Properties

Label 2156.2.a.m.1.1
Level $2156$
Weight $2$
Character 2156.1
Self dual yes
Analytic conductor $17.216$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.301088.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 13x^{2} + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.38000\) of defining polynomial
Character \(\chi\) \(=\) 2156.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.38000 q^{3} -1.60486 q^{5} +8.42443 q^{9} +1.00000 q^{11} -4.98486 q^{13} +5.42443 q^{15} -1.77515 q^{17} +6.76001 q^{19} -1.42443 q^{23} -2.42443 q^{25} -18.3346 q^{27} -6.00000 q^{29} -3.38000 q^{31} -3.38000 q^{33} -5.42443 q^{37} +16.8489 q^{39} +8.19458 q^{41} -8.84886 q^{43} -13.5200 q^{45} +1.77515 q^{47} +6.00000 q^{51} -10.8489 q^{53} -1.60486 q^{55} -22.8489 q^{57} +0.170287 q^{59} +11.7449 q^{61} +8.00000 q^{65} +13.4244 q^{67} +4.81458 q^{69} +5.42443 q^{71} -5.32544 q^{73} +8.19458 q^{75} +6.00000 q^{79} +36.6977 q^{81} -3.55029 q^{83} +2.84886 q^{85} +20.2800 q^{87} -11.9152 q^{89} +11.4244 q^{93} -10.8489 q^{95} +8.36487 q^{97} +8.42443 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 14 q^{9} + 4 q^{11} + 2 q^{15} + 14 q^{23} + 10 q^{25} - 24 q^{29} - 2 q^{37} + 28 q^{39} + 4 q^{43} + 24 q^{51} - 4 q^{53} - 52 q^{57} + 32 q^{65} + 34 q^{67} + 2 q^{71} + 24 q^{79} + 68 q^{81} - 28 q^{85}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.38000 −1.95145 −0.975723 0.219007i \(-0.929718\pi\)
−0.975723 + 0.219007i \(0.929718\pi\)
\(4\) 0 0
\(5\) −1.60486 −0.717715 −0.358857 0.933392i \(-0.616834\pi\)
−0.358857 + 0.933392i \(0.616834\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 8.42443 2.80814
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.98486 −1.38255 −0.691276 0.722591i \(-0.742951\pi\)
−0.691276 + 0.722591i \(0.742951\pi\)
\(14\) 0 0
\(15\) 5.42443 1.40058
\(16\) 0 0
\(17\) −1.77515 −0.430536 −0.215268 0.976555i \(-0.569063\pi\)
−0.215268 + 0.976555i \(0.569063\pi\)
\(18\) 0 0
\(19\) 6.76001 1.55085 0.775426 0.631438i \(-0.217535\pi\)
0.775426 + 0.631438i \(0.217535\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.42443 −0.297014 −0.148507 0.988911i \(-0.547447\pi\)
−0.148507 + 0.988911i \(0.547447\pi\)
\(24\) 0 0
\(25\) −2.42443 −0.484886
\(26\) 0 0
\(27\) −18.3346 −3.52849
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −3.38000 −0.607067 −0.303533 0.952821i \(-0.598166\pi\)
−0.303533 + 0.952821i \(0.598166\pi\)
\(32\) 0 0
\(33\) −3.38000 −0.588383
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.42443 −0.891771 −0.445885 0.895090i \(-0.647111\pi\)
−0.445885 + 0.895090i \(0.647111\pi\)
\(38\) 0 0
\(39\) 16.8489 2.69798
\(40\) 0 0
\(41\) 8.19458 1.27978 0.639889 0.768467i \(-0.278980\pi\)
0.639889 + 0.768467i \(0.278980\pi\)
\(42\) 0 0
\(43\) −8.84886 −1.34944 −0.674719 0.738075i \(-0.735735\pi\)
−0.674719 + 0.738075i \(0.735735\pi\)
\(44\) 0 0
\(45\) −13.5200 −2.01545
\(46\) 0 0
\(47\) 1.77515 0.258932 0.129466 0.991584i \(-0.458674\pi\)
0.129466 + 0.991584i \(0.458674\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) −10.8489 −1.49021 −0.745103 0.666950i \(-0.767600\pi\)
−0.745103 + 0.666950i \(0.767600\pi\)
\(54\) 0 0
\(55\) −1.60486 −0.216399
\(56\) 0 0
\(57\) −22.8489 −3.02641
\(58\) 0 0
\(59\) 0.170287 0.0221695 0.0110847 0.999939i \(-0.496472\pi\)
0.0110847 + 0.999939i \(0.496472\pi\)
\(60\) 0 0
\(61\) 11.7449 1.50378 0.751888 0.659290i \(-0.229143\pi\)
0.751888 + 0.659290i \(0.229143\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.00000 0.992278
\(66\) 0 0
\(67\) 13.4244 1.64006 0.820028 0.572324i \(-0.193958\pi\)
0.820028 + 0.572324i \(0.193958\pi\)
\(68\) 0 0
\(69\) 4.81458 0.579607
\(70\) 0 0
\(71\) 5.42443 0.643761 0.321881 0.946780i \(-0.395685\pi\)
0.321881 + 0.946780i \(0.395685\pi\)
\(72\) 0 0
\(73\) −5.32544 −0.623295 −0.311648 0.950198i \(-0.600881\pi\)
−0.311648 + 0.950198i \(0.600881\pi\)
\(74\) 0 0
\(75\) 8.19458 0.946229
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) 36.6977 4.07752
\(82\) 0 0
\(83\) −3.55029 −0.389695 −0.194848 0.980834i \(-0.562421\pi\)
−0.194848 + 0.980834i \(0.562421\pi\)
\(84\) 0 0
\(85\) 2.84886 0.309002
\(86\) 0 0
\(87\) 20.2800 2.17425
\(88\) 0 0
\(89\) −11.9152 −1.26300 −0.631502 0.775374i \(-0.717561\pi\)
−0.631502 + 0.775374i \(0.717561\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 11.4244 1.18466
\(94\) 0 0
\(95\) −10.8489 −1.11307
\(96\) 0 0
\(97\) 8.36487 0.849324 0.424662 0.905352i \(-0.360393\pi\)
0.424662 + 0.905352i \(0.360393\pi\)
\(98\) 0 0
\(99\) 8.42443 0.846687
\(100\) 0 0
\(101\) −11.4043 −1.13477 −0.567385 0.823453i \(-0.692045\pi\)
−0.567385 + 0.823453i \(0.692045\pi\)
\(102\) 0 0
\(103\) −1.77515 −0.174910 −0.0874552 0.996168i \(-0.527873\pi\)
−0.0874552 + 0.996168i \(0.527873\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.8489 1.43549 0.717747 0.696304i \(-0.245174\pi\)
0.717747 + 0.696304i \(0.245174\pi\)
\(108\) 0 0
\(109\) −12.8489 −1.23070 −0.615349 0.788255i \(-0.710985\pi\)
−0.615349 + 0.788255i \(0.710985\pi\)
\(110\) 0 0
\(111\) 18.3346 1.74024
\(112\) 0 0
\(113\) 0.575571 0.0541452 0.0270726 0.999633i \(-0.491381\pi\)
0.0270726 + 0.999633i \(0.491381\pi\)
\(114\) 0 0
\(115\) 2.28601 0.213171
\(116\) 0 0
\(117\) −41.9946 −3.88240
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −27.6977 −2.49742
\(124\) 0 0
\(125\) 11.9152 1.06572
\(126\) 0 0
\(127\) 18.8489 1.67257 0.836283 0.548298i \(-0.184724\pi\)
0.836283 + 0.548298i \(0.184724\pi\)
\(128\) 0 0
\(129\) 29.9092 2.63336
\(130\) 0 0
\(131\) 10.3103 0.900815 0.450408 0.892823i \(-0.351279\pi\)
0.450408 + 0.892823i \(0.351279\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 29.4244 2.53245
\(136\) 0 0
\(137\) 17.4244 1.48867 0.744335 0.667807i \(-0.232767\pi\)
0.744335 + 0.667807i \(0.232767\pi\)
\(138\) 0 0
\(139\) 6.76001 0.573376 0.286688 0.958024i \(-0.407446\pi\)
0.286688 + 0.958024i \(0.407446\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) −4.98486 −0.416855
\(144\) 0 0
\(145\) 9.62915 0.799658
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.6977 −1.61370 −0.806850 0.590757i \(-0.798829\pi\)
−0.806850 + 0.590757i \(0.798829\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) 0 0
\(153\) −14.9546 −1.20901
\(154\) 0 0
\(155\) 5.42443 0.435701
\(156\) 0 0
\(157\) 8.02429 0.640408 0.320204 0.947349i \(-0.396248\pi\)
0.320204 + 0.947349i \(0.396248\pi\)
\(158\) 0 0
\(159\) 36.6692 2.90806
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 0 0
\(165\) 5.42443 0.422291
\(166\) 0 0
\(167\) 23.8303 1.84405 0.922023 0.387136i \(-0.126536\pi\)
0.922023 + 0.387136i \(0.126536\pi\)
\(168\) 0 0
\(169\) 11.8489 0.911451
\(170\) 0 0
\(171\) 56.9492 4.35502
\(172\) 0 0
\(173\) −7.85401 −0.597129 −0.298565 0.954389i \(-0.596508\pi\)
−0.298565 + 0.954389i \(0.596508\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.575571 −0.0432626
\(178\) 0 0
\(179\) 4.27329 0.319400 0.159700 0.987166i \(-0.448947\pi\)
0.159700 + 0.987166i \(0.448947\pi\)
\(180\) 0 0
\(181\) 15.4654 1.14954 0.574769 0.818316i \(-0.305092\pi\)
0.574769 + 0.818316i \(0.305092\pi\)
\(182\) 0 0
\(183\) −39.6977 −2.93454
\(184\) 0 0
\(185\) 8.70544 0.640037
\(186\) 0 0
\(187\) −1.77515 −0.129812
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.4244 −0.971358 −0.485679 0.874137i \(-0.661428\pi\)
−0.485679 + 0.874137i \(0.661428\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 0 0
\(195\) −27.0400 −1.93638
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −15.2952 −1.08425 −0.542123 0.840299i \(-0.682379\pi\)
−0.542123 + 0.840299i \(0.682379\pi\)
\(200\) 0 0
\(201\) −45.3746 −3.20048
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −13.1511 −0.918516
\(206\) 0 0
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) 6.76001 0.467600
\(210\) 0 0
\(211\) −6.84886 −0.471495 −0.235747 0.971814i \(-0.575754\pi\)
−0.235747 + 0.971814i \(0.575754\pi\)
\(212\) 0 0
\(213\) −18.3346 −1.25627
\(214\) 0 0
\(215\) 14.2012 0.968511
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 18.0000 1.21633
\(220\) 0 0
\(221\) 8.84886 0.595239
\(222\) 0 0
\(223\) 6.93030 0.464087 0.232043 0.972705i \(-0.425459\pi\)
0.232043 + 0.972705i \(0.425459\pi\)
\(224\) 0 0
\(225\) −20.4244 −1.36163
\(226\) 0 0
\(227\) −7.10058 −0.471282 −0.235641 0.971840i \(-0.575719\pi\)
−0.235641 + 0.971840i \(0.575719\pi\)
\(228\) 0 0
\(229\) −1.26428 −0.0835463 −0.0417731 0.999127i \(-0.513301\pi\)
−0.0417731 + 0.999127i \(0.513301\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.6977 1.29044 0.645220 0.763997i \(-0.276766\pi\)
0.645220 + 0.763997i \(0.276766\pi\)
\(234\) 0 0
\(235\) −2.84886 −0.185839
\(236\) 0 0
\(237\) −20.2800 −1.31733
\(238\) 0 0
\(239\) −21.6977 −1.40351 −0.701754 0.712419i \(-0.747600\pi\)
−0.701754 + 0.712419i \(0.747600\pi\)
\(240\) 0 0
\(241\) −8.53515 −0.549798 −0.274899 0.961473i \(-0.588644\pi\)
−0.274899 + 0.961473i \(0.588644\pi\)
\(242\) 0 0
\(243\) −69.0347 −4.42858
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −33.6977 −2.14413
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −6.58972 −0.415940 −0.207970 0.978135i \(-0.566686\pi\)
−0.207970 + 0.978135i \(0.566686\pi\)
\(252\) 0 0
\(253\) −1.42443 −0.0895531
\(254\) 0 0
\(255\) −9.62915 −0.603001
\(256\) 0 0
\(257\) 19.9395 1.24379 0.621894 0.783101i \(-0.286363\pi\)
0.621894 + 0.783101i \(0.286363\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −50.5466 −3.12875
\(262\) 0 0
\(263\) −5.15114 −0.317633 −0.158817 0.987308i \(-0.550768\pi\)
−0.158817 + 0.987308i \(0.550768\pi\)
\(264\) 0 0
\(265\) 17.4109 1.06954
\(266\) 0 0
\(267\) 40.2733 2.46469
\(268\) 0 0
\(269\) 10.6509 0.649395 0.324698 0.945818i \(-0.394737\pi\)
0.324698 + 0.945818i \(0.394737\pi\)
\(270\) 0 0
\(271\) −9.96973 −0.605618 −0.302809 0.953051i \(-0.597924\pi\)
−0.302809 + 0.953051i \(0.597924\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.42443 −0.146199
\(276\) 0 0
\(277\) 24.8489 1.49302 0.746512 0.665372i \(-0.231727\pi\)
0.746512 + 0.665372i \(0.231727\pi\)
\(278\) 0 0
\(279\) −28.4746 −1.70473
\(280\) 0 0
\(281\) 4.84886 0.289259 0.144629 0.989486i \(-0.453801\pi\)
0.144629 + 0.989486i \(0.453801\pi\)
\(282\) 0 0
\(283\) 12.8389 0.763192 0.381596 0.924329i \(-0.375375\pi\)
0.381596 + 0.924329i \(0.375375\pi\)
\(284\) 0 0
\(285\) 36.6692 2.17210
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.8489 −0.814639
\(290\) 0 0
\(291\) −28.2733 −1.65741
\(292\) 0 0
\(293\) 18.1643 1.06117 0.530585 0.847632i \(-0.321972\pi\)
0.530585 + 0.847632i \(0.321972\pi\)
\(294\) 0 0
\(295\) −0.273287 −0.0159114
\(296\) 0 0
\(297\) −18.3346 −1.06388
\(298\) 0 0
\(299\) 7.10058 0.410637
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 38.5466 2.21444
\(304\) 0 0
\(305\) −18.8489 −1.07928
\(306\) 0 0
\(307\) −0.681148 −0.0388752 −0.0194376 0.999811i \(-0.506188\pi\)
−0.0194376 + 0.999811i \(0.506188\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) −22.3957 −1.26995 −0.634973 0.772534i \(-0.718989\pi\)
−0.634973 + 0.772534i \(0.718989\pi\)
\(312\) 0 0
\(313\) 18.3346 1.03633 0.518166 0.855280i \(-0.326615\pi\)
0.518166 + 0.855280i \(0.326615\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.42443 −0.416997 −0.208499 0.978023i \(-0.566858\pi\)
−0.208499 + 0.978023i \(0.566858\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) −50.1892 −2.80129
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) 12.0854 0.670380
\(326\) 0 0
\(327\) 43.4292 2.40164
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.4244 0.737873 0.368937 0.929455i \(-0.379722\pi\)
0.368937 + 0.929455i \(0.379722\pi\)
\(332\) 0 0
\(333\) −45.6977 −2.50422
\(334\) 0 0
\(335\) −21.5443 −1.17709
\(336\) 0 0
\(337\) 15.6977 0.855109 0.427555 0.903990i \(-0.359375\pi\)
0.427555 + 0.903990i \(0.359375\pi\)
\(338\) 0 0
\(339\) −1.94543 −0.105661
\(340\) 0 0
\(341\) −3.38000 −0.183037
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.72671 −0.415992
\(346\) 0 0
\(347\) −10.0000 −0.536828 −0.268414 0.963304i \(-0.586500\pi\)
−0.268414 + 0.963304i \(0.586500\pi\)
\(348\) 0 0
\(349\) 11.0637 0.592228 0.296114 0.955153i \(-0.404309\pi\)
0.296114 + 0.955153i \(0.404309\pi\)
\(350\) 0 0
\(351\) 91.3954 4.87833
\(352\) 0 0
\(353\) −35.7455 −1.90254 −0.951270 0.308360i \(-0.900220\pi\)
−0.951270 + 0.308360i \(0.900220\pi\)
\(354\) 0 0
\(355\) −8.70544 −0.462037
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.84886 0.255913 0.127956 0.991780i \(-0.459158\pi\)
0.127956 + 0.991780i \(0.459158\pi\)
\(360\) 0 0
\(361\) 26.6977 1.40514
\(362\) 0 0
\(363\) −3.38000 −0.177404
\(364\) 0 0
\(365\) 8.54657 0.447348
\(366\) 0 0
\(367\) −23.6600 −1.23504 −0.617522 0.786554i \(-0.711863\pi\)
−0.617522 + 0.786554i \(0.711863\pi\)
\(368\) 0 0
\(369\) 69.0347 3.59380
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 8.84886 0.458176 0.229088 0.973406i \(-0.426426\pi\)
0.229088 + 0.973406i \(0.426426\pi\)
\(374\) 0 0
\(375\) −40.2733 −2.07970
\(376\) 0 0
\(377\) 29.9092 1.54040
\(378\) 0 0
\(379\) 26.5756 1.36510 0.682548 0.730841i \(-0.260872\pi\)
0.682548 + 0.730841i \(0.260872\pi\)
\(380\) 0 0
\(381\) −63.7092 −3.26392
\(382\) 0 0
\(383\) 6.58972 0.336719 0.168360 0.985726i \(-0.446153\pi\)
0.168360 + 0.985726i \(0.446153\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −74.5466 −3.78942
\(388\) 0 0
\(389\) −30.2733 −1.53492 −0.767458 0.641099i \(-0.778479\pi\)
−0.767458 + 0.641099i \(0.778479\pi\)
\(390\) 0 0
\(391\) 2.52857 0.127875
\(392\) 0 0
\(393\) −34.8489 −1.75789
\(394\) 0 0
\(395\) −9.62915 −0.484495
\(396\) 0 0
\(397\) −13.5200 −0.678550 −0.339275 0.940687i \(-0.610182\pi\)
−0.339275 + 0.940687i \(0.610182\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.6977 1.18341 0.591704 0.806156i \(-0.298456\pi\)
0.591704 + 0.806156i \(0.298456\pi\)
\(402\) 0 0
\(403\) 16.8489 0.839301
\(404\) 0 0
\(405\) −58.8946 −2.92650
\(406\) 0 0
\(407\) −5.42443 −0.268879
\(408\) 0 0
\(409\) 21.7146 1.07372 0.536859 0.843672i \(-0.319611\pi\)
0.536859 + 0.843672i \(0.319611\pi\)
\(410\) 0 0
\(411\) −58.8946 −2.90506
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.69772 0.279690
\(416\) 0 0
\(417\) −22.8489 −1.11891
\(418\) 0 0
\(419\) −8.87573 −0.433608 −0.216804 0.976215i \(-0.569563\pi\)
−0.216804 + 0.976215i \(0.569563\pi\)
\(420\) 0 0
\(421\) 17.1511 0.835896 0.417948 0.908471i \(-0.362750\pi\)
0.417948 + 0.908471i \(0.362750\pi\)
\(422\) 0 0
\(423\) 14.9546 0.727117
\(424\) 0 0
\(425\) 4.30371 0.208761
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 16.8489 0.813471
\(430\) 0 0
\(431\) 8.84886 0.426234 0.213117 0.977027i \(-0.431638\pi\)
0.213117 + 0.977027i \(0.431638\pi\)
\(432\) 0 0
\(433\) 1.94543 0.0934915 0.0467458 0.998907i \(-0.485115\pi\)
0.0467458 + 0.998907i \(0.485115\pi\)
\(434\) 0 0
\(435\) −32.5466 −1.56049
\(436\) 0 0
\(437\) −9.62915 −0.460625
\(438\) 0 0
\(439\) 40.9006 1.95208 0.976040 0.217590i \(-0.0698197\pi\)
0.976040 + 0.217590i \(0.0698197\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5756 0.502461 0.251230 0.967927i \(-0.419165\pi\)
0.251230 + 0.967927i \(0.419165\pi\)
\(444\) 0 0
\(445\) 19.1221 0.906477
\(446\) 0 0
\(447\) 66.5784 3.14905
\(448\) 0 0
\(449\) 7.72671 0.364646 0.182323 0.983239i \(-0.441638\pi\)
0.182323 + 0.983239i \(0.441638\pi\)
\(450\) 0 0
\(451\) 8.19458 0.385868
\(452\) 0 0
\(453\) −47.3201 −2.22329
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15.1511 −0.708741 −0.354370 0.935105i \(-0.615305\pi\)
−0.354370 + 0.935105i \(0.615305\pi\)
\(458\) 0 0
\(459\) 32.5466 1.51914
\(460\) 0 0
\(461\) −31.6843 −1.47569 −0.737843 0.674972i \(-0.764156\pi\)
−0.737843 + 0.674972i \(0.764156\pi\)
\(462\) 0 0
\(463\) 17.4244 0.809782 0.404891 0.914365i \(-0.367309\pi\)
0.404891 + 0.914365i \(0.367309\pi\)
\(464\) 0 0
\(465\) −18.3346 −0.850246
\(466\) 0 0
\(467\) 3.38000 0.156408 0.0782040 0.996937i \(-0.475081\pi\)
0.0782040 + 0.996937i \(0.475081\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −27.1221 −1.24972
\(472\) 0 0
\(473\) −8.84886 −0.406871
\(474\) 0 0
\(475\) −16.3892 −0.751986
\(476\) 0 0
\(477\) −91.3954 −4.18471
\(478\) 0 0
\(479\) 3.55029 0.162217 0.0811085 0.996705i \(-0.474154\pi\)
0.0811085 + 0.996705i \(0.474154\pi\)
\(480\) 0 0
\(481\) 27.0400 1.23292
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.4244 −0.609572
\(486\) 0 0
\(487\) 24.2733 1.09993 0.549964 0.835188i \(-0.314642\pi\)
0.549964 + 0.835188i \(0.314642\pi\)
\(488\) 0 0
\(489\) −40.5601 −1.83419
\(490\) 0 0
\(491\) 3.69772 0.166876 0.0834378 0.996513i \(-0.473410\pi\)
0.0834378 + 0.996513i \(0.473410\pi\)
\(492\) 0 0
\(493\) 10.6509 0.479691
\(494\) 0 0
\(495\) −13.5200 −0.607680
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) −80.5466 −3.59856
\(502\) 0 0
\(503\) 30.5903 1.36396 0.681978 0.731373i \(-0.261120\pi\)
0.681978 + 0.731373i \(0.261120\pi\)
\(504\) 0 0
\(505\) 18.3023 0.814441
\(506\) 0 0
\(507\) −40.0492 −1.77865
\(508\) 0 0
\(509\) 41.8243 1.85383 0.926916 0.375270i \(-0.122450\pi\)
0.926916 + 0.375270i \(0.122450\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −123.942 −5.47217
\(514\) 0 0
\(515\) 2.84886 0.125536
\(516\) 0 0
\(517\) 1.77515 0.0780708
\(518\) 0 0
\(519\) 26.5466 1.16527
\(520\) 0 0
\(521\) 31.5140 1.38065 0.690327 0.723497i \(-0.257466\pi\)
0.690327 + 0.723497i \(0.257466\pi\)
\(522\) 0 0
\(523\) 6.41943 0.280702 0.140351 0.990102i \(-0.455177\pi\)
0.140351 + 0.990102i \(0.455177\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 0.261364
\(528\) 0 0
\(529\) −20.9710 −0.911783
\(530\) 0 0
\(531\) 1.43457 0.0622551
\(532\) 0 0
\(533\) −40.8489 −1.76936
\(534\) 0 0
\(535\) −23.8303 −1.03027
\(536\) 0 0
\(537\) −14.4437 −0.623293
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11.1511 −0.479425 −0.239713 0.970844i \(-0.577053\pi\)
−0.239713 + 0.970844i \(0.577053\pi\)
\(542\) 0 0
\(543\) −52.2733 −2.24326
\(544\) 0 0
\(545\) 20.6206 0.883289
\(546\) 0 0
\(547\) 9.69772 0.414644 0.207322 0.978273i \(-0.433525\pi\)
0.207322 + 0.978273i \(0.433525\pi\)
\(548\) 0 0
\(549\) 98.9438 4.22282
\(550\) 0 0
\(551\) −40.5601 −1.72792
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −29.4244 −1.24900
\(556\) 0 0
\(557\) 27.6977 1.17359 0.586795 0.809736i \(-0.300389\pi\)
0.586795 + 0.809736i \(0.300389\pi\)
\(558\) 0 0
\(559\) 44.1103 1.86567
\(560\) 0 0
\(561\) 6.00000 0.253320
\(562\) 0 0
\(563\) −30.5903 −1.28923 −0.644614 0.764508i \(-0.722982\pi\)
−0.644614 + 0.764508i \(0.722982\pi\)
\(564\) 0 0
\(565\) −0.923710 −0.0388608
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 0 0
\(571\) 33.6977 1.41021 0.705103 0.709105i \(-0.250901\pi\)
0.705103 + 0.709105i \(0.250901\pi\)
\(572\) 0 0
\(573\) 45.3746 1.89555
\(574\) 0 0
\(575\) 3.45343 0.144018
\(576\) 0 0
\(577\) 1.94543 0.0809894 0.0404947 0.999180i \(-0.487107\pi\)
0.0404947 + 0.999180i \(0.487107\pi\)
\(578\) 0 0
\(579\) −33.8000 −1.40468
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −10.8489 −0.449314
\(584\) 0 0
\(585\) 67.3954 2.78646
\(586\) 0 0
\(587\) −31.6843 −1.30775 −0.653876 0.756602i \(-0.726858\pi\)
−0.653876 + 0.756602i \(0.726858\pi\)
\(588\) 0 0
\(589\) −22.8489 −0.941471
\(590\) 0 0
\(591\) 20.2800 0.834209
\(592\) 0 0
\(593\) −28.8152 −1.18330 −0.591649 0.806196i \(-0.701523\pi\)
−0.591649 + 0.806196i \(0.701523\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 51.6977 2.11585
\(598\) 0 0
\(599\) −25.6977 −1.04998 −0.524990 0.851108i \(-0.675931\pi\)
−0.524990 + 0.851108i \(0.675931\pi\)
\(600\) 0 0
\(601\) −14.2734 −0.582226 −0.291113 0.956689i \(-0.594026\pi\)
−0.291113 + 0.956689i \(0.594026\pi\)
\(602\) 0 0
\(603\) 113.093 4.60551
\(604\) 0 0
\(605\) −1.60486 −0.0652468
\(606\) 0 0
\(607\) 3.89087 0.157925 0.0789627 0.996878i \(-0.474839\pi\)
0.0789627 + 0.996878i \(0.474839\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.84886 −0.357986
\(612\) 0 0
\(613\) −8.84886 −0.357402 −0.178701 0.983903i \(-0.557189\pi\)
−0.178701 + 0.983903i \(0.557189\pi\)
\(614\) 0 0
\(615\) 44.4509 1.79243
\(616\) 0 0
\(617\) −14.8489 −0.597793 −0.298896 0.954286i \(-0.596618\pi\)
−0.298896 + 0.954286i \(0.596618\pi\)
\(618\) 0 0
\(619\) −9.45886 −0.380184 −0.190092 0.981766i \(-0.560879\pi\)
−0.190092 + 0.981766i \(0.560879\pi\)
\(620\) 0 0
\(621\) 26.1163 1.04801
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 −0.280000
\(626\) 0 0
\(627\) −22.8489 −0.912495
\(628\) 0 0
\(629\) 9.62915 0.383939
\(630\) 0 0
\(631\) −20.2733 −0.807067 −0.403533 0.914965i \(-0.632218\pi\)
−0.403533 + 0.914965i \(0.632218\pi\)
\(632\) 0 0
\(633\) 23.1492 0.920097
\(634\) 0 0
\(635\) −30.2498 −1.20042
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 45.6977 1.80777
\(640\) 0 0
\(641\) −13.4244 −0.530233 −0.265117 0.964216i \(-0.585410\pi\)
−0.265117 + 0.964216i \(0.585410\pi\)
\(642\) 0 0
\(643\) 26.1886 1.03278 0.516389 0.856354i \(-0.327276\pi\)
0.516389 + 0.856354i \(0.327276\pi\)
\(644\) 0 0
\(645\) −48.0000 −1.89000
\(646\) 0 0
\(647\) 49.3378 1.93967 0.969834 0.243767i \(-0.0783831\pi\)
0.969834 + 0.243767i \(0.0783831\pi\)
\(648\) 0 0
\(649\) 0.170287 0.00668435
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.2733 0.871621 0.435811 0.900038i \(-0.356462\pi\)
0.435811 + 0.900038i \(0.356462\pi\)
\(654\) 0 0
\(655\) −16.5466 −0.646528
\(656\) 0 0
\(657\) −44.8638 −1.75030
\(658\) 0 0
\(659\) 0.302284 0.0117753 0.00588766 0.999983i \(-0.498126\pi\)
0.00588766 + 0.999983i \(0.498126\pi\)
\(660\) 0 0
\(661\) 14.4437 0.561796 0.280898 0.959738i \(-0.409368\pi\)
0.280898 + 0.959738i \(0.409368\pi\)
\(662\) 0 0
\(663\) −29.9092 −1.16158
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.54657 0.330925
\(668\) 0 0
\(669\) −23.4244 −0.905641
\(670\) 0 0
\(671\) 11.7449 0.453406
\(672\) 0 0
\(673\) 15.1511 0.584034 0.292017 0.956413i \(-0.405674\pi\)
0.292017 + 0.956413i \(0.405674\pi\)
\(674\) 0 0
\(675\) 44.4509 1.71092
\(676\) 0 0
\(677\) 31.6843 1.21773 0.608864 0.793275i \(-0.291626\pi\)
0.608864 + 0.793275i \(0.291626\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 24.0000 0.919682
\(682\) 0 0
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) 0 0
\(685\) −27.9637 −1.06844
\(686\) 0 0
\(687\) 4.27329 0.163036
\(688\) 0 0
\(689\) 54.0801 2.06029
\(690\) 0 0
\(691\) 2.35828 0.0897133 0.0448566 0.998993i \(-0.485717\pi\)
0.0448566 + 0.998993i \(0.485717\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.8489 −0.411521
\(696\) 0 0
\(697\) −14.5466 −0.550991
\(698\) 0 0
\(699\) −66.5784 −2.51822
\(700\) 0 0
\(701\) 22.5466 0.851572 0.425786 0.904824i \(-0.359998\pi\)
0.425786 + 0.904824i \(0.359998\pi\)
\(702\) 0 0
\(703\) −36.6692 −1.38300
\(704\) 0 0
\(705\) 9.62915 0.362655
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 14.2733 0.536045 0.268022 0.963413i \(-0.413630\pi\)
0.268022 + 0.963413i \(0.413630\pi\)
\(710\) 0 0
\(711\) 50.5466 1.89564
\(712\) 0 0
\(713\) 4.81458 0.180307
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) 0 0
\(717\) 73.3384 2.73887
\(718\) 0 0
\(719\) 13.0092 0.485160 0.242580 0.970131i \(-0.422006\pi\)
0.242580 + 0.970131i \(0.422006\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 28.8489 1.07290
\(724\) 0 0
\(725\) 14.5466 0.540246
\(726\) 0 0
\(727\) −42.5778 −1.57912 −0.789561 0.613672i \(-0.789692\pi\)
−0.789561 + 0.613672i \(0.789692\pi\)
\(728\) 0 0
\(729\) 123.244 4.56460
\(730\) 0 0
\(731\) 15.7080 0.580982
\(732\) 0 0
\(733\) −44.8638 −1.65708 −0.828540 0.559929i \(-0.810828\pi\)
−0.828540 + 0.559929i \(0.810828\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.4244 0.494495
\(738\) 0 0
\(739\) 22.8489 0.840509 0.420254 0.907406i \(-0.361941\pi\)
0.420254 + 0.907406i \(0.361941\pi\)
\(740\) 0 0
\(741\) 113.898 4.18416
\(742\) 0 0
\(743\) −5.69772 −0.209029 −0.104514 0.994523i \(-0.533329\pi\)
−0.104514 + 0.994523i \(0.533329\pi\)
\(744\) 0 0
\(745\) 31.6120 1.15818
\(746\) 0 0
\(747\) −29.9092 −1.09432
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 37.4244 1.36564 0.682818 0.730588i \(-0.260754\pi\)
0.682818 + 0.730588i \(0.260754\pi\)
\(752\) 0 0
\(753\) 22.2733 0.811684
\(754\) 0 0
\(755\) −22.4680 −0.817695
\(756\) 0 0
\(757\) 11.6977 0.425161 0.212580 0.977144i \(-0.431813\pi\)
0.212580 + 0.977144i \(0.431813\pi\)
\(758\) 0 0
\(759\) 4.81458 0.174758
\(760\) 0 0
\(761\) 24.9243 0.903506 0.451753 0.892143i \(-0.350799\pi\)
0.451753 + 0.892143i \(0.350799\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 24.0000 0.867722
\(766\) 0 0
\(767\) −0.848858 −0.0306505
\(768\) 0 0
\(769\) 14.2734 0.514713 0.257357 0.966316i \(-0.417148\pi\)
0.257357 + 0.966316i \(0.417148\pi\)
\(770\) 0 0
\(771\) −67.3954 −2.42719
\(772\) 0 0
\(773\) 17.0703 0.613976 0.306988 0.951713i \(-0.400679\pi\)
0.306988 + 0.951713i \(0.400679\pi\)
\(774\) 0 0
\(775\) 8.19458 0.294358
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 55.3954 1.98475
\(780\) 0 0
\(781\) 5.42443 0.194101
\(782\) 0 0
\(783\) 110.008 3.93135
\(784\) 0 0
\(785\) −12.8779 −0.459630
\(786\) 0 0
\(787\) −26.0183 −0.927453 −0.463726 0.885978i \(-0.653488\pi\)
−0.463726 + 0.885978i \(0.653488\pi\)
\(788\) 0 0
\(789\) 17.4109 0.619844
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −58.5466 −2.07905
\(794\) 0 0
\(795\) −58.8489 −2.08715
\(796\) 0 0
\(797\) 31.1735 1.10422 0.552110 0.833771i \(-0.313823\pi\)
0.552110 + 0.833771i \(0.313823\pi\)
\(798\) 0 0
\(799\) −3.15114 −0.111479
\(800\) 0 0
\(801\) −100.378 −3.54670
\(802\) 0 0
\(803\) −5.32544 −0.187931
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −36.0000 −1.26726
\(808\) 0 0
\(809\) −22.0000 −0.773479 −0.386739 0.922189i \(-0.626399\pi\)
−0.386739 + 0.922189i \(0.626399\pi\)
\(810\) 0 0
\(811\) −23.1492 −0.812877 −0.406439 0.913678i \(-0.633230\pi\)
−0.406439 + 0.913678i \(0.633230\pi\)
\(812\) 0 0
\(813\) 33.6977 1.18183
\(814\) 0 0
\(815\) −19.2583 −0.674589
\(816\) 0 0
\(817\) −59.8184 −2.09278
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29.3954 1.02591 0.512954 0.858416i \(-0.328551\pi\)
0.512954 + 0.858416i \(0.328551\pi\)
\(822\) 0 0
\(823\) 41.4244 1.44396 0.721982 0.691911i \(-0.243231\pi\)
0.721982 + 0.691911i \(0.243231\pi\)
\(824\) 0 0
\(825\) 8.19458 0.285299
\(826\) 0 0
\(827\) −32.8489 −1.14227 −0.571133 0.820857i \(-0.693496\pi\)
−0.571133 + 0.820857i \(0.693496\pi\)
\(828\) 0 0
\(829\) −22.2255 −0.771922 −0.385961 0.922515i \(-0.626130\pi\)
−0.385961 + 0.922515i \(0.626130\pi\)
\(830\) 0 0
\(831\) −83.9892 −2.91355
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −38.2443 −1.32350
\(836\) 0 0
\(837\) 61.9710 2.14203
\(838\) 0 0
\(839\) −12.6686 −0.437368 −0.218684 0.975796i \(-0.570176\pi\)
−0.218684 + 0.975796i \(0.570176\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −16.3892 −0.564473
\(844\) 0 0
\(845\) −19.0157 −0.654161
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −43.3954 −1.48933
\(850\) 0 0
\(851\) 7.72671 0.264868
\(852\) 0 0
\(853\) 5.32544 0.182339 0.0911697 0.995835i \(-0.470939\pi\)
0.0911697 + 0.995835i \(0.470939\pi\)
\(854\) 0 0
\(855\) −91.3954 −3.12566
\(856\) 0 0
\(857\) 11.4043 0.389563 0.194782 0.980847i \(-0.437600\pi\)
0.194782 + 0.980847i \(0.437600\pi\)
\(858\) 0 0
\(859\) 21.1315 0.720996 0.360498 0.932760i \(-0.382607\pi\)
0.360498 + 0.932760i \(0.382607\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.30228 0.0783707 0.0391853 0.999232i \(-0.487524\pi\)
0.0391853 + 0.999232i \(0.487524\pi\)
\(864\) 0 0
\(865\) 12.6046 0.428568
\(866\) 0 0
\(867\) 46.8092 1.58972
\(868\) 0 0
\(869\) 6.00000 0.203536
\(870\) 0 0
\(871\) −66.9189 −2.26746
\(872\) 0 0
\(873\) 70.4692 2.38502
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 0 0
\(879\) −61.3954 −2.07082
\(880\) 0 0
\(881\) 10.8934 0.367009 0.183505 0.983019i \(-0.441256\pi\)
0.183505 + 0.983019i \(0.441256\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 0.923710 0.0310502
\(886\) 0 0
\(887\) 19.5989 0.658066 0.329033 0.944318i \(-0.393277\pi\)
0.329033 + 0.944318i \(0.393277\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 36.6977 1.22942
\(892\) 0 0
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) −6.85802 −0.229238
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 0 0
\(899\) 20.2800 0.676377
\(900\) 0 0
\(901\) 19.2583 0.641587
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −24.8199 −0.825040
\(906\) 0 0
\(907\) −19.3954 −0.644015 −0.322007 0.946737i \(-0.604358\pi\)
−0.322007 + 0.946737i \(0.604358\pi\)
\(908\) 0 0
\(909\) −96.0747 −3.18660
\(910\) 0 0
\(911\) −49.6977 −1.64656 −0.823279 0.567636i \(-0.807858\pi\)
−0.823279 + 0.567636i \(0.807858\pi\)
\(912\) 0 0
\(913\) −3.55029 −0.117497
\(914\) 0 0
\(915\) 63.7092 2.10616
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 10.3023 0.339841 0.169921 0.985458i \(-0.445649\pi\)
0.169921 + 0.985458i \(0.445649\pi\)
\(920\) 0 0
\(921\) 2.30228 0.0758629
\(922\) 0 0
\(923\) −27.0400 −0.890034
\(924\) 0 0
\(925\) 13.1511 0.432407
\(926\) 0 0
\(927\) −14.9546 −0.491173
\(928\) 0 0
\(929\) −9.28858 −0.304748 −0.152374 0.988323i \(-0.548692\pi\)
−0.152374 + 0.988323i \(0.548692\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 75.6977 2.47823
\(934\) 0 0
\(935\) 2.84886 0.0931676
\(936\) 0 0
\(937\) −12.7666 −0.417066 −0.208533 0.978015i \(-0.566869\pi\)
−0.208533 + 0.978015i \(0.566869\pi\)
\(938\) 0 0
\(939\) −61.9710 −2.02235
\(940\) 0 0
\(941\) −15.9763 −0.520813 −0.260406 0.965499i \(-0.583857\pi\)
−0.260406 + 0.965499i \(0.583857\pi\)
\(942\) 0 0
\(943\) −11.6726 −0.380112
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.42443 −0.0462877 −0.0231439 0.999732i \(-0.507368\pi\)
−0.0231439 + 0.999732i \(0.507368\pi\)
\(948\) 0 0
\(949\) 26.5466 0.861738
\(950\) 0 0
\(951\) 25.0946 0.813748
\(952\) 0 0
\(953\) −4.84886 −0.157070 −0.0785350 0.996911i \(-0.525024\pi\)
−0.0785350 + 0.996911i \(0.525024\pi\)
\(954\) 0 0
\(955\) 21.5443 0.697158
\(956\) 0 0
\(957\) 20.2800 0.655560
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −19.5756 −0.631470
\(962\) 0 0
\(963\) 125.093 4.03107
\(964\) 0 0
\(965\) −16.0486 −0.516622
\(966\) 0 0
\(967\) 26.0000 0.836104 0.418052 0.908423i \(-0.362713\pi\)
0.418052 + 0.908423i \(0.362713\pi\)
\(968\) 0 0
\(969\) 40.5601 1.30298
\(970\) 0 0
\(971\) 42.5778 1.36639 0.683193 0.730238i \(-0.260591\pi\)
0.683193 + 0.730238i \(0.260591\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −40.8489 −1.30821
\(976\) 0 0
\(977\) −0.575571 −0.0184142 −0.00920708 0.999958i \(-0.502931\pi\)
−0.00920708 + 0.999958i \(0.502931\pi\)
\(978\) 0 0
\(979\) −11.9152 −0.380810
\(980\) 0 0
\(981\) −108.244 −3.45597
\(982\) 0 0
\(983\) −3.72058 −0.118668 −0.0593340 0.998238i \(-0.518898\pi\)
−0.0593340 + 0.998238i \(0.518898\pi\)
\(984\) 0 0
\(985\) 9.62915 0.306810
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.6046 0.400802
\(990\) 0 0
\(991\) 43.3954 1.37850 0.689251 0.724523i \(-0.257940\pi\)
0.689251 + 0.724523i \(0.257940\pi\)
\(992\) 0 0
\(993\) −45.3746 −1.43992
\(994\) 0 0
\(995\) 24.5466 0.778179
\(996\) 0 0
\(997\) 32.0249 1.01424 0.507119 0.861876i \(-0.330710\pi\)
0.507119 + 0.861876i \(0.330710\pi\)
\(998\) 0 0
\(999\) 99.4547 3.14661
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.a.m.1.1 4
4.3 odd 2 8624.2.a.cx.1.4 4
7.2 even 3 2156.2.i.n.1145.4 8
7.3 odd 6 2156.2.i.n.177.1 8
7.4 even 3 2156.2.i.n.177.4 8
7.5 odd 6 2156.2.i.n.1145.1 8
7.6 odd 2 inner 2156.2.a.m.1.4 yes 4
28.27 even 2 8624.2.a.cx.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2156.2.a.m.1.1 4 1.1 even 1 trivial
2156.2.a.m.1.4 yes 4 7.6 odd 2 inner
2156.2.i.n.177.1 8 7.3 odd 6
2156.2.i.n.177.4 8 7.4 even 3
2156.2.i.n.1145.1 8 7.5 odd 6
2156.2.i.n.1145.4 8 7.2 even 3
8624.2.a.cx.1.1 4 28.27 even 2
8624.2.a.cx.1.4 4 4.3 odd 2