Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1260,4,Mod(1,1260)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1260.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(74.3424066072\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{109}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 27 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{2}\cdot 3 \) |
Twist minimal: | no (minimal twist has level 420) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.2 | ||
Root | \(-4.72015\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1260.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 5.00000 | 0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 7.00000 | 0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 56.6418 | 1.55256 | 0.776280 | − | 0.630388i | \(-0.217104\pi\) | ||||
0.776280 | + | 0.630388i | \(0.217104\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 46.6418 | 0.995086 | 0.497543 | − | 0.867439i | \(-0.334236\pi\) | ||||
0.497543 | + | 0.867439i | \(0.334236\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 66.0000 | 0.941609 | 0.470804 | − | 0.882238i | \(-0.343964\pi\) | ||||
0.470804 | + | 0.882238i | \(0.343964\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 52.6418 | 0.635625 | 0.317812 | − | 0.948154i | \(-0.397052\pi\) | ||||
0.317812 | + | 0.948154i | \(0.397052\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −12.0000 | −0.108790 | −0.0543951 | − | 0.998519i | \(-0.517323\pi\) | ||||
−0.0543951 | + | 0.998519i | \(0.517323\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 25.0000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −54.0000 | −0.345778 | −0.172889 | − | 0.984941i | \(-0.555310\pi\) | ||||
−0.172889 | + | 0.984941i | \(0.555310\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −65.9255 | −0.381954 | −0.190977 | − | 0.981595i | \(-0.561166\pi\) | ||||
−0.190977 | + | 0.981595i | \(0.561166\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 35.0000 | 0.169031 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 140.716 | 0.625233 | 0.312616 | − | 0.949879i | \(-0.398795\pi\) | ||||
0.312616 | + | 0.949879i | \(0.398795\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −270.000 | −1.02846 | −0.514231 | − | 0.857652i | \(-0.671922\pi\) | ||||
−0.514231 | + | 0.857652i | \(0.671922\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 146.716 | 0.520326 | 0.260163 | − | 0.965565i | \(-0.416224\pi\) | ||||
0.260163 | + | 0.965565i | \(0.416224\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −291.851 | −0.905763 | −0.452881 | − | 0.891571i | \(-0.649604\pi\) | ||||
−0.452881 | + | 0.891571i | \(0.649604\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 49.0000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −374.642 | −0.970963 | −0.485481 | − | 0.874247i | \(-0.661356\pi\) | ||||
−0.485481 | + | 0.874247i | \(0.661356\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 283.209 | 0.694326 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −77.2837 | −0.170534 | −0.0852668 | − | 0.996358i | \(-0.527174\pi\) | ||||
−0.0852668 | + | 0.996358i | \(0.527174\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 758.000 | 1.59102 | 0.795508 | − | 0.605943i | \(-0.207204\pi\) | ||||
0.795508 | + | 0.605943i | \(0.207204\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 233.209 | 0.445016 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 356.000 | 0.649139 | 0.324570 | − | 0.945862i | \(-0.394781\pi\) | ||||
0.324570 | + | 0.945862i | \(0.394781\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −820.344 | −1.37122 | −0.685612 | − | 0.727967i | \(-0.740465\pi\) | ||||
−0.685612 | + | 0.727967i | \(0.740465\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −401.209 | −0.643260 | −0.321630 | − | 0.946865i | \(-0.604231\pi\) | ||||
−0.321630 | + | 0.946865i | \(0.604231\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 396.493 | 0.586812 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 707.851 | 1.00809 | 0.504047 | − | 0.863676i | \(-0.331844\pi\) | ||||
0.504047 | + | 0.863676i | \(0.331844\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 900.986 | 1.19152 | 0.595759 | − | 0.803163i | \(-0.296851\pi\) | ||||
0.595759 | + | 0.803163i | \(0.296851\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 330.000 | 0.421100 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 636.269 | 0.757803 | 0.378901 | − | 0.925437i | \(-0.376302\pi\) | ||||
0.378901 | + | 0.925437i | \(0.376302\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 326.493 | 0.376107 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 263.209 | 0.284260 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 120.074 | 0.125688 | 0.0628439 | − | 0.998023i | \(-0.479983\pi\) | ||||
0.0628439 | + | 0.998023i | \(0.479983\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −1668.27 | −1.64355 | −0.821777 | − | 0.569809i | \(-0.807017\pi\) | ||||
−0.821777 | + | 0.569809i | \(0.807017\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −1450.27 | −1.38737 | −0.693686 | − | 0.720278i | \(-0.744014\pi\) | ||||
−0.693686 | + | 0.720278i | \(0.744014\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −257.284 | −0.232454 | −0.116227 | − | 0.993223i | \(-0.537080\pi\) | ||||
−0.116227 | + | 0.993223i | \(0.537080\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2042.54 | 1.79486 | 0.897430 | − | 0.441157i | \(-0.145432\pi\) | ||||
0.897430 | + | 0.441157i | \(0.145432\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −85.2092 | −0.0709363 | −0.0354682 | − | 0.999371i | \(-0.511292\pi\) | ||||
−0.0354682 | + | 0.999371i | \(0.511292\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −60.0000 | −0.0486524 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 462.000 | 0.355895 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 1877.30 | 1.41044 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 125.000 | 0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 526.418 | 0.367812 | 0.183906 | − | 0.982944i | \(-0.441126\pi\) | ||||
0.183906 | + | 0.982944i | \(0.441126\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 1656.54 | 1.10483 | 0.552414 | − | 0.833570i | \(-0.313707\pi\) | ||||
0.552414 | + | 0.833570i | \(0.313707\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 368.493 | 0.240243 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 177.805 | 0.110883 | 0.0554413 | − | 0.998462i | \(-0.482343\pi\) | ||||
0.0554413 | + | 0.998462i | \(0.482343\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −963.060 | −0.587667 | −0.293833 | − | 0.955857i | \(-0.594931\pi\) | ||||
−0.293833 | + | 0.955857i | \(0.594931\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 2641.88 | 1.54493 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −270.000 | −0.154636 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −852.716 | −0.468841 | −0.234420 | − | 0.972135i | \(-0.575319\pi\) | ||||
−0.234420 | + | 0.972135i | \(0.575319\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −3166.81 | −1.70670 | −0.853348 | − | 0.521341i | \(-0.825432\pi\) | ||||
−0.853348 | + | 0.521341i | \(0.825432\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −329.628 | −0.170815 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −1327.18 | −0.674653 | −0.337327 | − | 0.941388i | \(-0.609523\pi\) | ||||
−0.337327 | + | 0.941388i | \(0.609523\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −84.0000 | −0.0411188 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 1759.55 | 0.845514 | 0.422757 | − | 0.906243i | \(-0.361062\pi\) | ||||
0.422757 | + | 0.906243i | \(0.361062\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 3186.27 | 1.47641 | 0.738206 | − | 0.674575i | \(-0.235673\pi\) | ||||
0.738206 | + | 0.674575i | \(0.235673\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −21.5388 | −0.00980375 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −570.986 | −0.250932 | −0.125466 | − | 0.992098i | \(-0.540043\pi\) | ||||
−0.125466 | + | 0.992098i | \(0.540043\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 175.000 | 0.0755929 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 1865.24 | 0.778851 | 0.389426 | − | 0.921058i | \(-0.372673\pi\) | ||||
0.389426 | + | 0.921058i | \(0.372673\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 3651.52 | 1.49953 | 0.749767 | − | 0.661702i | \(-0.230166\pi\) | ||||
0.749767 | + | 0.661702i | \(0.230166\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 703.582 | 0.279613 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 3738.36 | 1.46190 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −1437.63 | −0.544623 | −0.272312 | − | 0.962209i | \(-0.587788\pi\) | ||||
−0.272312 | + | 0.962209i | \(0.587788\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −1347.73 | −0.502652 | −0.251326 | − | 0.967903i | \(-0.580867\pi\) | ||||
−0.251326 | + | 0.967903i | \(0.580867\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −1275.09 | −0.461149 | −0.230574 | − | 0.973055i | \(-0.574061\pi\) | ||||
−0.230574 | + | 0.973055i | \(0.574061\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 790.372 | 0.281548 | 0.140774 | − | 0.990042i | \(-0.455041\pi\) | ||||
0.140774 | + | 0.990042i | \(0.455041\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −378.000 | −0.130692 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −1350.00 | −0.459942 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 2981.73 | 0.986845 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 3343.55 | 1.09090 | 0.545449 | − | 0.838144i | \(-0.316359\pi\) | ||||
0.545449 | + | 0.838144i | \(0.316359\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 733.582 | 0.232697 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −461.479 | −0.144365 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 3078.36 | 0.936982 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −3091.85 | −0.928456 | −0.464228 | − | 0.885716i | \(-0.653668\pi\) | ||||
−0.464228 | + | 0.885716i | \(0.653668\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 6024.63 | 1.76154 | 0.880768 | − | 0.473548i | \(-0.157027\pi\) | ||||
0.880768 | + | 0.473548i | \(0.157027\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 1470.30 | 0.424280 | 0.212140 | − | 0.977239i | \(-0.431957\pi\) | ||||
0.212140 | + | 0.977239i | \(0.431957\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 2599.03 | 0.730765 | 0.365382 | − | 0.930857i | \(-0.380938\pi\) | ||||
0.365382 | + | 0.930857i | \(0.380938\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −1459.26 | −0.405069 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 395.060 | 0.106922 | 0.0534609 | − | 0.998570i | \(-0.482975\pi\) | ||||
0.0534609 | + | 0.998570i | \(0.482975\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 4140.66 | 1.10674 | 0.553368 | − | 0.832937i | \(-0.313342\pi\) | ||||
0.553368 | + | 0.832937i | \(0.313342\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 245.000 | 0.0638877 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 2455.31 | 0.632501 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 1013.28 | 0.254812 | 0.127406 | − | 0.991851i | \(-0.459335\pi\) | ||||
0.127406 | + | 0.991851i | \(0.459335\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −679.702 | −0.168903 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −6981.50 | −1.69453 | −0.847264 | − | 0.531172i | \(-0.821752\pi\) | ||||
−0.847264 | + | 0.531172i | \(0.821752\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 985.014 | 0.236316 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 6093.58 | 1.42869 | 0.714347 | − | 0.699792i | \(-0.246724\pi\) | ||||
0.714347 | + | 0.699792i | \(0.246724\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −1873.21 | −0.434228 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −706.298 | −0.160088 | −0.0800441 | − | 0.996791i | \(-0.525506\pi\) | ||||
−0.0800441 | + | 0.996791i | \(0.525506\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 3520.73 | 0.789186 | 0.394593 | − | 0.918856i | \(-0.370886\pi\) | ||||
0.394593 | + | 0.918856i | \(0.370886\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 1416.05 | 0.310512 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 1369.55 | 0.297070 | 0.148535 | − | 0.988907i | \(-0.452544\pi\) | ||||
0.148535 | + | 0.988907i | \(0.452544\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −7204.66 | −1.52952 | −0.764758 | − | 0.644318i | \(-0.777141\pi\) | ||||
−0.764758 | + | 0.644318i | \(0.777141\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −189.192 | −0.0397395 | −0.0198698 | − | 0.999803i | \(-0.506325\pi\) | ||||
−0.0198698 | + | 0.999803i | \(0.506325\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −1890.00 | −0.388722 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −557.000 | −0.113373 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 1816.48 | 0.362183 | 0.181092 | − | 0.983466i | \(-0.442037\pi\) | ||||
0.181092 | + | 0.983466i | \(0.442037\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −386.418 | −0.0762649 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −559.702 | −0.108256 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 1027.01 | 0.196665 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 3790.00 | 0.711524 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 1766.18 | 0.328342 | 0.164171 | − | 0.986432i | \(-0.447505\pi\) | ||||
0.164171 | + | 0.986432i | \(0.447505\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 2542.03 | 0.463489 | 0.231745 | − | 0.972777i | \(-0.425557\pi\) | ||||
0.231745 | + | 0.972777i | \(0.425557\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −8114.97 | −1.46545 | −0.732724 | − | 0.680525i | \(-0.761752\pi\) | ||||
−0.732724 | + | 0.680525i | \(0.761752\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −4997.15 | −0.885388 | −0.442694 | − | 0.896673i | \(-0.645977\pi\) | ||||
−0.442694 | + | 0.896673i | \(0.645977\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −3058.66 | −0.536840 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 3474.36 | 0.598510 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 1166.05 | 0.199017 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −2042.96 | −0.342346 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 2593.64 | 0.430693 | 0.215346 | − | 0.976538i | \(-0.430912\pi\) | ||||
0.215346 | + | 0.976538i | \(0.430912\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 1780.00 | 0.290304 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 9363.97 | 1.51361 | 0.756807 | − | 0.653638i | \(-0.226758\pi\) | ||||
0.756807 | + | 0.653638i | \(0.226758\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −3734.14 | −0.593006 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 343.000 | 0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −11371.3 | −1.75921 | −0.879605 | − | 0.475705i | \(-0.842193\pi\) | ||||
−0.879605 | + | 0.475705i | \(0.842193\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −10479.9 | −1.60738 | −0.803692 | − | 0.595046i | \(-0.797134\pi\) | ||||
−0.803692 | + | 0.595046i | \(0.797134\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −4551.49 | −0.686264 | −0.343132 | − | 0.939287i | \(-0.611488\pi\) | ||||
−0.343132 | + | 0.939287i | \(0.611488\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −4101.72 | −0.613230 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −6705.27 | −0.985768 | −0.492884 | − | 0.870095i | \(-0.664057\pi\) | ||||
−0.492884 | + | 0.870095i | \(0.664057\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −4087.84 | −0.595981 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −2006.05 | −0.287675 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 5880.57 | 0.836413 | 0.418206 | − | 0.908352i | \(-0.362659\pi\) | ||||
0.418206 | + | 0.908352i | \(0.362659\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −2622.49 | −0.366989 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 13540.7 | 1.87965 | 0.939827 | − | 0.341652i | \(-0.110986\pi\) | ||||
0.939827 | + | 0.341652i | \(0.110986\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −2518.66 | −0.344078 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 10982.5 | 1.48847 | 0.744236 | − | 0.667917i | \(-0.232814\pi\) | ||||
0.744236 | + | 0.667917i | \(0.232814\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −11647.9 | −1.55399 | −0.776996 | − | 0.629505i | \(-0.783258\pi\) | ||||
−0.776996 | + | 0.629505i | \(0.783258\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 1982.46 | 0.262430 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 5323.17 | 0.693819 | 0.346909 | − | 0.937899i | \(-0.387231\pi\) | ||||
0.346909 | + | 0.937899i | \(0.387231\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −792.000 | −0.102438 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 3539.26 | 0.450834 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −3272.35 | −0.413689 | −0.206845 | − | 0.978374i | \(-0.566319\pi\) | ||||
−0.206845 | + | 0.978374i | \(0.566319\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −8255.73 | −1.02811 | −0.514054 | − | 0.857758i | \(-0.671857\pi\) | ||||
−0.514054 | + | 0.857758i | \(0.671857\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −3074.89 | −0.380077 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 7970.43 | 0.970712 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 15949.6 | 1.92826 | 0.964131 | − | 0.265427i | \(-0.0855128\pi\) | ||||
0.964131 | + | 0.265427i | \(0.0855128\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −540.986 | −0.0644556 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 4504.93 | 0.532863 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 5743.16 | 0.669623 | 0.334811 | − | 0.942285i | \(-0.391327\pi\) | ||||
0.334811 | + | 0.942285i | \(0.391327\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 3396.92 | 0.393244 | 0.196622 | − | 0.980479i | \(-0.437003\pi\) | ||||
0.196622 | + | 0.980479i | \(0.437003\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 1650.00 | 0.188322 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 5306.00 | 0.601347 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −15383.0 | −1.71919 | −0.859596 | − | 0.510974i | \(-0.829285\pi\) | ||||
−0.859596 | + | 0.510974i | \(0.829285\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −17906.1 | −1.98732 | −0.993662 | − | 0.112409i | \(-0.964143\pi\) | ||||
−0.993662 | + | 0.112409i | \(0.964143\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −631.702 | −0.0691497 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 13900.3 | 1.51122 | 0.755609 | − | 0.655023i | \(-0.227341\pi\) | ||||
0.755609 | + | 0.655023i | \(0.227341\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 4219.35 | 0.452522 | 0.226261 | − | 0.974067i | \(-0.427350\pi\) | ||||
0.226261 | + | 0.974067i | \(0.427350\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 3181.35 | 0.338900 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 6709.89 | 0.705254 | 0.352627 | − | 0.935764i | \(-0.385288\pi\) | ||||
0.352627 | + | 0.935764i | \(0.385288\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −15293.3 | −1.59675 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 1632.46 | 0.168200 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −17330.9 | −1.77398 | −0.886988 | − | 0.461793i | \(-0.847206\pi\) | ||||
−0.886988 | + | 0.461793i | \(0.847206\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 4891.43 | 0.494179 | 0.247090 | − | 0.968993i | \(-0.420526\pi\) | ||||
0.247090 | + | 0.968993i | \(0.420526\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −16496.6 | −1.65585 | −0.827927 | − | 0.560835i | \(-0.810480\pi\) | ||||
−0.827927 | + | 0.560835i | \(0.810480\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −6046.48 | −0.599138 | −0.299569 | − | 0.954075i | \(-0.596843\pi\) | ||||
−0.299569 | + | 0.954075i | \(0.596843\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 2492.00 | 0.245352 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 8310.28 | 0.807838 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 1316.05 | 0.127125 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 16334.5 | 1.55813 | 0.779063 | − | 0.626945i | \(-0.215695\pi\) | ||||
0.779063 | + | 0.626945i | \(0.215695\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 6563.27 | 0.622161 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 600.372 | 0.0562093 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −14770.5 | −1.37437 | −0.687184 | − | 0.726483i | \(-0.741153\pi\) | ||||
−0.687184 | + | 0.726483i | \(0.741153\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −6343.84 | −0.583082 | −0.291541 | − | 0.956558i | \(-0.594168\pi\) | ||||
−0.291541 | + | 0.956558i | \(0.594168\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −3564.00 | −0.325587 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −5742.41 | −0.518274 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −2904.24 | −0.260544 | −0.130272 | − | 0.991478i | \(-0.541585\pi\) | ||||
−0.130272 | + | 0.991478i | \(0.541585\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 5224.11 | 0.463085 | 0.231542 | − | 0.972825i | \(-0.425623\pi\) | ||||
0.231542 | + | 0.972825i | \(0.425623\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −8341.35 | −0.735020 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −8188.94 | −0.713101 | −0.356550 | − | 0.934276i | \(-0.616047\pi\) | ||||
−0.356550 | + | 0.934276i | \(0.616047\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −2808.46 | −0.243129 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −7251.35 | −0.620452 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −16531.0 | −1.40625 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −14331.3 | −1.20512 | −0.602559 | − | 0.798074i | \(-0.705852\pi\) | ||||
−0.602559 | + | 0.798074i | \(0.705852\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −14696.2 | −1.22872 | −0.614360 | − | 0.789026i | \(-0.710586\pi\) | ||||
−0.614360 | + | 0.789026i | \(0.710586\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −4351.08 | −0.359651 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −12023.0 | −0.988165 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −12593.3 | −1.02341 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −1286.42 | −0.103956 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 2775.45 | 0.221794 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 988.510 | 0.0785571 | 0.0392785 | − | 0.999228i | \(-0.487494\pi\) | ||||
0.0392785 | + | 0.999228i | \(0.487494\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 10212.7 | 0.802686 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 19765.7 | 1.54501 | 0.772507 | − | 0.635007i | \(-0.219003\pi\) | ||||
0.772507 | + | 0.635007i | \(0.219003\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −2842.66 | −0.219785 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 4954.96 | 0.381024 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 4856.65 | 0.369448 | 0.184724 | − | 0.982790i | \(-0.440861\pi\) | ||||
0.184724 | + | 0.982790i | \(0.440861\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 6843.12 | 0.517769 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −1008.35 | −0.0754833 | −0.0377416 | − | 0.999288i | \(-0.512016\pi\) | ||||
−0.0377416 | + | 0.999288i | \(0.512016\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −426.046 | −0.0317237 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 18032.3 | 1.32857 | 0.664284 | − | 0.747480i | \(-0.268737\pi\) | ||||
0.664284 | + | 0.747480i | \(0.268737\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −12329.6 | −0.903640 | −0.451820 | − | 0.892109i | \(-0.649225\pi\) | ||||
−0.451820 | + | 0.892109i | \(0.649225\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −300.000 | −0.0217580 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −19227.0 | −1.38723 | −0.693613 | − | 0.720348i | \(-0.743982\pi\) | ||||
−0.693613 | + | 0.720348i | \(0.743982\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 6306.90 | 0.450352 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −21220.4 | −1.50748 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 5388.00 | 0.378853 | 0.189426 | − | 0.981895i | \(-0.439337\pi\) | ||||
0.189426 | + | 0.981895i | \(0.439337\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −3470.44 | −0.242779 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −14921.6 | −1.03332 | −0.516660 | − | 0.856191i | \(-0.672825\pi\) | ||||
−0.516660 | + | 0.856191i | \(0.672825\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 2310.00 | 0.159161 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 25631.9 | 1.74840 | 0.874199 | − | 0.485568i | \(-0.161387\pi\) | ||||
0.874199 | + | 0.485568i | \(0.161387\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −11924.1 | −0.809310 | −0.404655 | − | 0.914470i | \(-0.632608\pi\) | ||||
−0.404655 | + | 0.914470i | \(0.632608\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 9386.49 | 0.630769 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −9262.72 | −0.619377 | −0.309689 | − | 0.950838i | \(-0.600225\pi\) | ||||
−0.309689 | + | 0.950838i | \(0.600225\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −13612.5 | −0.901312 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −17791.9 | −1.17228 | −0.586142 | − | 0.810209i | \(-0.699354\pi\) | ||||
−0.586142 | + | 0.810209i | \(0.699354\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −2381.69 | −0.155402 | −0.0777012 | − | 0.996977i | \(-0.524758\pi\) | ||||
−0.0777012 | + | 0.996977i | \(0.524758\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −1439.49 | −0.0934698 | −0.0467349 | − | 0.998907i | \(-0.514882\pi\) | ||||
−0.0467349 | + | 0.998907i | \(0.514882\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 4453.89 | 0.286422 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 625.000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 9287.28 | 0.588725 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 12146.4 | 0.766306 | 0.383153 | − | 0.923685i | \(-0.374838\pi\) | ||||
0.383153 | + | 0.923685i | \(0.374838\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 2632.09 | 0.164490 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 2285.45 | 0.142155 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −10331.8 | −0.636635 | −0.318317 | − | 0.947984i | \(-0.603118\pi\) | ||||
−0.318317 | + | 0.947984i | \(0.603118\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 14572.9 | 0.893776 | 0.446888 | − | 0.894590i | \(-0.352532\pi\) | ||||
0.446888 | + | 0.894590i | \(0.352532\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −5365.80 | −0.326045 | −0.163023 | − | 0.986622i | \(-0.552124\pi\) | ||||
−0.163023 | + | 0.986622i | \(0.552124\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −4377.49 | −0.264763 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −31532.8 | −1.88970 | −0.944851 | − | 0.327501i | \(-0.893793\pi\) | ||||
−0.944851 | + | 0.327501i | \(0.893793\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 8282.69 | 0.494094 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 4830.39 | 0.285532 | 0.142766 | − | 0.989756i | \(-0.454400\pi\) | ||||
0.142766 | + | 0.989756i | \(0.454400\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −24168.9 | −1.42218 | −0.711090 | − | 0.703101i | \(-0.751798\pi\) | ||||
−0.711090 | + | 0.703101i | \(0.751798\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 1842.46 | 0.107440 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 648.000 | 0.0376172 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 42934.5 | 2.47015 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 5383.64 | 0.308357 | 0.154178 | − | 0.988043i | \(-0.450727\pi\) | ||||
0.154178 | + | 0.988043i | \(0.450727\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 27370.4 | 1.55381 | 0.776905 | − | 0.629617i | \(-0.216788\pi\) | ||||
0.776905 | + | 0.629617i | \(0.216788\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 840.521 | 0.0475055 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −33313.3 | −1.86632 | −0.933160 | − | 0.359461i | \(-0.882960\pi\) | ||||
−0.933160 | + | 0.359461i | \(0.882960\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 889.025 | 0.0495882 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −17474.0 | −0.966191 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 20185.5 | 1.11128 | 0.555639 | − | 0.831423i | \(-0.312474\pi\) | ||||
0.555639 | + | 0.831423i | \(0.312474\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −4815.30 | −0.262813 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −17820.0 | −0.968408 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −12215.2 | −0.658148 | −0.329074 | − | 0.944304i | \(-0.606736\pi\) | ||||
−0.329074 | + | 0.944304i | \(0.606736\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 7407.57 | 0.397413 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −11677.9 | −0.621205 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −15402.3 | −0.815859 | −0.407929 | − | 0.913014i | \(-0.633749\pi\) | ||||
−0.407929 | + | 0.913014i | \(0.633749\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 791.106 | 0.0415528 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 13209.4 | 0.690914 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 20646.6 | 1.07091 | 0.535457 | − | 0.844563i | \(-0.320140\pi\) | ||||
0.535457 | + | 0.844563i | \(0.320140\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −10151.9 | −0.524377 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −1350.00 | −0.0691555 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 17329.1 | 0.884045 | 0.442023 | − | 0.897004i | \(-0.354261\pi\) | ||||
0.442023 | + | 0.897004i | \(0.354261\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 9683.28 | 0.489944 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −29890.5 | −1.50618 | −0.753091 | − | 0.657917i | \(-0.771438\pi\) | ||||
−0.753091 | + | 0.657917i | \(0.771438\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 20164.5 | 1.00783 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −14143.0 | −0.704006 | −0.352003 | − | 0.935999i | \(-0.614499\pi\) | ||||
−0.352003 | + | 0.935999i | \(0.614499\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −25944.6 | −1.28104 | −0.640522 | − | 0.767940i | \(-0.721282\pi\) | ||||
−0.640522 | + | 0.767940i | \(0.721282\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −4263.58 | −0.209672 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −1800.99 | −0.0878593 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 6551.50 | 0.318332 | 0.159166 | − | 0.987252i | \(-0.449119\pi\) | ||||
0.159166 | + | 0.987252i | \(0.449119\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −15834.0 | −0.763258 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −14503.3 | −0.696344 | −0.348172 | − | 0.937431i | \(-0.613197\pi\) | ||||
−0.348172 | + | 0.937431i | \(0.613197\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 34740.1 | 1.65483 | 0.827417 | − | 0.561589i | \(-0.189810\pi\) | ||||
0.827417 | + | 0.561589i | \(0.189810\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 14297.8 | 0.678393 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −3604.65 | −0.169696 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 8998.86 | 0.421986 | 0.210993 | − | 0.977488i | \(-0.432330\pi\) | ||||
0.210993 | + | 0.977488i | \(0.432330\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −16966.6 | −0.789450 | −0.394725 | − | 0.918799i | \(-0.629160\pi\) | ||||
−0.394725 | + | 0.918799i | \(0.629160\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −1648.14 | −0.0763908 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −14213.3 | −0.653715 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −46465.8 | −2.12891 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −6635.90 | −0.301714 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 14915.1 | 0.675562 | 0.337781 | − | 0.941225i | \(-0.390324\pi\) | ||||
0.337781 | + | 0.941225i | \(0.390324\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −596.464 | −0.0268114 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 35354.5 | 1.58320 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 12855.4 | 0.571344 | 0.285672 | − | 0.958327i | \(-0.407783\pi\) | ||||
0.285672 | + | 0.958327i | \(0.407783\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −19262.2 | −0.852874 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −22725.2 | −0.998700 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −420.000 | −0.0183889 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −29152.0 | −1.26691 | −0.633454 | − | 0.773780i | \(-0.718363\pi\) | ||||
−0.633454 | + | 0.773780i | \(0.718363\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 36924.7 | 1.59877 | 0.799385 | − | 0.600820i | \(-0.205159\pi\) | ||||
0.799385 | + | 0.600820i | \(0.205159\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 8797.77 | 0.378126 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 7723.42 | 0.330732 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −37844.0 | −1.60873 | −0.804363 | − | 0.594138i | \(-0.797493\pi\) | ||||
−0.804363 | + | 0.594138i | \(0.797493\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 7667.85 | 0.324769 | 0.162384 | − | 0.986728i | \(-0.448082\pi\) | ||||
0.162384 | + | 0.986728i | \(0.448082\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −23869.5 | −1.00366 | −0.501829 | − | 0.864967i | \(-0.667339\pi\) | ||||
−0.501829 | + | 0.864967i | \(0.667339\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 33433.6 | 1.40072 | 0.700359 | − | 0.713791i | \(-0.253023\pi\) | ||||
0.700359 | + | 0.713791i | \(0.253023\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 3234.00 | 0.134516 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 15931.3 | 0.660272 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 31273.0 | 1.28685 | 0.643423 | − | 0.765511i | \(-0.277514\pi\) | ||||
0.643423 | + | 0.765511i | \(0.277514\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −21473.0 | −0.880438 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −107.694 | −0.00438437 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 13141.1 | 0.533097 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −1688.60 | −0.0680192 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −9972.48 | −0.400294 | −0.200147 | − | 0.979766i | \(-0.564142\pi\) | ||||
−0.200147 | + | 0.979766i | \(0.564142\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 25152.9 | 1.00257 | 0.501287 | − | 0.865281i | \(-0.332860\pi\) | ||||
0.501287 | + | 0.865281i | \(0.332860\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −7874.63 | −0.312781 | −0.156390 | − | 0.987695i | \(-0.549986\pi\) | ||||
−0.156390 | + | 0.987695i | \(0.549986\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 1959.42 | 0.0772878 | 0.0386439 | − | 0.999253i | \(-0.487696\pi\) | ||||
0.0386439 | + | 0.999253i | \(0.487696\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −2854.93 | −0.112220 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 40094.0 | 1.56513 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 16604.5 | 0.645949 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 875.000 | 0.0338062 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −31261.9 | −1.20369 | −0.601846 | − | 0.798612i | \(-0.705568\pi\) | ||||
−0.601846 | + | 0.798612i | \(0.705568\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −42459.0 | −1.62370 | −0.811850 | − | 0.583866i | \(-0.801539\pi\) | ||||
−0.811850 | + | 0.583866i | \(0.801539\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 34673.0 | 1.32145 | 0.660723 | − | 0.750629i | \(-0.270250\pi\) | ||||
0.660723 | + | 0.750629i | \(0.270250\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −38271.3 | −1.44873 | −0.724366 | − | 0.689415i | \(-0.757868\pi\) | ||||
−0.724366 | + | 0.689415i | \(0.757868\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 3684.93 | 0.139020 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −15363.6 | −0.575725 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 9326.19 | 0.348313 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 3559.98 | 0.132071 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −24726.4 | −0.914267 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 18257.6 | 0.670612 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 17.6607 | 0.000646542 0 | 0.000323271 | − | 1.00000i | \(-0.499897\pi\) | ||||
0.000323271 | 1.00000i | \(0.499897\pi\) | ||||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 20346.3 | 0.739959 | 0.369980 | − | 0.929040i | \(-0.379365\pi\) | ||||
0.369980 | + | 0.929040i | \(0.379365\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 51033.5 | 1.84990 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 11595.8 | 0.417586 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 38074.1 | 1.36665 | 0.683323 | − | 0.730116i | \(-0.260534\pi\) | ||||
0.683323 | + | 0.730116i | \(0.260534\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −38262.3 | −1.36449 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 3517.91 | 0.125047 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −5169.42 | −0.182565 | −0.0912826 | − | 0.995825i | \(-0.529097\pi\) | ||||
−0.0912826 | + | 0.995825i | \(0.529097\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 2579.45 | 0.0908035 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 18691.8 | 0.653783 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 28753.8 | 1.00250 | 0.501252 | − | 0.865302i | \(-0.332873\pi\) | ||||
0.501252 | + | 0.865302i | \(0.332873\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 12332.7 | 0.427242 | 0.213621 | − | 0.976917i | \(-0.431474\pi\) | ||||
0.213621 | + | 0.976917i | \(0.431474\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 3240.00 | 0.111886 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 18195.0 | 0.624350 | 0.312175 | − | 0.950025i | \(-0.398942\pi\) | ||||
0.312175 | + | 0.950025i | \(0.398942\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −18713.1 | −0.640099 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −1331.58 | −0.0452614 | −0.0226307 | − | 0.999744i | \(-0.507204\pi\) | ||||
−0.0226307 | + | 0.999744i | \(0.507204\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −7188.14 | −0.243563 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 1244.64 | 0.0419097 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −25444.8 | −0.854111 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −6738.65 | −0.224793 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 19516.2 | 0.649018 | 0.324509 | − | 0.945883i | \(-0.394801\pi\) | ||||
0.324509 | + | 0.945883i | \(0.394801\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 16350.7 | 0.540390 | 0.270195 | − | 0.962806i | \(-0.412912\pi\) | ||||
0.270195 | + | 0.962806i | \(0.412912\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −6741.42 | −0.222117 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −22315.8 | −0.730754 | −0.365377 | − | 0.930860i | \(-0.619060\pi\) | ||||
−0.365377 | + | 0.930860i | \(0.619060\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 36039.5 | 1.17653 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 4913.28 | 0.159420 | 0.0797098 | − | 0.996818i | \(-0.474601\pi\) | ||||
0.0797098 | + | 0.996818i | \(0.474601\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −6375.44 | −0.206232 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −1760.60 | −0.0566064 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −30336.3 | −0.972418 | −0.486209 | − | 0.873843i | \(-0.661621\pi\) | ||||
−0.486209 | + | 0.873843i | \(0.661621\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 3951.86 | 0.125912 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 34353.9 | 1.09127 | 0.545637 | − | 0.838022i | \(-0.316288\pi\) | ||||
0.545637 | + | 0.838022i | \(0.316288\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1260.4.a.o.1.2 | 2 | ||
3.2 | odd | 2 | 420.4.a.g.1.1 | ✓ | 2 | ||
12.11 | even | 2 | 1680.4.a.bi.1.2 | 2 | |||
15.2 | even | 4 | 2100.4.k.m.1849.3 | 4 | |||
15.8 | even | 4 | 2100.4.k.m.1849.1 | 4 | |||
15.14 | odd | 2 | 2100.4.a.r.1.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
420.4.a.g.1.1 | ✓ | 2 | 3.2 | odd | 2 | ||
1260.4.a.o.1.2 | 2 | 1.1 | even | 1 | trivial | ||
1680.4.a.bi.1.2 | 2 | 12.11 | even | 2 | |||
2100.4.a.r.1.1 | 2 | 15.14 | odd | 2 | |||
2100.4.k.m.1849.1 | 4 | 15.8 | even | 4 | |||
2100.4.k.m.1849.3 | 4 | 15.2 | even | 4 |