Properties

Label 2156.2.i.n.177.4
Level $2156$
Weight $2$
Character 2156.177
Analytic conductor $17.216$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(177,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.7342972683264.14
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 151x^{4} + 234x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.4
Root \(1.69000 + 2.92717i\) of defining polynomial
Character \(\chi\) \(=\) 2156.177
Dual form 2156.2.i.n.1145.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69000 + 2.92717i) q^{3} +(0.802429 - 1.38985i) q^{5} +(-4.21221 + 7.29577i) q^{9} +(-0.500000 - 0.866025i) q^{11} -4.98486 q^{13} +5.42443 q^{15} +(0.887573 + 1.53732i) q^{17} +(-3.38000 + 5.85434i) q^{19} +(0.712214 - 1.23359i) q^{23} +(1.21221 + 2.09962i) q^{25} -18.3346 q^{27} -6.00000 q^{29} +(1.69000 + 2.92717i) q^{31} +(1.69000 - 2.92717i) q^{33} +(2.71221 - 4.69769i) q^{37} +(-8.42443 - 14.5915i) q^{39} +8.19458 q^{41} -8.84886 q^{43} +(6.76001 + 11.7087i) q^{45} +(-0.887573 + 1.53732i) q^{47} +(-3.00000 + 5.19615i) q^{51} +(5.42443 + 9.39539i) q^{53} -1.60486 q^{55} -22.8489 q^{57} +(-0.0851435 - 0.147473i) q^{59} +(-5.87244 + 10.1714i) q^{61} +(-4.00000 + 6.92820i) q^{65} +(-6.71221 - 11.6259i) q^{67} +4.81458 q^{69} +5.42443 q^{71} +(2.66272 + 4.61196i) q^{73} +(-4.09729 + 7.09671i) q^{75} +(-3.00000 + 5.19615i) q^{79} +(-18.3489 - 31.7812i) q^{81} -3.55029 q^{83} +2.84886 q^{85} +(-10.1400 - 17.5630i) q^{87} +(5.95758 - 10.3188i) q^{89} +(-5.71221 + 9.89385i) q^{93} +(5.42443 + 9.39539i) q^{95} +8.36487 q^{97} +8.42443 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 14 q^{9} - 4 q^{11} + 4 q^{15} - 14 q^{23} - 10 q^{25} - 48 q^{29} + 2 q^{37} - 28 q^{39} + 8 q^{43} - 24 q^{51} + 4 q^{53} - 104 q^{57} - 32 q^{65} - 34 q^{67} + 4 q^{71} - 24 q^{79} - 68 q^{81}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.69000 + 2.92717i 0.975723 + 1.69000i 0.677528 + 0.735497i \(0.263051\pi\)
0.298196 + 0.954505i \(0.403615\pi\)
\(4\) 0 0
\(5\) 0.802429 1.38985i 0.358857 0.621559i −0.628913 0.777476i \(-0.716500\pi\)
0.987770 + 0.155917i \(0.0498331\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −4.21221 + 7.29577i −1.40407 + 2.43192i
\(10\) 0 0
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 0 0
\(13\) −4.98486 −1.38255 −0.691276 0.722591i \(-0.742951\pi\)
−0.691276 + 0.722591i \(0.742951\pi\)
\(14\) 0 0
\(15\) 5.42443 1.40058
\(16\) 0 0
\(17\) 0.887573 + 1.53732i 0.215268 + 0.372855i 0.953355 0.301850i \(-0.0976042\pi\)
−0.738087 + 0.674705i \(0.764271\pi\)
\(18\) 0 0
\(19\) −3.38000 + 5.85434i −0.775426 + 1.34308i 0.159128 + 0.987258i \(0.449132\pi\)
−0.934555 + 0.355820i \(0.884202\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.712214 1.23359i 0.148507 0.257222i −0.782169 0.623066i \(-0.785887\pi\)
0.930676 + 0.365845i \(0.119220\pi\)
\(24\) 0 0
\(25\) 1.21221 + 2.09962i 0.242443 + 0.419923i
\(26\) 0 0
\(27\) −18.3346 −3.52849
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 1.69000 + 2.92717i 0.303533 + 0.525735i 0.976934 0.213543i \(-0.0685003\pi\)
−0.673400 + 0.739278i \(0.735167\pi\)
\(32\) 0 0
\(33\) 1.69000 2.92717i 0.294192 0.509555i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.71221 4.69769i 0.445885 0.772296i −0.552228 0.833693i \(-0.686222\pi\)
0.998113 + 0.0613970i \(0.0195556\pi\)
\(38\) 0 0
\(39\) −8.42443 14.5915i −1.34899 2.33652i
\(40\) 0 0
\(41\) 8.19458 1.27978 0.639889 0.768467i \(-0.278980\pi\)
0.639889 + 0.768467i \(0.278980\pi\)
\(42\) 0 0
\(43\) −8.84886 −1.34944 −0.674719 0.738075i \(-0.735735\pi\)
−0.674719 + 0.738075i \(0.735735\pi\)
\(44\) 0 0
\(45\) 6.76001 + 11.7087i 1.00772 + 1.74543i
\(46\) 0 0
\(47\) −0.887573 + 1.53732i −0.129466 + 0.224241i −0.923470 0.383671i \(-0.874660\pi\)
0.794004 + 0.607913i \(0.207993\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) 0 0
\(53\) 5.42443 + 9.39539i 0.745103 + 1.29056i 0.950147 + 0.311803i \(0.100933\pi\)
−0.205044 + 0.978753i \(0.565734\pi\)
\(54\) 0 0
\(55\) −1.60486 −0.216399
\(56\) 0 0
\(57\) −22.8489 −3.02641
\(58\) 0 0
\(59\) −0.0851435 0.147473i −0.0110847 0.0191993i 0.860430 0.509569i \(-0.170195\pi\)
−0.871515 + 0.490370i \(0.836862\pi\)
\(60\) 0 0
\(61\) −5.87244 + 10.1714i −0.751888 + 1.30231i 0.195018 + 0.980800i \(0.437523\pi\)
−0.946906 + 0.321509i \(0.895810\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 + 6.92820i −0.496139 + 0.859338i
\(66\) 0 0
\(67\) −6.71221 11.6259i −0.820028 1.42033i −0.905661 0.424003i \(-0.860625\pi\)
0.0856335 0.996327i \(-0.472709\pi\)
\(68\) 0 0
\(69\) 4.81458 0.579607
\(70\) 0 0
\(71\) 5.42443 0.643761 0.321881 0.946780i \(-0.395685\pi\)
0.321881 + 0.946780i \(0.395685\pi\)
\(72\) 0 0
\(73\) 2.66272 + 4.61196i 0.311648 + 0.539790i 0.978719 0.205204i \(-0.0657858\pi\)
−0.667072 + 0.744994i \(0.732452\pi\)
\(74\) 0 0
\(75\) −4.09729 + 7.09671i −0.473114 + 0.819458i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.00000 + 5.19615i −0.337526 + 0.584613i −0.983967 0.178352i \(-0.942924\pi\)
0.646440 + 0.762964i \(0.276257\pi\)
\(80\) 0 0
\(81\) −18.3489 31.7812i −2.03876 3.53124i
\(82\) 0 0
\(83\) −3.55029 −0.389695 −0.194848 0.980834i \(-0.562421\pi\)
−0.194848 + 0.980834i \(0.562421\pi\)
\(84\) 0 0
\(85\) 2.84886 0.309002
\(86\) 0 0
\(87\) −10.1400 17.5630i −1.08712 1.88295i
\(88\) 0 0
\(89\) 5.95758 10.3188i 0.631502 1.09379i −0.355743 0.934584i \(-0.615772\pi\)
0.987245 0.159210i \(-0.0508946\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.71221 + 9.89385i −0.592329 + 1.02594i
\(94\) 0 0
\(95\) 5.42443 + 9.39539i 0.556535 + 0.963946i
\(96\) 0 0
\(97\) 8.36487 0.849324 0.424662 0.905352i \(-0.360393\pi\)
0.424662 + 0.905352i \(0.360393\pi\)
\(98\) 0 0
\(99\) 8.42443 0.846687
\(100\) 0 0
\(101\) 5.70215 + 9.87641i 0.567385 + 0.982740i 0.996823 + 0.0796435i \(0.0253782\pi\)
−0.429438 + 0.903096i \(0.641288\pi\)
\(102\) 0 0
\(103\) 0.887573 1.53732i 0.0874552 0.151477i −0.818980 0.573823i \(-0.805460\pi\)
0.906435 + 0.422346i \(0.138793\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.42443 + 12.8595i −0.717747 + 1.24317i 0.244144 + 0.969739i \(0.421493\pi\)
−0.961891 + 0.273435i \(0.911840\pi\)
\(108\) 0 0
\(109\) 6.42443 + 11.1274i 0.615349 + 1.06582i 0.990323 + 0.138780i \(0.0443181\pi\)
−0.374975 + 0.927035i \(0.622349\pi\)
\(110\) 0 0
\(111\) 18.3346 1.74024
\(112\) 0 0
\(113\) 0.575571 0.0541452 0.0270726 0.999633i \(-0.491381\pi\)
0.0270726 + 0.999633i \(0.491381\pi\)
\(114\) 0 0
\(115\) −1.14300 1.97974i −0.106586 0.184612i
\(116\) 0 0
\(117\) 20.9973 36.3684i 1.94120 3.36226i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 13.8489 + 23.9869i 1.24871 + 2.16283i
\(124\) 0 0
\(125\) 11.9152 1.06572
\(126\) 0 0
\(127\) 18.8489 1.67257 0.836283 0.548298i \(-0.184724\pi\)
0.836283 + 0.548298i \(0.184724\pi\)
\(128\) 0 0
\(129\) −14.9546 25.9021i −1.31668 2.28055i
\(130\) 0 0
\(131\) −5.15515 + 8.92898i −0.450408 + 0.780129i −0.998411 0.0563472i \(-0.982055\pi\)
0.548004 + 0.836476i \(0.315388\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −14.7122 + 25.4823i −1.26623 + 2.19317i
\(136\) 0 0
\(137\) −8.71221 15.0900i −0.744335 1.28923i −0.950505 0.310709i \(-0.899433\pi\)
0.206170 0.978516i \(-0.433900\pi\)
\(138\) 0 0
\(139\) 6.76001 0.573376 0.286688 0.958024i \(-0.407446\pi\)
0.286688 + 0.958024i \(0.407446\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) 2.49243 + 4.31702i 0.208428 + 0.361007i
\(144\) 0 0
\(145\) −4.81458 + 8.33909i −0.399829 + 0.692524i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.84886 17.0587i 0.806850 1.39750i −0.108185 0.994131i \(-0.534504\pi\)
0.915035 0.403374i \(-0.132163\pi\)
\(150\) 0 0
\(151\) −7.00000 12.1244i −0.569652 0.986666i −0.996600 0.0823900i \(-0.973745\pi\)
0.426948 0.904276i \(-0.359589\pi\)
\(152\) 0 0
\(153\) −14.9546 −1.20901
\(154\) 0 0
\(155\) 5.42443 0.435701
\(156\) 0 0
\(157\) −4.01215 6.94924i −0.320204 0.554610i 0.660326 0.750979i \(-0.270418\pi\)
−0.980530 + 0.196369i \(0.937085\pi\)
\(158\) 0 0
\(159\) −18.3346 + 31.7564i −1.45403 + 2.51845i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00000 + 10.3923i −0.469956 + 0.813988i −0.999410 0.0343508i \(-0.989064\pi\)
0.529454 + 0.848339i \(0.322397\pi\)
\(164\) 0 0
\(165\) −2.71221 4.69769i −0.211146 0.365715i
\(166\) 0 0
\(167\) 23.8303 1.84405 0.922023 0.387136i \(-0.126536\pi\)
0.922023 + 0.387136i \(0.126536\pi\)
\(168\) 0 0
\(169\) 11.8489 0.911451
\(170\) 0 0
\(171\) −28.4746 49.3195i −2.17751 3.77155i
\(172\) 0 0
\(173\) 3.92700 6.80177i 0.298565 0.517129i −0.677243 0.735759i \(-0.736826\pi\)
0.975808 + 0.218630i \(0.0701589\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.287786 0.498459i 0.0216313 0.0374665i
\(178\) 0 0
\(179\) −2.13664 3.70077i −0.159700 0.276609i 0.775060 0.631887i \(-0.217719\pi\)
−0.934761 + 0.355278i \(0.884386\pi\)
\(180\) 0 0
\(181\) 15.4654 1.14954 0.574769 0.818316i \(-0.305092\pi\)
0.574769 + 0.818316i \(0.305092\pi\)
\(182\) 0 0
\(183\) −39.6977 −2.93454
\(184\) 0 0
\(185\) −4.35272 7.53913i −0.320018 0.554288i
\(186\) 0 0
\(187\) 0.887573 1.53732i 0.0649058 0.112420i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.71221 11.6259i 0.485679 0.841220i −0.514186 0.857679i \(-0.671906\pi\)
0.999865 + 0.0164585i \(0.00523914\pi\)
\(192\) 0 0
\(193\) −5.00000 8.66025i −0.359908 0.623379i 0.628037 0.778183i \(-0.283859\pi\)
−0.987945 + 0.154805i \(0.950525\pi\)
\(194\) 0 0
\(195\) −27.0400 −1.93638
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 7.64758 + 13.2460i 0.542123 + 0.938984i 0.998782 + 0.0493423i \(0.0157125\pi\)
−0.456659 + 0.889642i \(0.650954\pi\)
\(200\) 0 0
\(201\) 22.6873 39.2956i 1.60024 2.77170i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.57557 11.3892i 0.459258 0.795458i
\(206\) 0 0
\(207\) 6.00000 + 10.3923i 0.417029 + 0.722315i
\(208\) 0 0
\(209\) 6.76001 0.467600
\(210\) 0 0
\(211\) −6.84886 −0.471495 −0.235747 0.971814i \(-0.575754\pi\)
−0.235747 + 0.971814i \(0.575754\pi\)
\(212\) 0 0
\(213\) 9.16730 + 15.8782i 0.628133 + 1.08796i
\(214\) 0 0
\(215\) −7.10058 + 12.2986i −0.484256 + 0.838756i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.00000 + 15.5885i −0.608164 + 1.05337i
\(220\) 0 0
\(221\) −4.42443 7.66334i −0.297619 0.515492i
\(222\) 0 0
\(223\) 6.93030 0.464087 0.232043 0.972705i \(-0.425459\pi\)
0.232043 + 0.972705i \(0.425459\pi\)
\(224\) 0 0
\(225\) −20.4244 −1.36163
\(226\) 0 0
\(227\) 3.55029 + 6.14929i 0.235641 + 0.408142i 0.959459 0.281849i \(-0.0909477\pi\)
−0.723818 + 0.689991i \(0.757614\pi\)
\(228\) 0 0
\(229\) 0.632142 1.09490i 0.0417731 0.0723532i −0.844383 0.535740i \(-0.820033\pi\)
0.886156 + 0.463387i \(0.153366\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.84886 + 17.0587i −0.645220 + 1.11755i 0.339031 + 0.940775i \(0.389901\pi\)
−0.984251 + 0.176779i \(0.943432\pi\)
\(234\) 0 0
\(235\) 1.42443 + 2.46718i 0.0929195 + 0.160941i
\(236\) 0 0
\(237\) −20.2800 −1.31733
\(238\) 0 0
\(239\) −21.6977 −1.40351 −0.701754 0.712419i \(-0.747600\pi\)
−0.701754 + 0.712419i \(0.747600\pi\)
\(240\) 0 0
\(241\) 4.26758 + 7.39166i 0.274899 + 0.476139i 0.970110 0.242667i \(-0.0780223\pi\)
−0.695211 + 0.718806i \(0.744689\pi\)
\(242\) 0 0
\(243\) 34.5173 59.7858i 2.21429 3.83526i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 16.8489 29.1831i 1.07207 1.85687i
\(248\) 0 0
\(249\) −6.00000 10.3923i −0.380235 0.658586i
\(250\) 0 0
\(251\) −6.58972 −0.415940 −0.207970 0.978135i \(-0.566686\pi\)
−0.207970 + 0.978135i \(0.566686\pi\)
\(252\) 0 0
\(253\) −1.42443 −0.0895531
\(254\) 0 0
\(255\) 4.81458 + 8.33909i 0.301500 + 0.522214i
\(256\) 0 0
\(257\) −9.96973 + 17.2681i −0.621894 + 1.07715i 0.367238 + 0.930127i \(0.380303\pi\)
−0.989133 + 0.147026i \(0.953030\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 25.2733 43.7746i 1.56438 2.70958i
\(262\) 0 0
\(263\) 2.57557 + 4.46102i 0.158817 + 0.275078i 0.934442 0.356115i \(-0.115899\pi\)
−0.775626 + 0.631193i \(0.782566\pi\)
\(264\) 0 0
\(265\) 17.4109 1.06954
\(266\) 0 0
\(267\) 40.2733 2.46469
\(268\) 0 0
\(269\) −5.32544 9.22393i −0.324698 0.562393i 0.656753 0.754105i \(-0.271929\pi\)
−0.981451 + 0.191713i \(0.938596\pi\)
\(270\) 0 0
\(271\) 4.98486 8.63404i 0.302809 0.524480i −0.673962 0.738766i \(-0.735409\pi\)
0.976771 + 0.214285i \(0.0687423\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.21221 2.09962i 0.0730993 0.126612i
\(276\) 0 0
\(277\) −12.4244 21.5197i −0.746512 1.29300i −0.949485 0.313812i \(-0.898394\pi\)
0.202974 0.979184i \(-0.434939\pi\)
\(278\) 0 0
\(279\) −28.4746 −1.70473
\(280\) 0 0
\(281\) 4.84886 0.289259 0.144629 0.989486i \(-0.453801\pi\)
0.144629 + 0.989486i \(0.453801\pi\)
\(282\) 0 0
\(283\) −6.41943 11.1188i −0.381596 0.660943i 0.609695 0.792636i \(-0.291292\pi\)
−0.991291 + 0.131693i \(0.957959\pi\)
\(284\) 0 0
\(285\) −18.3346 + 31.7564i −1.08605 + 1.88109i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.92443 11.9935i 0.407319 0.705498i
\(290\) 0 0
\(291\) 14.1366 + 24.4854i 0.828705 + 1.43536i
\(292\) 0 0
\(293\) 18.1643 1.06117 0.530585 0.847632i \(-0.321972\pi\)
0.530585 + 0.847632i \(0.321972\pi\)
\(294\) 0 0
\(295\) −0.273287 −0.0159114
\(296\) 0 0
\(297\) 9.16730 + 15.8782i 0.531940 + 0.921348i
\(298\) 0 0
\(299\) −3.55029 + 6.14929i −0.205319 + 0.355622i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −19.2733 + 33.3823i −1.10722 + 1.91776i
\(304\) 0 0
\(305\) 9.42443 + 16.3236i 0.539641 + 0.934686i
\(306\) 0 0
\(307\) −0.681148 −0.0388752 −0.0194376 0.999811i \(-0.506188\pi\)
−0.0194376 + 0.999811i \(0.506188\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) 11.1979 + 19.3953i 0.634973 + 1.09981i 0.986521 + 0.163636i \(0.0523222\pi\)
−0.351548 + 0.936170i \(0.614344\pi\)
\(312\) 0 0
\(313\) −9.16730 + 15.8782i −0.518166 + 0.897490i 0.481611 + 0.876385i \(0.340052\pi\)
−0.999777 + 0.0211052i \(0.993282\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.71221 6.42974i 0.208499 0.361130i −0.742743 0.669577i \(-0.766476\pi\)
0.951242 + 0.308446i \(0.0998090\pi\)
\(318\) 0 0
\(319\) 3.00000 + 5.19615i 0.167968 + 0.290929i
\(320\) 0 0
\(321\) −50.1892 −2.80129
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −6.04272 10.4663i −0.335190 0.580566i
\(326\) 0 0
\(327\) −21.7146 + 37.6108i −1.20082 + 2.07988i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −6.71221 + 11.6259i −0.368937 + 0.639017i −0.989400 0.145219i \(-0.953611\pi\)
0.620463 + 0.784236i \(0.286945\pi\)
\(332\) 0 0
\(333\) 22.8489 + 39.5754i 1.25211 + 2.16872i
\(334\) 0 0
\(335\) −21.5443 −1.17709
\(336\) 0 0
\(337\) 15.6977 0.855109 0.427555 0.903990i \(-0.359375\pi\)
0.427555 + 0.903990i \(0.359375\pi\)
\(338\) 0 0
\(339\) 0.972716 + 1.68479i 0.0528307 + 0.0915055i
\(340\) 0 0
\(341\) 1.69000 2.92717i 0.0915187 0.158515i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.86336 6.69153i 0.207996 0.360260i
\(346\) 0 0
\(347\) 5.00000 + 8.66025i 0.268414 + 0.464907i 0.968452 0.249198i \(-0.0801671\pi\)
−0.700038 + 0.714105i \(0.746834\pi\)
\(348\) 0 0
\(349\) 11.0637 0.592228 0.296114 0.955153i \(-0.404309\pi\)
0.296114 + 0.955153i \(0.404309\pi\)
\(350\) 0 0
\(351\) 91.3954 4.87833
\(352\) 0 0
\(353\) 17.8727 + 30.9565i 0.951270 + 1.64765i 0.742682 + 0.669644i \(0.233553\pi\)
0.208588 + 0.978004i \(0.433113\pi\)
\(354\) 0 0
\(355\) 4.35272 7.53913i 0.231018 0.400136i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.42443 + 4.19923i −0.127956 + 0.221627i −0.922885 0.385076i \(-0.874175\pi\)
0.794928 + 0.606703i \(0.207508\pi\)
\(360\) 0 0
\(361\) −13.3489 23.1209i −0.702571 1.21689i
\(362\) 0 0
\(363\) −3.38000 −0.177404
\(364\) 0 0
\(365\) 8.54657 0.447348
\(366\) 0 0
\(367\) 11.8300 + 20.4902i 0.617522 + 1.06958i 0.989936 + 0.141513i \(0.0451966\pi\)
−0.372415 + 0.928066i \(0.621470\pi\)
\(368\) 0 0
\(369\) −34.5173 + 59.7858i −1.79690 + 3.11232i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.42443 + 7.66334i −0.229088 + 0.396792i −0.957538 0.288307i \(-0.906908\pi\)
0.728450 + 0.685099i \(0.240241\pi\)
\(374\) 0 0
\(375\) 20.1366 + 34.8777i 1.03985 + 1.80108i
\(376\) 0 0
\(377\) 29.9092 1.54040
\(378\) 0 0
\(379\) 26.5756 1.36510 0.682548 0.730841i \(-0.260872\pi\)
0.682548 + 0.730841i \(0.260872\pi\)
\(380\) 0 0
\(381\) 31.8546 + 55.1738i 1.63196 + 2.82664i
\(382\) 0 0
\(383\) −3.29486 + 5.70687i −0.168360 + 0.291607i −0.937843 0.347059i \(-0.887180\pi\)
0.769484 + 0.638666i \(0.220514\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 37.2733 64.5592i 1.89471 3.28173i
\(388\) 0 0
\(389\) 15.1366 + 26.2174i 0.767458 + 1.32928i 0.938937 + 0.344089i \(0.111812\pi\)
−0.171479 + 0.985188i \(0.554854\pi\)
\(390\) 0 0
\(391\) 2.52857 0.127875
\(392\) 0 0
\(393\) −34.8489 −1.75789
\(394\) 0 0
\(395\) 4.81458 + 8.33909i 0.242248 + 0.419585i
\(396\) 0 0
\(397\) 6.76001 11.7087i 0.339275 0.587642i −0.645021 0.764164i \(-0.723152\pi\)
0.984297 + 0.176523i \(0.0564849\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.8489 + 20.5228i −0.591704 + 1.02486i 0.402299 + 0.915508i \(0.368211\pi\)
−0.994003 + 0.109353i \(0.965122\pi\)
\(402\) 0 0
\(403\) −8.42443 14.5915i −0.419651 0.726856i
\(404\) 0 0
\(405\) −58.8946 −2.92650
\(406\) 0 0
\(407\) −5.42443 −0.268879
\(408\) 0 0
\(409\) −10.8573 18.8054i −0.536859 0.929867i −0.999071 0.0430974i \(-0.986277\pi\)
0.462212 0.886769i \(-0.347056\pi\)
\(410\) 0 0
\(411\) 29.4473 51.0043i 1.45253 2.51585i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.84886 + 4.93437i −0.139845 + 0.242219i
\(416\) 0 0
\(417\) 11.4244 + 19.7877i 0.559457 + 0.969007i
\(418\) 0 0
\(419\) −8.87573 −0.433608 −0.216804 0.976215i \(-0.569563\pi\)
−0.216804 + 0.976215i \(0.569563\pi\)
\(420\) 0 0
\(421\) 17.1511 0.835896 0.417948 0.908471i \(-0.362750\pi\)
0.417948 + 0.908471i \(0.362750\pi\)
\(422\) 0 0
\(423\) −7.47729 12.9511i −0.363558 0.629702i
\(424\) 0 0
\(425\) −2.15186 + 3.72713i −0.104380 + 0.180792i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −8.42443 + 14.5915i −0.406735 + 0.704486i
\(430\) 0 0
\(431\) −4.42443 7.66334i −0.213117 0.369130i 0.739571 0.673078i \(-0.235028\pi\)
−0.952689 + 0.303948i \(0.901695\pi\)
\(432\) 0 0
\(433\) 1.94543 0.0934915 0.0467458 0.998907i \(-0.485115\pi\)
0.0467458 + 0.998907i \(0.485115\pi\)
\(434\) 0 0
\(435\) −32.5466 −1.56049
\(436\) 0 0
\(437\) 4.81458 + 8.33909i 0.230312 + 0.398913i
\(438\) 0 0
\(439\) −20.4503 + 35.4210i −0.976040 + 1.69055i −0.299581 + 0.954071i \(0.596847\pi\)
−0.676459 + 0.736480i \(0.736486\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.28779 + 9.15871i −0.251230 + 0.435144i −0.963865 0.266392i \(-0.914168\pi\)
0.712635 + 0.701535i \(0.247502\pi\)
\(444\) 0 0
\(445\) −9.56107 16.5603i −0.453238 0.785032i
\(446\) 0 0
\(447\) 66.5784 3.14905
\(448\) 0 0
\(449\) 7.72671 0.364646 0.182323 0.983239i \(-0.441638\pi\)
0.182323 + 0.983239i \(0.441638\pi\)
\(450\) 0 0
\(451\) −4.09729 7.09671i −0.192934 0.334171i
\(452\) 0 0
\(453\) 23.6600 40.9804i 1.11165 1.92543i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.57557 13.1213i 0.354370 0.613787i −0.632640 0.774446i \(-0.718029\pi\)
0.987010 + 0.160659i \(0.0513619\pi\)
\(458\) 0 0
\(459\) −16.2733 28.1862i −0.759572 1.31562i
\(460\) 0 0
\(461\) −31.6843 −1.47569 −0.737843 0.674972i \(-0.764156\pi\)
−0.737843 + 0.674972i \(0.764156\pi\)
\(462\) 0 0
\(463\) 17.4244 0.809782 0.404891 0.914365i \(-0.367309\pi\)
0.404891 + 0.914365i \(0.367309\pi\)
\(464\) 0 0
\(465\) 9.16730 + 15.8782i 0.425123 + 0.736335i
\(466\) 0 0
\(467\) −1.69000 + 2.92717i −0.0782040 + 0.135453i −0.902475 0.430742i \(-0.858252\pi\)
0.824271 + 0.566195i \(0.191585\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 13.5611 23.4885i 0.624861 1.08229i
\(472\) 0 0
\(473\) 4.42443 + 7.66334i 0.203435 + 0.352361i
\(474\) 0 0
\(475\) −16.3892 −0.751986
\(476\) 0 0
\(477\) −91.3954 −4.18471
\(478\) 0 0
\(479\) −1.77515 3.07464i −0.0811085 0.140484i 0.822618 0.568595i \(-0.192513\pi\)
−0.903726 + 0.428111i \(0.859179\pi\)
\(480\) 0 0
\(481\) −13.5200 + 23.4174i −0.616460 + 1.06774i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.71221 11.6259i 0.304786 0.527905i
\(486\) 0 0
\(487\) −12.1366 21.0213i −0.549964 0.952565i −0.998276 0.0586884i \(-0.981308\pi\)
0.448313 0.893877i \(-0.352025\pi\)
\(488\) 0 0
\(489\) −40.5601 −1.83419
\(490\) 0 0
\(491\) 3.69772 0.166876 0.0834378 0.996513i \(-0.473410\pi\)
0.0834378 + 0.996513i \(0.473410\pi\)
\(492\) 0 0
\(493\) −5.32544 9.22393i −0.239846 0.415425i
\(494\) 0 0
\(495\) 6.76001 11.7087i 0.303840 0.526266i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 3.46410i 0.0895323 0.155074i −0.817781 0.575529i \(-0.804796\pi\)
0.907314 + 0.420455i \(0.138129\pi\)
\(500\) 0 0
\(501\) 40.2733 + 69.7554i 1.79928 + 3.11644i
\(502\) 0 0
\(503\) 30.5903 1.36396 0.681978 0.731373i \(-0.261120\pi\)
0.681978 + 0.731373i \(0.261120\pi\)
\(504\) 0 0
\(505\) 18.3023 0.814441
\(506\) 0 0
\(507\) 20.0246 + 34.6836i 0.889323 + 1.54035i
\(508\) 0 0
\(509\) −20.9122 + 36.2209i −0.926916 + 1.60546i −0.138464 + 0.990367i \(0.544217\pi\)
−0.788451 + 0.615097i \(0.789117\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 61.9710 107.337i 2.73609 4.73904i
\(514\) 0 0
\(515\) −1.42443 2.46718i −0.0627678 0.108717i
\(516\) 0 0
\(517\) 1.77515 0.0780708
\(518\) 0 0
\(519\) 26.5466 1.16527
\(520\) 0 0
\(521\) −15.7570 27.2920i −0.690327 1.19568i −0.971731 0.236093i \(-0.924133\pi\)
0.281403 0.959590i \(-0.409200\pi\)
\(522\) 0 0
\(523\) −3.20972 + 5.55939i −0.140351 + 0.243095i −0.927629 0.373503i \(-0.878156\pi\)
0.787278 + 0.616599i \(0.211490\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.00000 + 5.19615i −0.130682 + 0.226348i
\(528\) 0 0
\(529\) 10.4855 + 18.1614i 0.455891 + 0.789627i
\(530\) 0 0
\(531\) 1.43457 0.0622551
\(532\) 0 0
\(533\) −40.8489 −1.76936
\(534\) 0 0
\(535\) 11.9152 + 20.6377i 0.515137 + 0.892244i
\(536\) 0 0
\(537\) 7.22186 12.5086i 0.311646 0.539787i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5.57557 9.65717i 0.239713 0.415194i −0.720919 0.693019i \(-0.756280\pi\)
0.960632 + 0.277825i \(0.0896135\pi\)
\(542\) 0 0
\(543\) 26.1366 + 45.2700i 1.12163 + 1.94272i
\(544\) 0 0
\(545\) 20.6206 0.883289
\(546\) 0 0
\(547\) 9.69772 0.414644 0.207322 0.978273i \(-0.433525\pi\)
0.207322 + 0.978273i \(0.433525\pi\)
\(548\) 0 0
\(549\) −49.4719 85.6879i −2.11141 3.65707i
\(550\) 0 0
\(551\) 20.2800 35.1260i 0.863958 1.49642i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 14.7122 25.4823i 0.624499 1.08166i
\(556\) 0 0
\(557\) −13.8489 23.9869i −0.586795 1.01636i −0.994649 0.103312i \(-0.967056\pi\)
0.407854 0.913047i \(-0.366277\pi\)
\(558\) 0 0
\(559\) 44.1103 1.86567
\(560\) 0 0
\(561\) 6.00000 0.253320
\(562\) 0 0
\(563\) 15.2952 + 26.4920i 0.644614 + 1.11650i 0.984390 + 0.175998i \(0.0563153\pi\)
−0.339776 + 0.940506i \(0.610351\pi\)
\(564\) 0 0
\(565\) 0.461855 0.799957i 0.0194304 0.0336544i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.0000 32.9090i 0.796521 1.37962i −0.125347 0.992113i \(-0.540004\pi\)
0.921869 0.387503i \(-0.126662\pi\)
\(570\) 0 0
\(571\) −16.8489 29.1831i −0.705103 1.22127i −0.966654 0.256084i \(-0.917568\pi\)
0.261552 0.965189i \(-0.415766\pi\)
\(572\) 0 0
\(573\) 45.3746 1.89555
\(574\) 0 0
\(575\) 3.45343 0.144018
\(576\) 0 0
\(577\) −0.972716 1.68479i −0.0404947 0.0701389i 0.845068 0.534659i \(-0.179560\pi\)
−0.885562 + 0.464520i \(0.846227\pi\)
\(578\) 0 0
\(579\) 16.9000 29.2717i 0.702341 1.21649i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 5.42443 9.39539i 0.224657 0.389117i
\(584\) 0 0
\(585\) −33.6977 58.3662i −1.39323 2.41314i
\(586\) 0 0
\(587\) −31.6843 −1.30775 −0.653876 0.756602i \(-0.726858\pi\)
−0.653876 + 0.756602i \(0.726858\pi\)
\(588\) 0 0
\(589\) −22.8489 −0.941471
\(590\) 0 0
\(591\) −10.1400 17.5630i −0.417104 0.722446i
\(592\) 0 0
\(593\) 14.4076 24.9547i 0.591649 1.02477i −0.402362 0.915481i \(-0.631811\pi\)
0.994010 0.109285i \(-0.0348561\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −25.8489 + 44.7715i −1.05792 + 1.83238i
\(598\) 0 0
\(599\) 12.8489 + 22.2549i 0.524990 + 0.909310i 0.999576 + 0.0291006i \(0.00926431\pi\)
−0.474586 + 0.880209i \(0.657402\pi\)
\(600\) 0 0
\(601\) −14.2734 −0.582226 −0.291113 0.956689i \(-0.594026\pi\)
−0.291113 + 0.956689i \(0.594026\pi\)
\(602\) 0 0
\(603\) 113.093 4.60551
\(604\) 0 0
\(605\) 0.802429 + 1.38985i 0.0326234 + 0.0565054i
\(606\) 0 0
\(607\) −1.94543 + 3.36959i −0.0789627 + 0.136767i −0.902803 0.430055i \(-0.858494\pi\)
0.823840 + 0.566822i \(0.191827\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.42443 7.66334i 0.178993 0.310025i
\(612\) 0 0
\(613\) 4.42443 + 7.66334i 0.178701 + 0.309519i 0.941436 0.337192i \(-0.109477\pi\)
−0.762735 + 0.646711i \(0.776144\pi\)
\(614\) 0 0
\(615\) 44.4509 1.79243
\(616\) 0 0
\(617\) −14.8489 −0.597793 −0.298896 0.954286i \(-0.596618\pi\)
−0.298896 + 0.954286i \(0.596618\pi\)
\(618\) 0 0
\(619\) 4.72943 + 8.19162i 0.190092 + 0.329249i 0.945281 0.326259i \(-0.105788\pi\)
−0.755189 + 0.655508i \(0.772455\pi\)
\(620\) 0 0
\(621\) −13.0582 + 22.6174i −0.524006 + 0.907605i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.50000 6.06218i 0.140000 0.242487i
\(626\) 0 0
\(627\) 11.4244 + 19.7877i 0.456248 + 0.790244i
\(628\) 0 0
\(629\) 9.62915 0.383939
\(630\) 0 0
\(631\) −20.2733 −0.807067 −0.403533 0.914965i \(-0.632218\pi\)
−0.403533 + 0.914965i \(0.632218\pi\)
\(632\) 0 0
\(633\) −11.5746 20.0478i −0.460048 0.796827i
\(634\) 0 0
\(635\) 15.1249 26.1971i 0.600212 1.03960i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −22.8489 + 39.5754i −0.903887 + 1.56558i
\(640\) 0 0
\(641\) 6.71221 + 11.6259i 0.265117 + 0.459195i 0.967594 0.252511i \(-0.0812562\pi\)
−0.702478 + 0.711706i \(0.747923\pi\)
\(642\) 0 0
\(643\) 26.1886 1.03278 0.516389 0.856354i \(-0.327276\pi\)
0.516389 + 0.856354i \(0.327276\pi\)
\(644\) 0 0
\(645\) −48.0000 −1.89000
\(646\) 0 0
\(647\) −24.6689 42.7278i −0.969834 1.67980i −0.696025 0.718017i \(-0.745050\pi\)
−0.273809 0.961784i \(-0.588284\pi\)
\(648\) 0 0
\(649\) −0.0851435 + 0.147473i −0.00334218 + 0.00578882i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.1366 + 19.2892i −0.435811 + 0.754846i −0.997361 0.0725962i \(-0.976872\pi\)
0.561551 + 0.827442i \(0.310205\pi\)
\(654\) 0 0
\(655\) 8.27329 + 14.3298i 0.323264 + 0.559910i
\(656\) 0 0
\(657\) −44.8638 −1.75030
\(658\) 0 0
\(659\) 0.302284 0.0117753 0.00588766 0.999983i \(-0.498126\pi\)
0.00588766 + 0.999983i \(0.498126\pi\)
\(660\) 0 0
\(661\) −7.22186 12.5086i −0.280898 0.486530i 0.690708 0.723134i \(-0.257299\pi\)
−0.971606 + 0.236604i \(0.923966\pi\)
\(662\) 0 0
\(663\) 14.9546 25.9021i 0.580788 1.00595i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.27329 + 7.40155i −0.165462 + 0.286589i
\(668\) 0 0
\(669\) 11.7122 + 20.2862i 0.452820 + 0.784308i
\(670\) 0 0
\(671\) 11.7449 0.453406
\(672\) 0 0
\(673\) 15.1511 0.584034 0.292017 0.956413i \(-0.405674\pi\)
0.292017 + 0.956413i \(0.405674\pi\)
\(674\) 0 0
\(675\) −22.2255 38.4956i −0.855458 1.48170i
\(676\) 0 0
\(677\) −15.8422 + 27.4394i −0.608864 + 1.05458i 0.382564 + 0.923929i \(0.375041\pi\)
−0.991428 + 0.130654i \(0.958292\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 + 20.7846i −0.459841 + 0.796468i
\(682\) 0 0
\(683\) 22.0000 + 38.1051i 0.841807 + 1.45805i 0.888366 + 0.459136i \(0.151841\pi\)
−0.0465592 + 0.998916i \(0.514826\pi\)
\(684\) 0 0
\(685\) −27.9637 −1.06844
\(686\) 0 0
\(687\) 4.27329 0.163036
\(688\) 0 0
\(689\) −27.0400 46.8347i −1.03014 1.78426i
\(690\) 0 0
\(691\) −1.17914 + 2.04233i −0.0448566 + 0.0776940i −0.887582 0.460650i \(-0.847616\pi\)
0.842725 + 0.538344i \(0.180950\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.42443 9.39539i 0.205760 0.356387i
\(696\) 0 0
\(697\) 7.27329 + 12.5977i 0.275495 + 0.477172i
\(698\) 0 0
\(699\) −66.5784 −2.51822
\(700\) 0 0
\(701\) 22.5466 0.851572 0.425786 0.904824i \(-0.359998\pi\)
0.425786 + 0.904824i \(0.359998\pi\)
\(702\) 0 0
\(703\) 18.3346 + 31.7564i 0.691502 + 1.19772i
\(704\) 0 0
\(705\) −4.81458 + 8.33909i −0.181327 + 0.314068i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −7.13664 + 12.3610i −0.268022 + 0.464228i −0.968351 0.249592i \(-0.919703\pi\)
0.700329 + 0.713820i \(0.253037\pi\)
\(710\) 0 0
\(711\) −25.2733 43.7746i −0.947822 1.64168i
\(712\) 0 0
\(713\) 4.81458 0.180307
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) 0 0
\(717\) −36.6692 63.5129i −1.36944 2.37193i
\(718\) 0 0
\(719\) −6.50458 + 11.2663i −0.242580 + 0.420161i −0.961448 0.274985i \(-0.911327\pi\)
0.718869 + 0.695146i \(0.244660\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −14.4244 + 24.9838i −0.536450 + 0.929159i
\(724\) 0 0
\(725\) −7.27329 12.5977i −0.270123 0.467867i
\(726\) 0 0
\(727\) −42.5778 −1.57912 −0.789561 0.613672i \(-0.789692\pi\)
−0.789561 + 0.613672i \(0.789692\pi\)
\(728\) 0 0
\(729\) 123.244 4.56460
\(730\) 0 0
\(731\) −7.85401 13.6035i −0.290491 0.503145i
\(732\) 0 0
\(733\) 22.4319 38.8532i 0.828540 1.43507i −0.0706426 0.997502i \(-0.522505\pi\)
0.899183 0.437573i \(-0.144162\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.71221 + 11.6259i −0.247248 + 0.428245i
\(738\) 0 0
\(739\) −11.4244 19.7877i −0.420254 0.727902i 0.575710 0.817654i \(-0.304726\pi\)
−0.995964 + 0.0897522i \(0.971393\pi\)
\(740\) 0 0
\(741\) 113.898 4.18416
\(742\) 0 0
\(743\) −5.69772 −0.209029 −0.104514 0.994523i \(-0.533329\pi\)
−0.104514 + 0.994523i \(0.533329\pi\)
\(744\) 0 0
\(745\) −15.8060 27.3768i −0.579088 1.00301i
\(746\) 0 0
\(747\) 14.9546 25.9021i 0.547160 0.947709i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −18.7122 + 32.4105i −0.682818 + 1.18268i 0.291299 + 0.956632i \(0.405913\pi\)
−0.974117 + 0.226044i \(0.927421\pi\)
\(752\) 0 0
\(753\) −11.1366 19.2892i −0.405842 0.702939i
\(754\) 0 0
\(755\) −22.4680 −0.817695
\(756\) 0 0
\(757\) 11.6977 0.425161 0.212580 0.977144i \(-0.431813\pi\)
0.212580 + 0.977144i \(0.431813\pi\)
\(758\) 0 0
\(759\) −2.40729 4.16954i −0.0873790 0.151345i
\(760\) 0 0
\(761\) −12.4622 + 21.5851i −0.451753 + 0.782459i −0.998495 0.0548421i \(-0.982534\pi\)
0.546742 + 0.837301i \(0.315868\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −12.0000 + 20.7846i −0.433861 + 0.751469i
\(766\) 0 0
\(767\) 0.424429 + 0.735132i 0.0153252 + 0.0265441i
\(768\) 0 0
\(769\) 14.2734 0.514713 0.257357 0.966316i \(-0.417148\pi\)
0.257357 + 0.966316i \(0.417148\pi\)
\(770\) 0 0
\(771\) −67.3954 −2.42719
\(772\) 0 0
\(773\) −8.53515 14.7833i −0.306988 0.531719i 0.670714 0.741716i \(-0.265988\pi\)
−0.977702 + 0.209997i \(0.932655\pi\)
\(774\) 0 0
\(775\) −4.09729 + 7.09671i −0.147179 + 0.254922i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27.6977 + 47.9739i −0.992374 + 1.71884i
\(780\) 0 0
\(781\) −2.71221 4.69769i −0.0970507 0.168097i
\(782\) 0 0
\(783\) 110.008 3.93135
\(784\) 0 0
\(785\) −12.8779 −0.459630
\(786\) 0 0
\(787\) 13.0092 + 22.5325i 0.463726 + 0.803198i 0.999143 0.0413905i \(-0.0131788\pi\)
−0.535417 + 0.844588i \(0.679845\pi\)
\(788\) 0 0
\(789\) −8.70544 + 15.0783i −0.309922 + 0.536801i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 29.2733 50.7028i 1.03952 1.80051i
\(794\) 0 0
\(795\) 29.4244 + 50.9646i 1.04358 + 1.80753i
\(796\) 0 0
\(797\) 31.1735 1.10422 0.552110 0.833771i \(-0.313823\pi\)
0.552110 + 0.833771i \(0.313823\pi\)
\(798\) 0 0
\(799\) −3.15114 −0.111479
\(800\) 0 0
\(801\) 50.1892 + 86.9302i 1.77335 + 3.07153i
\(802\) 0 0
\(803\) 2.66272 4.61196i 0.0939653 0.162753i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.0000 31.1769i 0.633630 1.09748i
\(808\) 0 0
\(809\) 11.0000 + 19.0526i 0.386739 + 0.669852i 0.992009 0.126168i \(-0.0402680\pi\)
−0.605269 + 0.796021i \(0.706935\pi\)
\(810\) 0 0
\(811\) −23.1492 −0.812877 −0.406439 0.913678i \(-0.633230\pi\)
−0.406439 + 0.913678i \(0.633230\pi\)
\(812\) 0 0
\(813\) 33.6977 1.18183
\(814\) 0 0
\(815\) 9.62915 + 16.6782i 0.337294 + 0.584211i
\(816\) 0 0
\(817\) 29.9092 51.8042i 1.04639 1.81240i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.6977 + 25.4572i −0.512954 + 0.888462i 0.486933 + 0.873439i \(0.338115\pi\)
−0.999887 + 0.0150229i \(0.995218\pi\)
\(822\) 0 0
\(823\) −20.7122 35.8746i −0.721982 1.25051i −0.960204 0.279299i \(-0.909898\pi\)
0.238222 0.971211i \(-0.423436\pi\)
\(824\) 0 0
\(825\) 8.19458 0.285299
\(826\) 0 0
\(827\) −32.8489 −1.14227 −0.571133 0.820857i \(-0.693496\pi\)
−0.571133 + 0.820857i \(0.693496\pi\)
\(828\) 0 0
\(829\) 11.1127 + 19.2478i 0.385961 + 0.668504i 0.991902 0.127005i \(-0.0405366\pi\)
−0.605941 + 0.795510i \(0.707203\pi\)
\(830\) 0 0
\(831\) 41.9946 72.7368i 1.45678 2.52321i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 19.1221 33.1205i 0.661749 1.14618i
\(836\) 0 0
\(837\) −30.9855 53.6685i −1.07102 1.85505i
\(838\) 0 0
\(839\) −12.6686 −0.437368 −0.218684 0.975796i \(-0.570176\pi\)
−0.218684 + 0.975796i \(0.570176\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 8.19458 + 14.1934i 0.282236 + 0.488848i
\(844\) 0 0
\(845\) 9.50787 16.4681i 0.327081 0.566520i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 21.6977 37.5815i 0.744664 1.28980i
\(850\) 0 0
\(851\) −3.86336 6.69153i −0.132434 0.229383i
\(852\) 0 0
\(853\) 5.32544 0.182339 0.0911697 0.995835i \(-0.470939\pi\)
0.0911697 + 0.995835i \(0.470939\pi\)
\(854\) 0 0
\(855\) −91.3954 −3.12566
\(856\) 0 0
\(857\) −5.70215 9.87641i −0.194782 0.337372i 0.752047 0.659109i \(-0.229067\pi\)
−0.946829 + 0.321737i \(0.895733\pi\)
\(858\) 0 0
\(859\) −10.5657 + 18.3004i −0.360498 + 0.624401i −0.988043 0.154179i \(-0.950727\pi\)
0.627545 + 0.778580i \(0.284060\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.15114 + 1.99384i −0.0391853 + 0.0678710i −0.884953 0.465680i \(-0.845810\pi\)
0.845768 + 0.533551i \(0.179143\pi\)
\(864\) 0 0
\(865\) −6.30228 10.9159i −0.214284 0.371151i
\(866\) 0 0
\(867\) 46.8092 1.58972
\(868\) 0 0
\(869\) 6.00000 0.203536
\(870\) 0 0
\(871\) 33.4595 + 57.9535i 1.13373 + 1.96368i
\(872\) 0 0
\(873\) −35.2346 + 61.0281i −1.19251 + 2.06549i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.00000 12.1244i 0.236373 0.409410i −0.723298 0.690536i \(-0.757375\pi\)
0.959671 + 0.281126i \(0.0907079\pi\)
\(878\) 0 0
\(879\) 30.6977 + 53.1700i 1.03541 + 1.79338i
\(880\) 0 0
\(881\) 10.8934 0.367009 0.183505 0.983019i \(-0.441256\pi\)
0.183505 + 0.983019i \(0.441256\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) −0.461855 0.799957i −0.0155251 0.0268902i
\(886\) 0 0
\(887\) −9.79944 + 16.9731i −0.329033 + 0.569902i −0.982320 0.187208i \(-0.940056\pi\)
0.653287 + 0.757110i \(0.273389\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −18.3489 + 31.7812i −0.614710 + 1.06471i
\(892\) 0 0
\(893\) −6.00000 10.3923i −0.200782 0.347765i
\(894\) 0 0
\(895\) −6.85802 −0.229238
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 0 0
\(899\) −10.1400 17.5630i −0.338188 0.585759i
\(900\) 0 0
\(901\) −9.62915 + 16.6782i −0.320794 + 0.555631i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.4099 21.4946i 0.412520 0.714506i
\(906\) 0 0
\(907\) 9.69772 + 16.7969i 0.322007 + 0.557733i 0.980902 0.194502i \(-0.0623091\pi\)
−0.658895 + 0.752235i \(0.728976\pi\)
\(908\) 0 0
\(909\) −96.0747 −3.18660
\(910\) 0 0
\(911\) −49.6977 −1.64656 −0.823279 0.567636i \(-0.807858\pi\)
−0.823279 + 0.567636i \(0.807858\pi\)
\(912\) 0 0
\(913\) 1.77515 + 3.07464i 0.0587487 + 0.101756i
\(914\) 0 0
\(915\) −31.8546 + 55.1738i −1.05308 + 1.82399i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −5.15114 + 8.92204i −0.169921 + 0.294311i −0.938392 0.345573i \(-0.887684\pi\)
0.768471 + 0.639884i \(0.221018\pi\)
\(920\) 0 0
\(921\) −1.15114 1.99384i −0.0379314 0.0656992i
\(922\) 0 0
\(923\) −27.0400 −0.890034
\(924\) 0 0
\(925\) 13.1511 0.432407
\(926\) 0 0
\(927\) 7.47729 + 12.9511i 0.245587 + 0.425368i
\(928\) 0 0
\(929\) 4.64429 8.04414i 0.152374 0.263920i −0.779726 0.626121i \(-0.784641\pi\)
0.932100 + 0.362202i \(0.117975\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −37.8489 + 65.5561i −1.23912 + 2.14621i
\(934\) 0 0
\(935\) −1.42443 2.46718i −0.0465838 0.0806855i
\(936\) 0 0
\(937\) −12.7666 −0.417066 −0.208533 0.978015i \(-0.566869\pi\)
−0.208533 + 0.978015i \(0.566869\pi\)
\(938\) 0 0
\(939\) −61.9710 −2.02235
\(940\) 0 0
\(941\) 7.98816 + 13.8359i 0.260406 + 0.451037i 0.966350 0.257231i \(-0.0828101\pi\)
−0.705944 + 0.708268i \(0.749477\pi\)
\(942\) 0 0
\(943\) 5.83630 10.1088i 0.190056 0.329187i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.712214 1.23359i 0.0231439 0.0400863i −0.854222 0.519909i \(-0.825966\pi\)
0.877365 + 0.479823i \(0.159299\pi\)
\(948\) 0 0
\(949\) −13.2733 22.9900i −0.430869 0.746287i
\(950\) 0 0
\(951\) 25.0946 0.813748
\(952\) 0 0
\(953\) −4.84886 −0.157070 −0.0785350 0.996911i \(-0.525024\pi\)
−0.0785350 + 0.996911i \(0.525024\pi\)
\(954\) 0 0
\(955\) −10.7722 18.6579i −0.348579 0.603756i
\(956\) 0 0
\(957\) −10.1400 + 17.5630i −0.327780 + 0.567732i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 9.78779 16.9529i 0.315735 0.546869i
\(962\) 0 0
\(963\) −62.5466 108.334i −2.01554 3.49101i
\(964\) 0 0
\(965\) −16.0486 −0.516622
\(966\) 0 0
\(967\) 26.0000 0.836104 0.418052 0.908423i \(-0.362713\pi\)
0.418052 + 0.908423i \(0.362713\pi\)
\(968\) 0 0
\(969\) −20.2800 35.1260i −0.651488 1.12841i
\(970\) 0 0
\(971\) −21.2889 + 36.8734i −0.683193 + 1.18332i 0.290808 + 0.956781i \(0.406076\pi\)
−0.974001 + 0.226543i \(0.927258\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 20.4244 35.3761i 0.654105 1.13294i
\(976\) 0 0
\(977\) 0.287786 + 0.498459i 0.00920708 + 0.0159471i 0.870592 0.492005i \(-0.163736\pi\)
−0.861385 + 0.507952i \(0.830403\pi\)
\(978\) 0 0
\(979\) −11.9152 −0.380810
\(980\) 0 0
\(981\) −108.244 −3.45597
\(982\) 0 0
\(983\) 1.86029 + 3.22212i 0.0593340 + 0.102770i 0.894167 0.447734i \(-0.147769\pi\)
−0.834833 + 0.550504i \(0.814436\pi\)
\(984\) 0 0
\(985\) −4.81458 + 8.33909i −0.153405 + 0.265705i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.30228 + 10.9159i −0.200401 + 0.347105i
\(990\) 0 0
\(991\) −21.6977 37.5815i −0.689251 1.19382i −0.972081 0.234647i \(-0.924607\pi\)
0.282830 0.959170i \(-0.408727\pi\)
\(992\) 0 0
\(993\) −45.3746 −1.43992
\(994\) 0 0
\(995\) 24.5466 0.778179
\(996\) 0 0
\(997\) −16.0124 27.7344i −0.507119 0.878356i −0.999966 0.00824030i \(-0.997377\pi\)
0.492847 0.870116i \(-0.335956\pi\)
\(998\) 0 0
\(999\) −49.7273 + 86.1303i −1.57330 + 2.72504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.i.n.177.4 8
7.2 even 3 2156.2.a.m.1.1 4
7.3 odd 6 inner 2156.2.i.n.1145.1 8
7.4 even 3 inner 2156.2.i.n.1145.4 8
7.5 odd 6 2156.2.a.m.1.4 yes 4
7.6 odd 2 inner 2156.2.i.n.177.1 8
28.19 even 6 8624.2.a.cx.1.1 4
28.23 odd 6 8624.2.a.cx.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2156.2.a.m.1.1 4 7.2 even 3
2156.2.a.m.1.4 yes 4 7.5 odd 6
2156.2.i.n.177.1 8 7.6 odd 2 inner
2156.2.i.n.177.4 8 1.1 even 1 trivial
2156.2.i.n.1145.1 8 7.3 odd 6 inner
2156.2.i.n.1145.4 8 7.4 even 3 inner
8624.2.a.cx.1.1 4 28.19 even 6
8624.2.a.cx.1.4 4 28.23 odd 6