(0.499897\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20346.3 0.739959 0.369980 0.929040i \(-0.379365\pi\)
0.369980 + 0.929040i \(0.379365\pi\)
\(912\) 0 0
\(913\) 51033.5 1.84990
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11595.8 0.417586
\(918\) 0 0
\(919\) 38074.1 1.36665 0.683323 0.730116i \(-0.260534\pi\)
0.683323 + 0.730116i \(0.260534\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −38262.3 −1.36449
\(924\) 0 0
\(925\) 3517.91 0.125047
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5169.42 −0.182565 −0.0912826 0.995825i \(-0.529097\pi\)
−0.0912826 + 0.995825i \(0.529097\pi\)
\(930\) 0 0
\(931\) 2579.45 0.0908035
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 18691.8 0.653783
\(936\) 0 0
\(937\) 28753.8 1.00250 0.501252 0.865302i \(-0.332873\pi\)
0.501252 + 0.865302i \(0.332873\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12332.7 0.427242 0.213621 0.976917i \(-0.431474\pi\)
0.213621 + 0.976917i \(0.431474\pi\)
\(942\) 0 0
\(943\) 3240.00 0.111886
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18195.0 0.624350 0.312175 0.950025i \(-0.398942\pi\)
0.312175 + 0.950025i \(0.398942\pi\)
\(948\) 0 0
\(949\) −18713.1 −0.640099
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1331.58 −0.0452614 −0.0226307 0.999744i \(-0.507204\pi\)
−0.0226307 + 0.999744i \(0.507204\pi\)
\(954\) 0 0
\(955\) −7188.14 −0.243563
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1244.64 0.0419097
\(960\) 0 0
\(961\) −25444.8 −0.854111
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6738.65 −0.224793
\(966\) 0 0
\(967\) 19516.2 0.649018 0.324509 0.945883i \(-0.394801\pi\)
0.324509 + 0.945883i \(0.394801\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 16350.7 0.540390 0.270195 0.962806i \(-0.412912\pi\)
0.270195 + 0.962806i \(0.412912\pi\)
\(972\) 0 0
\(973\) −6741.42 −0.222117
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −22315.8 −0.730754 −0.365377 0.930860i \(-0.619060\pi\)
−0.365377 + 0.930860i \(0.619060\pi\)
\(978\) 0 0
\(979\) 36039.5 1.17653
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4913.28 0.159420 0.0797098 0.996818i \(-0.474601\pi\)
0.0797098 + 0.996818i \(0.474601\pi\)
\(984\) 0 0
\(985\) −6375.44 −0.206232
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1760.60 −0.0566064
\(990\) 0 0
\(991\) −30336.3 −0.972418 −0.486209 0.873843i \(-0.661621\pi\)
−0.486209 + 0.873843i \(0.661621\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3951.86 0.125912
\(996\) 0 0
\(997\) 34353.9 1.09127 0.545637 0.838022i \(-0.316288\pi\)
0.545637 + 0.838022i \(0.316288\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.4.a.o.1.2 2
3.2 odd 2 420.4.a.g.1.1 2
12.11 even 2 1680.4.a.bi.1.2 2
15.2 even 4 2100.4.k.m.1849.3 4
15.8 even 4 2100.4.k.m.1849.1 4
15.14 odd 2 2100.4.a.r.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.4.a.g.1.1 2 3.2 odd 2
1260.4.a.o.1.2 2 1.1 even 1 trivial
1680.4.a.bi.1.2 2 12.11 even 2
2100.4.a.r.1.1 2 15.14 odd 2
2100.4.k.m.1849.1 4 15.8 even 4
2100.4.k.m.1849.3 4 15.2 even 4