Properties

Label 2156.2.q.d.901.2
Level $2156$
Weight $2$
Character 2156.901
Analytic conductor $17.216$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(901,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.721389578983833600000000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.2
Root \(-1.36434 + 1.59774i\) of defining polynomial
Character \(\chi\) \(=\) 2156.901
Dual form 2156.2.q.d.2089.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.60021 + 0.923880i) q^{3} +(1.60021 + 0.923880i) q^{5} +(0.207107 - 0.358719i) q^{9} +(3.23861 - 0.715113i) q^{11} +5.84313 q^{13} -3.41421 q^{15} +(1.21015 + 2.09604i) q^{17} +(-4.13171 + 7.15634i) q^{19} +(-2.12132 + 3.67423i) q^{23} +(-0.792893 - 1.37333i) q^{25} -4.77791i q^{27} -4.47214i q^{29} +(7.06365 - 4.07820i) q^{31} +(-4.52177 + 4.13642i) q^{33} +(3.41421 - 5.91359i) q^{37} +(-9.35021 + 5.39835i) q^{39} +9.26595 q^{41} +1.85242i q^{43} +(0.662827 - 0.382683i) q^{45} +(4.25151 + 2.45461i) q^{47} +(-3.87298 - 2.23607i) q^{51} +(-3.53553 - 6.12372i) q^{53} +(5.84313 + 1.84776i) q^{55} -15.2688i q^{57} +(-3.47496 + 2.00627i) q^{59} +(-1.21015 + 2.09604i) q^{61} +(9.35021 + 5.39835i) q^{65} +(5.53553 + 9.58783i) q^{67} -7.83938i q^{69} +3.75736 q^{71} +(5.34187 + 9.25238i) q^{73} +(2.53759 + 1.46508i) q^{75} +(-11.6190 - 6.70820i) q^{79} +(5.03553 + 8.72180i) q^{81} -4.84061 q^{83} +4.47214i q^{85} +(4.13171 + 7.15634i) q^{87} +(3.86324 + 2.23044i) q^{89} +(-7.53553 + 13.0519i) q^{93} +(-13.2232 + 7.63441i) q^{95} +5.35757i q^{97} +(0.414214 - 1.30986i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{9} + 8 q^{11} - 32 q^{15} - 24 q^{25} + 32 q^{37} + 32 q^{67} + 128 q^{71} + 24 q^{81} - 64 q^{93} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.60021 + 0.923880i −0.923880 + 0.533402i −0.884871 0.465837i \(-0.845753\pi\)
−0.0390089 + 0.999239i \(0.512420\pi\)
\(4\) 0 0
\(5\) 1.60021 + 0.923880i 0.715634 + 0.413171i 0.813144 0.582063i \(-0.197754\pi\)
−0.0975096 + 0.995235i \(0.531088\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.207107 0.358719i 0.0690356 0.119573i
\(10\) 0 0
\(11\) 3.23861 0.715113i 0.976478 0.215615i
\(12\) 0 0
\(13\) 5.84313 1.62059 0.810296 0.586021i \(-0.199306\pi\)
0.810296 + 0.586021i \(0.199306\pi\)
\(14\) 0 0
\(15\) −3.41421 −0.881546
\(16\) 0 0
\(17\) 1.21015 + 2.09604i 0.293505 + 0.508365i 0.974636 0.223796i \(-0.0718450\pi\)
−0.681131 + 0.732161i \(0.738512\pi\)
\(18\) 0 0
\(19\) −4.13171 + 7.15634i −0.947880 + 1.64178i −0.198002 + 0.980202i \(0.563445\pi\)
−0.749879 + 0.661575i \(0.769888\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.12132 + 3.67423i −0.442326 + 0.766131i −0.997862 0.0653618i \(-0.979180\pi\)
0.555536 + 0.831493i \(0.312513\pi\)
\(24\) 0 0
\(25\) −0.792893 1.37333i −0.158579 0.274666i
\(26\) 0 0
\(27\) 4.77791i 0.919509i
\(28\) 0 0
\(29\) 4.47214i 0.830455i −0.909718 0.415227i \(-0.863702\pi\)
0.909718 0.415227i \(-0.136298\pi\)
\(30\) 0 0
\(31\) 7.06365 4.07820i 1.26867 0.732467i 0.293933 0.955826i \(-0.405036\pi\)
0.974736 + 0.223359i \(0.0717023\pi\)
\(32\) 0 0
\(33\) −4.52177 + 4.13642i −0.787139 + 0.720058i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.41421 5.91359i 0.561293 0.972188i −0.436091 0.899903i \(-0.643637\pi\)
0.997384 0.0722857i \(-0.0230293\pi\)
\(38\) 0 0
\(39\) −9.35021 + 5.39835i −1.49723 + 0.864427i
\(40\) 0 0
\(41\) 9.26595 1.44710 0.723549 0.690273i \(-0.242509\pi\)
0.723549 + 0.690273i \(0.242509\pi\)
\(42\) 0 0
\(43\) 1.85242i 0.282491i 0.989975 + 0.141246i \(0.0451107\pi\)
−0.989975 + 0.141246i \(0.954889\pi\)
\(44\) 0 0
\(45\) 0.662827 0.382683i 0.0988084 0.0570471i
\(46\) 0 0
\(47\) 4.25151 + 2.45461i 0.620147 + 0.358042i 0.776926 0.629592i \(-0.216778\pi\)
−0.156779 + 0.987634i \(0.550111\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.87298 2.23607i −0.542326 0.313112i
\(52\) 0 0
\(53\) −3.53553 6.12372i −0.485643 0.841158i 0.514221 0.857658i \(-0.328081\pi\)
−0.999864 + 0.0164995i \(0.994748\pi\)
\(54\) 0 0
\(55\) 5.84313 + 1.84776i 0.787887 + 0.249152i
\(56\) 0 0
\(57\) 15.2688i 2.02241i
\(58\) 0 0
\(59\) −3.47496 + 2.00627i −0.452402 + 0.261194i −0.708844 0.705365i \(-0.750783\pi\)
0.256442 + 0.966560i \(0.417450\pi\)
\(60\) 0 0
\(61\) −1.21015 + 2.09604i −0.154944 + 0.268371i −0.933039 0.359776i \(-0.882853\pi\)
0.778095 + 0.628147i \(0.216186\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.35021 + 5.39835i 1.15975 + 0.669582i
\(66\) 0 0
\(67\) 5.53553 + 9.58783i 0.676273 + 1.17134i 0.976095 + 0.217344i \(0.0697394\pi\)
−0.299822 + 0.953995i \(0.596927\pi\)
\(68\) 0 0
\(69\) 7.83938i 0.943750i
\(70\) 0 0
\(71\) 3.75736 0.445917 0.222958 0.974828i \(-0.428429\pi\)
0.222958 + 0.974828i \(0.428429\pi\)
\(72\) 0 0
\(73\) 5.34187 + 9.25238i 0.625218 + 1.08291i 0.988499 + 0.151230i \(0.0483233\pi\)
−0.363280 + 0.931680i \(0.618343\pi\)
\(74\) 0 0
\(75\) 2.53759 + 1.46508i 0.293015 + 0.169172i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.6190 6.70820i −1.30723 0.754732i −0.325600 0.945507i \(-0.605566\pi\)
−0.981634 + 0.190776i \(0.938900\pi\)
\(80\) 0 0
\(81\) 5.03553 + 8.72180i 0.559504 + 0.969089i
\(82\) 0 0
\(83\) −4.84061 −0.531325 −0.265663 0.964066i \(-0.585591\pi\)
−0.265663 + 0.964066i \(0.585591\pi\)
\(84\) 0 0
\(85\) 4.47214i 0.485071i
\(86\) 0 0
\(87\) 4.13171 + 7.15634i 0.442966 + 0.767240i
\(88\) 0 0
\(89\) 3.86324 + 2.23044i 0.409503 + 0.236426i 0.690576 0.723260i \(-0.257357\pi\)
−0.281073 + 0.959686i \(0.590690\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.53553 + 13.0519i −0.781398 + 1.35342i
\(94\) 0 0
\(95\) −13.2232 + 7.63441i −1.35667 + 0.783274i
\(96\) 0 0
\(97\) 5.35757i 0.543979i 0.962300 + 0.271989i \(0.0876815\pi\)
−0.962300 + 0.271989i \(0.912318\pi\)
\(98\) 0 0
\(99\) 0.414214 1.30986i 0.0416300 0.131646i
\(100\) 0 0
\(101\) 5.34187 + 9.25238i 0.531536 + 0.920647i 0.999322 + 0.0368053i \(0.0117181\pi\)
−0.467787 + 0.883841i \(0.654949\pi\)
\(102\) 0 0
\(103\) −7.84020 4.52654i −0.772518 0.446014i 0.0612540 0.998122i \(-0.480490\pi\)
−0.833772 + 0.552109i \(0.813823\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.47723 + 3.16228i 0.529503 + 0.305709i 0.740814 0.671710i \(-0.234440\pi\)
−0.211311 + 0.977419i \(0.567773\pi\)
\(108\) 0 0
\(109\) −11.6190 + 6.70820i −1.11289 + 0.642529i −0.939577 0.342337i \(-0.888782\pi\)
−0.173316 + 0.984866i \(0.555448\pi\)
\(110\) 0 0
\(111\) 12.6173i 1.19758i
\(112\) 0 0
\(113\) −17.6569 −1.66102 −0.830509 0.557006i \(-0.811950\pi\)
−0.830509 + 0.557006i \(0.811950\pi\)
\(114\) 0 0
\(115\) −6.78910 + 3.91969i −0.633087 + 0.365513i
\(116\) 0 0
\(117\) 1.21015 2.09604i 0.111879 0.193779i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.97723 4.63195i 0.907021 0.421086i
\(122\) 0 0
\(123\) −14.8274 + 8.56062i −1.33694 + 0.771885i
\(124\) 0 0
\(125\) 12.1689i 1.08842i
\(126\) 0 0
\(127\) 6.32456i 0.561214i 0.959823 + 0.280607i \(0.0905357\pi\)
−0.959823 + 0.280607i \(0.909464\pi\)
\(128\) 0 0
\(129\) −1.71141 2.96425i −0.150681 0.260988i
\(130\) 0 0
\(131\) −9.97484 + 17.2769i −0.871506 + 1.50949i −0.0110673 + 0.999939i \(0.503523\pi\)
−0.860439 + 0.509554i \(0.829810\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.41421 7.64564i 0.379915 0.658032i
\(136\) 0 0
\(137\) 4.41421 + 7.64564i 0.377132 + 0.653211i 0.990644 0.136474i \(-0.0435771\pi\)
−0.613512 + 0.789685i \(0.710244\pi\)
\(138\) 0 0
\(139\) 3.42282 0.290320 0.145160 0.989408i \(-0.453630\pi\)
0.145160 + 0.989408i \(0.453630\pi\)
\(140\) 0 0
\(141\) −9.07107 −0.763922
\(142\) 0 0
\(143\) 18.9236 4.17850i 1.58247 0.349424i
\(144\) 0 0
\(145\) 4.13171 7.15634i 0.343120 0.594302i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.47723 + 3.16228i 0.448712 + 0.259064i 0.707286 0.706928i \(-0.249919\pi\)
−0.258574 + 0.965991i \(0.583253\pi\)
\(150\) 0 0
\(151\) −3.87298 + 2.23607i −0.315179 + 0.181969i −0.649242 0.760582i \(-0.724914\pi\)
0.334063 + 0.942551i \(0.391580\pi\)
\(152\) 0 0
\(153\) 1.00252 0.0810491
\(154\) 0 0
\(155\) 15.0711 1.21054
\(156\) 0 0
\(157\) 9.55413 5.51608i 0.762503 0.440231i −0.0676909 0.997706i \(-0.521563\pi\)
0.830194 + 0.557475i \(0.188230\pi\)
\(158\) 0 0
\(159\) 11.3152 + 6.53281i 0.897351 + 0.518086i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.707107 + 1.22474i −0.0553849 + 0.0959294i −0.892389 0.451268i \(-0.850972\pi\)
0.837004 + 0.547197i \(0.184305\pi\)
\(164\) 0 0
\(165\) −11.0573 + 2.44155i −0.860811 + 0.190074i
\(166\) 0 0
\(167\) −8.26343 −0.639443 −0.319722 0.947511i \(-0.603589\pi\)
−0.319722 + 0.947511i \(0.603589\pi\)
\(168\) 0 0
\(169\) 21.1421 1.62632
\(170\) 0 0
\(171\) 1.71141 + 2.96425i 0.130875 + 0.226682i
\(172\) 0 0
\(173\) −2.92156 + 5.06030i −0.222122 + 0.384727i −0.955452 0.295146i \(-0.904632\pi\)
0.733330 + 0.679873i \(0.237965\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.70711 6.42090i 0.278643 0.482624i
\(178\) 0 0
\(179\) −7.82843 13.5592i −0.585124 1.01346i −0.994860 0.101260i \(-0.967712\pi\)
0.409736 0.912204i \(-0.365621\pi\)
\(180\) 0 0
\(181\) 3.19278i 0.237318i −0.992935 0.118659i \(-0.962141\pi\)
0.992935 0.118659i \(-0.0378595\pi\)
\(182\) 0 0
\(183\) 4.47214i 0.330590i
\(184\) 0 0
\(185\) 10.9269 6.30864i 0.803361 0.463821i
\(186\) 0 0
\(187\) 5.41812 + 5.92288i 0.396212 + 0.433124i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.65685 9.79796i 0.409316 0.708955i −0.585498 0.810674i \(-0.699101\pi\)
0.994813 + 0.101719i \(0.0324342\pi\)
\(192\) 0 0
\(193\) 5.47723 3.16228i 0.394259 0.227626i −0.289745 0.957104i \(-0.593570\pi\)
0.684004 + 0.729478i \(0.260237\pi\)
\(194\) 0 0
\(195\) −19.9497 −1.42863
\(196\) 0 0
\(197\) 2.61972i 0.186647i 0.995636 + 0.0933235i \(0.0297491\pi\)
−0.995636 + 0.0933235i \(0.970251\pi\)
\(198\) 0 0
\(199\) −17.8297 + 10.2940i −1.26392 + 0.729722i −0.973830 0.227279i \(-0.927017\pi\)
−0.290085 + 0.957001i \(0.593684\pi\)
\(200\) 0 0
\(201\) −17.7160 10.2283i −1.24959 0.721451i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 14.8274 + 8.56062i 1.03559 + 0.597900i
\(206\) 0 0
\(207\) 0.878680 + 1.52192i 0.0610725 + 0.105781i
\(208\) 0 0
\(209\) −8.26343 + 26.1313i −0.571593 + 1.80754i
\(210\) 0 0
\(211\) 21.5934i 1.48655i 0.668986 + 0.743275i \(0.266729\pi\)
−0.668986 + 0.743275i \(0.733271\pi\)
\(212\) 0 0
\(213\) −6.01255 + 3.47135i −0.411973 + 0.237853i
\(214\) 0 0
\(215\) −1.71141 + 2.96425i −0.116717 + 0.202160i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −17.0962 9.87048i −1.15525 0.666985i
\(220\) 0 0
\(221\) 7.07107 + 12.2474i 0.475651 + 0.823853i
\(222\) 0 0
\(223\) 19.2430i 1.28860i −0.764771 0.644302i \(-0.777148\pi\)
0.764771 0.644302i \(-0.222852\pi\)
\(224\) 0 0
\(225\) −0.656854 −0.0437903
\(226\) 0 0
\(227\) −6.55202 11.3484i −0.434873 0.753222i 0.562413 0.826857i \(-0.309873\pi\)
−0.997285 + 0.0736352i \(0.976540\pi\)
\(228\) 0 0
\(229\) 7.84020 + 4.52654i 0.518095 + 0.299122i 0.736155 0.676813i \(-0.236639\pi\)
−0.218060 + 0.975935i \(0.569973\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.8421 + 14.3426i 1.62746 + 0.939616i 0.984847 + 0.173428i \(0.0554844\pi\)
0.642616 + 0.766188i \(0.277849\pi\)
\(234\) 0 0
\(235\) 4.53553 + 7.85578i 0.295866 + 0.512454i
\(236\) 0 0
\(237\) 24.7903 1.61030
\(238\) 0 0
\(239\) 3.70484i 0.239646i 0.992795 + 0.119823i \(0.0382327\pi\)
−0.992795 + 0.119823i \(0.961767\pi\)
\(240\) 0 0
\(241\) −2.92156 5.06030i −0.188194 0.325962i 0.756454 0.654047i \(-0.226930\pi\)
−0.944648 + 0.328085i \(0.893597\pi\)
\(242\) 0 0
\(243\) −3.70241 2.13759i −0.237510 0.137126i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −24.1421 + 41.8154i −1.53613 + 2.66065i
\(248\) 0 0
\(249\) 7.74597 4.47214i 0.490881 0.283410i
\(250\) 0 0
\(251\) 4.46088i 0.281569i 0.990040 + 0.140784i \(0.0449624\pi\)
−0.990040 + 0.140784i \(0.955038\pi\)
\(252\) 0 0
\(253\) −4.24264 + 13.4164i −0.266733 + 0.843482i
\(254\) 0 0
\(255\) −4.13171 7.15634i −0.258738 0.448147i
\(256\) 0 0
\(257\) −7.67937 4.43369i −0.479026 0.276566i 0.240984 0.970529i \(-0.422530\pi\)
−0.720011 + 0.693963i \(0.755863\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.60424 0.926210i −0.0993001 0.0573309i
\(262\) 0 0
\(263\) 23.2379 13.4164i 1.43291 0.827291i 0.435568 0.900156i \(-0.356547\pi\)
0.997342 + 0.0728645i \(0.0232141\pi\)
\(264\) 0 0
\(265\) 13.0656i 0.802615i
\(266\) 0 0
\(267\) −8.24264 −0.504441
\(268\) 0 0
\(269\) −19.9319 + 11.5077i −1.21527 + 0.701637i −0.963903 0.266255i \(-0.914214\pi\)
−0.251368 + 0.967892i \(0.580880\pi\)
\(270\) 0 0
\(271\) −4.84061 + 8.38417i −0.294046 + 0.509302i −0.974762 0.223245i \(-0.928335\pi\)
0.680717 + 0.732547i \(0.261668\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.54996 3.88068i −0.214071 0.234014i
\(276\) 0 0
\(277\) 8.68571 5.01470i 0.521874 0.301304i −0.215827 0.976432i \(-0.569245\pi\)
0.737701 + 0.675128i \(0.235911\pi\)
\(278\) 0 0
\(279\) 3.37849i 0.202265i
\(280\) 0 0
\(281\) 32.3901i 1.93223i −0.258112 0.966115i \(-0.583100\pi\)
0.258112 0.966115i \(-0.416900\pi\)
\(282\) 0 0
\(283\) 13.3977 + 23.2054i 0.796409 + 1.37942i 0.921941 + 0.387331i \(0.126603\pi\)
−0.125532 + 0.992090i \(0.540064\pi\)
\(284\) 0 0
\(285\) 14.1066 24.4333i 0.835600 1.44730i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.57107 9.64937i 0.327710 0.567610i
\(290\) 0 0
\(291\) −4.94975 8.57321i −0.290159 0.502571i
\(292\) 0 0
\(293\) 2.42030 0.141396 0.0706978 0.997498i \(-0.477477\pi\)
0.0706978 + 0.997498i \(0.477477\pi\)
\(294\) 0 0
\(295\) −7.41421 −0.431672
\(296\) 0 0
\(297\) −3.41675 15.4738i −0.198260 0.897881i
\(298\) 0 0
\(299\) −12.3951 + 21.4690i −0.716830 + 1.24159i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −17.0962 9.87048i −0.982150 0.567044i
\(304\) 0 0
\(305\) −3.87298 + 2.23607i −0.221766 + 0.128037i
\(306\) 0 0
\(307\) 13.1040 0.747887 0.373943 0.927452i \(-0.378005\pi\)
0.373943 + 0.927452i \(0.378005\pi\)
\(308\) 0 0
\(309\) 16.7279 0.951618
\(310\) 0 0
\(311\) −6.28710 + 3.62986i −0.356509 + 0.205830i −0.667548 0.744567i \(-0.732656\pi\)
0.311039 + 0.950397i \(0.399323\pi\)
\(312\) 0 0
\(313\) 20.0927 + 11.6006i 1.13571 + 0.655702i 0.945365 0.326015i \(-0.105706\pi\)
0.190345 + 0.981717i \(0.439039\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.4853 26.8213i 0.869740 1.50643i 0.00747772 0.999972i \(-0.497620\pi\)
0.862262 0.506462i \(-0.169047\pi\)
\(318\) 0 0
\(319\) −3.19808 14.4835i −0.179058 0.810921i
\(320\) 0 0
\(321\) −11.6863 −0.652263
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 0 0
\(325\) −4.63298 8.02455i −0.256991 0.445122i
\(326\) 0 0
\(327\) 12.3951 21.4690i 0.685453 1.18724i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.00000 + 5.19615i −0.164895 + 0.285606i −0.936618 0.350352i \(-0.886062\pi\)
0.771723 + 0.635959i \(0.219395\pi\)
\(332\) 0 0
\(333\) −1.41421 2.44949i −0.0774984 0.134231i
\(334\) 0 0
\(335\) 20.4567i 1.11767i
\(336\) 0 0
\(337\) 22.3607i 1.21806i 0.793146 + 0.609032i \(0.208442\pi\)
−0.793146 + 0.609032i \(0.791558\pi\)
\(338\) 0 0
\(339\) 28.2546 16.3128i 1.53458 0.885990i
\(340\) 0 0
\(341\) 19.9601 18.2590i 1.08090 0.988782i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 7.24264 12.5446i 0.389931 0.675380i
\(346\) 0 0
\(347\) 22.5734 13.0328i 1.21180 0.699635i 0.248652 0.968593i \(-0.420013\pi\)
0.963152 + 0.268958i \(0.0866792\pi\)
\(348\) 0 0
\(349\) 20.3649 1.09011 0.545055 0.838400i \(-0.316509\pi\)
0.545055 + 0.838400i \(0.316509\pi\)
\(350\) 0 0
\(351\) 27.9179i 1.49015i
\(352\) 0 0
\(353\) −7.22448 + 4.17106i −0.384520 + 0.222003i −0.679783 0.733413i \(-0.737926\pi\)
0.295263 + 0.955416i \(0.404593\pi\)
\(354\) 0 0
\(355\) 6.01255 + 3.47135i 0.319113 + 0.184240i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.2591 18.0475i −1.64979 0.952508i −0.977153 0.212539i \(-0.931827\pi\)
−0.672640 0.739970i \(-0.734840\pi\)
\(360\) 0 0
\(361\) −24.6421 42.6814i −1.29695 2.24639i
\(362\) 0 0
\(363\) −11.6863 + 16.6298i −0.613369 + 0.872840i
\(364\) 0 0
\(365\) 19.7410i 1.03329i
\(366\) 0 0
\(367\) −6.83621 + 3.94689i −0.356847 + 0.206026i −0.667697 0.744433i \(-0.732720\pi\)
0.310850 + 0.950459i \(0.399386\pi\)
\(368\) 0 0
\(369\) 1.91904 3.32388i 0.0999013 0.173034i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.9545 6.32456i −0.567200 0.327473i 0.188830 0.982010i \(-0.439530\pi\)
−0.756030 + 0.654537i \(0.772864\pi\)
\(374\) 0 0
\(375\) 11.2426 + 19.4728i 0.580567 + 1.00557i
\(376\) 0 0
\(377\) 26.1313i 1.34583i
\(378\) 0 0
\(379\) 11.2721 0.579008 0.289504 0.957177i \(-0.406510\pi\)
0.289504 + 0.957177i \(0.406510\pi\)
\(380\) 0 0
\(381\) −5.84313 10.1206i −0.299352 0.518494i
\(382\) 0 0
\(383\) −22.8383 13.1857i −1.16698 0.673757i −0.214014 0.976831i \(-0.568654\pi\)
−0.952967 + 0.303074i \(0.901987\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.664499 + 0.383649i 0.0337784 + 0.0195020i
\(388\) 0 0
\(389\) −0.221825 0.384213i −0.0112470 0.0194804i 0.860347 0.509709i \(-0.170247\pi\)
−0.871594 + 0.490228i \(0.836913\pi\)
\(390\) 0 0
\(391\) −10.2685 −0.519299
\(392\) 0 0
\(393\) 36.8622i 1.85945i
\(394\) 0 0
\(395\) −12.3951 21.4690i −0.623667 1.08022i
\(396\) 0 0
\(397\) −31.5687 18.2262i −1.58439 0.914748i −0.994207 0.107478i \(-0.965722\pi\)
−0.590182 0.807270i \(-0.700944\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.7782 + 30.7927i −0.887800 + 1.53771i −0.0453289 + 0.998972i \(0.514434\pi\)
−0.842471 + 0.538742i \(0.818900\pi\)
\(402\) 0 0
\(403\) 41.2738 23.8295i 2.05600 1.18703i
\(404\) 0 0
\(405\) 18.6089i 0.924684i
\(406\) 0 0
\(407\) 6.82843 21.5934i 0.338473 1.07034i
\(408\) 0 0
\(409\) −7.76217 13.4445i −0.383815 0.664786i 0.607789 0.794098i \(-0.292056\pi\)
−0.991604 + 0.129312i \(0.958723\pi\)
\(410\) 0 0
\(411\) −14.1273 8.15640i −0.696849 0.402326i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −7.74597 4.47214i −0.380235 0.219529i
\(416\) 0 0
\(417\) −5.47723 + 3.16228i −0.268221 + 0.154857i
\(418\) 0 0
\(419\) 15.3617i 0.750470i −0.926930 0.375235i \(-0.877562\pi\)
0.926930 0.375235i \(-0.122438\pi\)
\(420\) 0 0
\(421\) −4.44365 −0.216570 −0.108285 0.994120i \(-0.534536\pi\)
−0.108285 + 0.994120i \(0.534536\pi\)
\(422\) 0 0
\(423\) 1.76104 1.01673i 0.0856245 0.0494353i
\(424\) 0 0
\(425\) 1.91904 3.32388i 0.0930872 0.161232i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −26.4213 + 24.1696i −1.27563 + 1.16692i
\(430\) 0 0
\(431\) 32.5881 18.8148i 1.56971 0.906275i 0.573512 0.819197i \(-0.305580\pi\)
0.996202 0.0870780i \(-0.0277529\pi\)
\(432\) 0 0
\(433\) 11.0322i 0.530172i −0.964225 0.265086i \(-0.914600\pi\)
0.964225 0.265086i \(-0.0854003\pi\)
\(434\) 0 0
\(435\) 15.2688i 0.732084i
\(436\) 0 0
\(437\) −17.5294 30.3618i −0.838544 1.45240i
\(438\) 0 0
\(439\) 10.9774 19.0134i 0.523921 0.907458i −0.475691 0.879612i \(-0.657802\pi\)
0.999612 0.0278455i \(-0.00886464\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.3137 21.3280i 0.585042 1.01332i −0.409828 0.912163i \(-0.634411\pi\)
0.994870 0.101160i \(-0.0322553\pi\)
\(444\) 0 0
\(445\) 4.12132 + 7.13834i 0.195369 + 0.338390i
\(446\) 0 0
\(447\) −11.6863 −0.552741
\(448\) 0 0
\(449\) −17.4142 −0.821828 −0.410914 0.911674i \(-0.634790\pi\)
−0.410914 + 0.911674i \(0.634790\pi\)
\(450\) 0 0
\(451\) 30.0088 6.62621i 1.41306 0.312016i
\(452\) 0 0
\(453\) 4.13171 7.15634i 0.194125 0.336234i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.53748 + 2.61972i 0.212254 + 0.122545i 0.602359 0.798226i \(-0.294228\pi\)
−0.390104 + 0.920771i \(0.627561\pi\)
\(458\) 0 0
\(459\) 10.0147 5.78199i 0.467447 0.269880i
\(460\) 0 0
\(461\) −9.26595 −0.431558 −0.215779 0.976442i \(-0.569229\pi\)
−0.215779 + 0.976442i \(0.569229\pi\)
\(462\) 0 0
\(463\) 0.928932 0.0431711 0.0215856 0.999767i \(-0.493129\pi\)
0.0215856 + 0.999767i \(0.493129\pi\)
\(464\) 0 0
\(465\) −24.1168 + 13.9239i −1.11839 + 0.645703i
\(466\) 0 0
\(467\) 16.1158 + 9.30445i 0.745750 + 0.430559i 0.824156 0.566363i \(-0.191650\pi\)
−0.0784065 + 0.996921i \(0.524983\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −10.1924 + 17.6537i −0.469640 + 0.813441i
\(472\) 0 0
\(473\) 1.32469 + 5.99927i 0.0609093 + 0.275847i
\(474\) 0 0
\(475\) 13.1040 0.601254
\(476\) 0 0
\(477\) −2.92893 −0.134107
\(478\) 0 0
\(479\) 2.71393 + 4.70067i 0.124003 + 0.214779i 0.921343 0.388751i \(-0.127093\pi\)
−0.797340 + 0.603531i \(0.793760\pi\)
\(480\) 0 0
\(481\) 19.9497 34.5539i 0.909627 1.57552i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.94975 + 8.57321i −0.224756 + 0.389290i
\(486\) 0 0
\(487\) −3.63604 6.29780i −0.164765 0.285381i 0.771807 0.635857i \(-0.219353\pi\)
−0.936572 + 0.350476i \(0.886020\pi\)
\(488\) 0 0
\(489\) 2.61313i 0.118170i
\(490\) 0 0
\(491\) 4.47214i 0.201825i 0.994895 + 0.100912i \(0.0321762\pi\)
−0.994895 + 0.100912i \(0.967824\pi\)
\(492\) 0 0
\(493\) 9.37379 5.41196i 0.422174 0.243742i
\(494\) 0 0
\(495\) 1.87298 1.71336i 0.0841841 0.0770098i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.9497 25.8937i 0.669243 1.15916i −0.308874 0.951103i \(-0.599952\pi\)
0.978116 0.208059i \(-0.0667146\pi\)
\(500\) 0 0
\(501\) 13.2232 7.63441i 0.590769 0.341080i
\(502\) 0 0
\(503\) −35.0588 −1.56319 −0.781596 0.623784i \(-0.785594\pi\)
−0.781596 + 0.623784i \(0.785594\pi\)
\(504\) 0 0
\(505\) 19.7410i 0.878461i
\(506\) 0 0
\(507\) −33.8318 + 19.5328i −1.50252 + 0.867481i
\(508\) 0 0
\(509\) −23.1323 13.3555i −1.02532 0.591970i −0.109681 0.993967i \(-0.534983\pi\)
−0.915641 + 0.401997i \(0.868316\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 34.1924 + 19.7410i 1.50963 + 0.871585i
\(514\) 0 0
\(515\) −8.36396 14.4868i −0.368560 0.638365i
\(516\) 0 0
\(517\) 15.5243 + 4.90923i 0.682760 + 0.215908i
\(518\) 0 0
\(519\) 10.7967i 0.473922i
\(520\) 0 0
\(521\) −37.5147 + 21.6591i −1.64355 + 0.948903i −0.663990 + 0.747742i \(0.731138\pi\)
−0.979558 + 0.201161i \(0.935529\pi\)
\(522\) 0 0
\(523\) 4.42535 7.66493i 0.193507 0.335164i −0.752903 0.658131i \(-0.771347\pi\)
0.946410 + 0.322968i \(0.104680\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.0962 + 9.87048i 0.744721 + 0.429965i
\(528\) 0 0
\(529\) 2.50000 + 4.33013i 0.108696 + 0.188266i
\(530\) 0 0
\(531\) 1.66205i 0.0721268i
\(532\) 0 0
\(533\) 54.1421 2.34516
\(534\) 0 0
\(535\) 5.84313 + 10.1206i 0.252620 + 0.437551i
\(536\) 0 0
\(537\) 25.0542 + 14.4650i 1.08117 + 0.624213i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10.0147 5.78199i −0.430566 0.248587i 0.269022 0.963134i \(-0.413300\pi\)
−0.699588 + 0.714547i \(0.746633\pi\)
\(542\) 0 0
\(543\) 2.94975 + 5.10911i 0.126586 + 0.219253i
\(544\) 0 0
\(545\) −24.7903 −1.06190
\(546\) 0 0
\(547\) 14.1837i 0.606451i 0.952919 + 0.303226i \(0.0980636\pi\)
−0.952919 + 0.303226i \(0.901936\pi\)
\(548\) 0 0
\(549\) 0.501261 + 0.868210i 0.0213933 + 0.0370543i
\(550\) 0 0
\(551\) 32.0041 + 18.4776i 1.36342 + 0.787172i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −11.6569 + 20.1903i −0.494806 + 0.857029i
\(556\) 0 0
\(557\) −23.2379 + 13.4164i −0.984621 + 0.568471i −0.903662 0.428246i \(-0.859132\pi\)
−0.0809592 + 0.996717i \(0.525798\pi\)
\(558\) 0 0
\(559\) 10.8239i 0.457803i
\(560\) 0 0
\(561\) −14.1421 4.47214i −0.597081 0.188814i
\(562\) 0 0
\(563\) −6.55202 11.3484i −0.276135 0.478279i 0.694286 0.719699i \(-0.255720\pi\)
−0.970421 + 0.241420i \(0.922387\pi\)
\(564\) 0 0
\(565\) −28.2546 16.3128i −1.18868 0.686285i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −25.7819 14.8852i −1.08083 0.624019i −0.149712 0.988730i \(-0.547835\pi\)
−0.931121 + 0.364711i \(0.881168\pi\)
\(570\) 0 0
\(571\) −2.26874 + 1.30986i −0.0949439 + 0.0548159i −0.546720 0.837315i \(-0.684124\pi\)
0.451776 + 0.892131i \(0.350791\pi\)
\(572\) 0 0
\(573\) 20.9050i 0.873319i
\(574\) 0 0
\(575\) 6.72792 0.280574
\(576\) 0 0
\(577\) 18.7005 10.7967i 0.778511 0.449474i −0.0573913 0.998352i \(-0.518278\pi\)
0.835902 + 0.548878i \(0.184945\pi\)
\(578\) 0 0
\(579\) −5.84313 + 10.1206i −0.242832 + 0.420598i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −15.8294 17.3041i −0.655586 0.716661i
\(584\) 0 0
\(585\) 3.87298 2.23607i 0.160128 0.0924500i
\(586\) 0 0
\(587\) 14.2793i 0.589371i −0.955594 0.294686i \(-0.904785\pi\)
0.955594 0.294686i \(-0.0952149\pi\)
\(588\) 0 0
\(589\) 67.3999i 2.77716i
\(590\) 0 0
\(591\) −2.42030 4.19209i −0.0995579 0.172439i
\(592\) 0 0
\(593\) −9.76721 + 16.9173i −0.401091 + 0.694711i −0.993858 0.110664i \(-0.964702\pi\)
0.592767 + 0.805374i \(0.298036\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 19.0208 32.9450i 0.778470 1.34835i
\(598\) 0 0
\(599\) 0.807612 + 1.39882i 0.0329981 + 0.0571544i 0.882053 0.471150i \(-0.156161\pi\)
−0.849055 + 0.528305i \(0.822828\pi\)
\(600\) 0 0
\(601\) −4.42535 −0.180514 −0.0902568 0.995919i \(-0.528769\pi\)
−0.0902568 + 0.995919i \(0.528769\pi\)
\(602\) 0 0
\(603\) 4.58579 0.186748
\(604\) 0 0
\(605\) 20.2450 + 1.80568i 0.823076 + 0.0734112i
\(606\) 0 0
\(607\) 9.97484 17.2769i 0.404866 0.701249i −0.589440 0.807812i \(-0.700651\pi\)
0.994306 + 0.106563i \(0.0339847\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24.8421 + 14.3426i 1.00501 + 0.580240i
\(612\) 0 0
\(613\) 28.0506 16.1950i 1.13295 0.654111i 0.188278 0.982116i \(-0.439709\pi\)
0.944676 + 0.328004i \(0.106376\pi\)
\(614\) 0 0
\(615\) −31.6359 −1.27568
\(616\) 0 0
\(617\) −22.1421 −0.891409 −0.445704 0.895180i \(-0.647047\pi\)
−0.445704 + 0.895180i \(0.647047\pi\)
\(618\) 0 0
\(619\) 5.80462 3.35130i 0.233307 0.134700i −0.378790 0.925483i \(-0.623660\pi\)
0.612097 + 0.790783i \(0.290326\pi\)
\(620\) 0 0
\(621\) 17.5552 + 10.1355i 0.704464 + 0.406723i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.27817 12.6062i 0.291127 0.504247i
\(626\) 0 0
\(627\) −10.9189 49.4498i −0.436061 1.97484i
\(628\) 0 0
\(629\) 16.5269 0.658969
\(630\) 0 0
\(631\) −13.0294 −0.518694 −0.259347 0.965784i \(-0.583507\pi\)
−0.259347 + 0.965784i \(0.583507\pi\)
\(632\) 0 0
\(633\) −19.9497 34.5539i −0.792929 1.37339i
\(634\) 0 0
\(635\) −5.84313 + 10.1206i −0.231877 + 0.401623i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.778175 1.34784i 0.0307841 0.0533196i
\(640\) 0 0
\(641\) 3.58579 + 6.21076i 0.141630 + 0.245310i 0.928111 0.372305i \(-0.121432\pi\)
−0.786481 + 0.617615i \(0.788099\pi\)
\(642\) 0 0
\(643\) 37.3491i 1.47291i 0.676489 + 0.736453i \(0.263501\pi\)
−0.676489 + 0.736453i \(0.736499\pi\)
\(644\) 0 0
\(645\) 6.32456i 0.249029i
\(646\) 0 0
\(647\) 2.69841 1.55793i 0.106086 0.0612486i −0.446018 0.895024i \(-0.647158\pi\)
0.552104 + 0.833775i \(0.313825\pi\)
\(648\) 0 0
\(649\) −9.81935 + 8.98253i −0.385443 + 0.352595i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.6066 28.7635i 0.649867 1.12560i −0.333288 0.942825i \(-0.608158\pi\)
0.983154 0.182777i \(-0.0585086\pi\)
\(654\) 0 0
\(655\) −31.9236 + 18.4311i −1.24736 + 0.720163i
\(656\) 0 0
\(657\) 4.42535 0.172649
\(658\) 0 0
\(659\) 36.0949i 1.40606i 0.711161 + 0.703029i \(0.248170\pi\)
−0.711161 + 0.703029i \(0.751830\pi\)
\(660\) 0 0
\(661\) 15.5667 8.98743i 0.605474 0.349570i −0.165718 0.986173i \(-0.552994\pi\)
0.771192 + 0.636603i \(0.219661\pi\)
\(662\) 0 0
\(663\) −22.6303 13.0656i −0.878889 0.507427i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.4317 + 9.48683i 0.636237 + 0.367332i
\(668\) 0 0
\(669\) 17.7782 + 30.7927i 0.687344 + 1.19051i
\(670\) 0 0
\(671\) −2.42030 + 7.65367i −0.0934347 + 0.295467i
\(672\) 0 0
\(673\) 5.55726i 0.214217i −0.994247 0.107108i \(-0.965841\pi\)
0.994247 0.107108i \(-0.0341592\pi\)
\(674\) 0 0
\(675\) −6.56165 + 3.78837i −0.252558 + 0.145815i
\(676\) 0 0
\(677\) 12.8964 22.3372i 0.495649 0.858489i −0.504338 0.863506i \(-0.668264\pi\)
0.999987 + 0.00501668i \(0.00159687\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 20.9692 + 12.1065i 0.803540 + 0.463924i
\(682\) 0 0
\(683\) −8.00000 13.8564i −0.306111 0.530201i 0.671397 0.741098i \(-0.265695\pi\)
−0.977508 + 0.210898i \(0.932361\pi\)
\(684\) 0 0
\(685\) 16.3128i 0.623280i
\(686\) 0 0
\(687\) −16.7279 −0.638210
\(688\) 0 0
\(689\) −20.6586 35.7817i −0.787029 1.36317i
\(690\) 0 0
\(691\) 7.51854 + 4.34083i 0.286019 + 0.165133i 0.636145 0.771569i \(-0.280528\pi\)
−0.350126 + 0.936703i \(0.613861\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.47723 + 3.16228i 0.207763 + 0.119952i
\(696\) 0 0
\(697\) 11.2132 + 19.4218i 0.424730 + 0.735655i
\(698\) 0 0
\(699\) −53.0034 −2.00477
\(700\) 0 0
\(701\) 28.6852i 1.08343i 0.840563 + 0.541713i \(0.182224\pi\)
−0.840563 + 0.541713i \(0.817776\pi\)
\(702\) 0 0
\(703\) 28.2131 + 48.8665i 1.06408 + 1.84304i
\(704\) 0 0
\(705\) −14.5156 8.38057i −0.546688 0.315631i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −23.9203 + 41.4312i −0.898346 + 1.55598i −0.0687382 + 0.997635i \(0.521897\pi\)
−0.829608 + 0.558346i \(0.811436\pi\)
\(710\) 0 0
\(711\) −4.81273 + 2.77863i −0.180491 + 0.104207i
\(712\) 0 0
\(713\) 34.6047i 1.29596i
\(714\) 0 0
\(715\) 34.1421 + 10.7967i 1.27684 + 0.403773i
\(716\) 0 0
\(717\) −3.42282 5.92851i −0.127828 0.221404i
\(718\) 0 0
\(719\) −19.3828 11.1907i −0.722857 0.417342i 0.0929463 0.995671i \(-0.470372\pi\)
−0.815803 + 0.578329i \(0.803705\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.35021 + 5.39835i 0.347738 + 0.200767i
\(724\) 0 0
\(725\) −6.14172 + 3.54593i −0.228098 + 0.131692i
\(726\) 0 0
\(727\) 22.7528i 0.843853i −0.906630 0.421927i \(-0.861354\pi\)
0.906630 0.421927i \(-0.138646\pi\)
\(728\) 0 0
\(729\) −22.3137 −0.826434
\(730\) 0 0
\(731\) −3.88275 + 2.24171i −0.143609 + 0.0829126i
\(732\) 0 0
\(733\) 18.0306 31.2300i 0.665977 1.15351i −0.313042 0.949739i \(-0.601348\pi\)
0.979019 0.203767i \(-0.0653184\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.7838 + 27.0927i 0.912924 + 0.997973i
\(738\) 0 0
\(739\) 3.20848 1.85242i 0.118026 0.0681423i −0.439825 0.898084i \(-0.644959\pi\)
0.557851 + 0.829941i \(0.311626\pi\)
\(740\) 0 0
\(741\) 89.2177i 3.27749i
\(742\) 0 0
\(743\) 25.2982i 0.928102i −0.885809 0.464051i \(-0.846395\pi\)
0.885809 0.464051i \(-0.153605\pi\)
\(744\) 0 0
\(745\) 5.84313 + 10.1206i 0.214076 + 0.370790i
\(746\) 0 0
\(747\) −1.00252 + 1.73642i −0.0366804 + 0.0635323i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.9497 36.2860i 0.764467 1.32410i −0.176061 0.984379i \(-0.556336\pi\)
0.940528 0.339717i \(-0.110331\pi\)
\(752\) 0 0
\(753\) −4.12132 7.13834i −0.150189 0.260135i
\(754\) 0 0
\(755\) −8.26343 −0.300737
\(756\) 0 0
\(757\) 29.8995 1.08672 0.543358 0.839501i \(-0.317153\pi\)
0.543358 + 0.839501i \(0.317153\pi\)
\(758\) 0 0
\(759\) −5.60604 25.3887i −0.203487 0.921552i
\(760\) 0 0
\(761\) −8.05580 + 13.9531i −0.292023 + 0.505798i −0.974288 0.225307i \(-0.927662\pi\)
0.682265 + 0.731105i \(0.260995\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.60424 + 0.926210i 0.0580015 + 0.0334872i
\(766\) 0 0
\(767\) −20.3047 + 11.7229i −0.733159 + 0.423289i
\(768\) 0 0
\(769\) −24.3750 −0.878986 −0.439493 0.898246i \(-0.644842\pi\)
−0.439493 + 0.898246i \(0.644842\pi\)
\(770\) 0 0
\(771\) 16.3848 0.590083
\(772\) 0 0
\(773\) 12.7545 7.36384i 0.458749 0.264859i −0.252769 0.967527i \(-0.581341\pi\)
0.711518 + 0.702668i \(0.248008\pi\)
\(774\) 0 0
\(775\) −11.2014 6.46716i −0.402368 0.232307i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −38.2843 + 66.3103i −1.37168 + 2.37581i
\(780\) 0 0
\(781\) 12.1686 2.68694i 0.435428 0.0961462i
\(782\) 0 0
\(783\) −21.3675 −0.763611
\(784\) 0 0
\(785\) 20.3848 0.727564
\(786\) 0 0
\(787\) 9.68121 + 16.7683i 0.345098 + 0.597727i 0.985372 0.170420i \(-0.0545124\pi\)
−0.640274 + 0.768147i \(0.721179\pi\)
\(788\) 0 0
\(789\) −24.7903 + 42.9380i −0.882558 + 1.52863i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.07107 + 12.2474i −0.251101 + 0.434920i
\(794\) 0 0
\(795\) 12.0711 + 20.9077i 0.428117 + 0.741520i
\(796\) 0 0
\(797\) 31.5976i 1.11924i 0.828748 + 0.559622i \(0.189054\pi\)
−0.828748 + 0.559622i \(0.810946\pi\)
\(798\) 0 0
\(799\) 11.8818i 0.420348i
\(800\) 0 0
\(801\) 1.60021 0.923880i 0.0565405 0.0326437i
\(802\) 0 0
\(803\) 23.9167 + 26.1448i 0.844003 + 0.922632i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 21.2635 36.8294i 0.748509 1.29646i
\(808\) 0 0
\(809\) −35.1321 + 20.2835i −1.23518 + 0.713131i −0.968105 0.250545i \(-0.919390\pi\)
−0.267074 + 0.963676i \(0.586057\pi\)
\(810\) 0 0
\(811\) 37.0638 1.30149 0.650743 0.759298i \(-0.274457\pi\)
0.650743 + 0.759298i \(0.274457\pi\)
\(812\) 0 0
\(813\) 17.8885i 0.627379i
\(814\) 0 0
\(815\) −2.26303 + 1.30656i −0.0792706 + 0.0457669i
\(816\) 0 0
\(817\) −13.2565 7.65367i −0.463788 0.267768i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −47.4155 27.3754i −1.65481 0.955407i −0.975053 0.221974i \(-0.928750\pi\)
−0.679761 0.733433i \(-0.737917\pi\)
\(822\) 0 0
\(823\) −3.82843 6.63103i −0.133451 0.231143i 0.791554 0.611099i \(-0.209272\pi\)
−0.925005 + 0.379956i \(0.875939\pi\)
\(824\) 0 0
\(825\) 9.26595 + 2.93015i 0.322599 + 0.102015i
\(826\) 0 0
\(827\) 35.0098i 1.21741i −0.793397 0.608705i \(-0.791689\pi\)
0.793397 0.608705i \(-0.208311\pi\)
\(828\) 0 0
\(829\) −45.2412 + 26.1200i −1.57129 + 0.907185i −0.575279 + 0.817957i \(0.695107\pi\)
−0.996011 + 0.0892277i \(0.971560\pi\)
\(830\) 0 0
\(831\) −9.26595 + 16.0491i −0.321432 + 0.556737i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −13.2232 7.63441i −0.457607 0.264200i
\(836\) 0 0
\(837\) −19.4853 33.7495i −0.673510 1.16655i
\(838\) 0 0
\(839\) 18.1606i 0.626972i −0.949593 0.313486i \(-0.898503\pi\)
0.949593 0.313486i \(-0.101497\pi\)
\(840\) 0 0
\(841\) 9.00000 0.310345
\(842\) 0 0
\(843\) 29.9245 + 51.8308i 1.03066 + 1.78515i
\(844\) 0 0
\(845\) 33.8318 + 19.5328i 1.16385 + 0.671948i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −42.8781 24.7557i −1.47157 0.849612i
\(850\) 0 0
\(851\) 14.4853 + 25.0892i 0.496549 + 0.860048i
\(852\) 0 0
\(853\) 47.1603 1.61474 0.807369 0.590047i \(-0.200891\pi\)
0.807369 + 0.590047i \(0.200891\pi\)
\(854\) 0 0
\(855\) 6.32456i 0.216295i
\(856\) 0 0
\(857\) −13.8989 24.0736i −0.474778 0.822340i 0.524804 0.851223i \(-0.324138\pi\)
−0.999583 + 0.0288826i \(0.990805\pi\)
\(858\) 0 0
\(859\) 27.0427 + 15.6131i 0.922684 + 0.532712i 0.884490 0.466558i \(-0.154506\pi\)
0.0381938 + 0.999270i \(0.487840\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.00000 3.46410i 0.0680808 0.117919i −0.829976 0.557800i \(-0.811646\pi\)
0.898056 + 0.439880i \(0.144979\pi\)
\(864\) 0 0
\(865\) −9.35021 + 5.39835i −0.317917 + 0.183549i
\(866\) 0 0
\(867\) 20.5880i 0.699205i
\(868\) 0 0
\(869\) −42.4264 13.4164i −1.43922 0.455120i
\(870\) 0 0
\(871\) 32.3448 + 56.0229i 1.09596 + 1.89826i
\(872\) 0 0
\(873\) 1.92186 + 1.10959i 0.0650452 + 0.0375539i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 42.2136 + 24.3720i 1.42545 + 0.822984i 0.996757 0.0804657i \(-0.0256408\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(878\) 0 0
\(879\) −3.87298 + 2.23607i −0.130632 + 0.0754207i
\(880\) 0 0
\(881\) 28.3504i 0.955150i −0.878591 0.477575i \(-0.841516\pi\)
0.878591 0.477575i \(-0.158484\pi\)
\(882\) 0 0
\(883\) 34.2843 1.15376 0.576879 0.816830i \(-0.304270\pi\)
0.576879 + 0.816830i \(0.304270\pi\)
\(884\) 0 0
\(885\) 11.8643 6.84984i 0.398813 0.230255i
\(886\) 0 0
\(887\) 14.8154 25.6611i 0.497454 0.861616i −0.502542 0.864553i \(-0.667602\pi\)
0.999996 + 0.00293734i \(0.000934986\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 22.5452 + 24.6456i 0.755293 + 0.825657i
\(892\) 0 0
\(893\) −35.1321 + 20.2835i −1.17565 + 0.678762i
\(894\) 0 0
\(895\) 28.9301i 0.967026i
\(896\) 0 0
\(897\) 45.8065i 1.52943i
\(898\) 0 0
\(899\) −18.2383 31.5896i −0.608280 1.05357i
\(900\) 0 0
\(901\) 8.55706 14.8213i 0.285077 0.493768i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.94975 5.10911i 0.0980529 0.169833i
\(906\) 0 0
\(907\) 16.4645 + 28.5173i 0.546694 + 0.946901i 0.998498 + 0.0547842i \(0.0174471\pi\)
−0.451805 + 0.892117i \(0.649220\pi\)
\(908\) 0 0
\(909\) 4.42535 0.146779
\(910\) 0 0
\(911\) −9.69848 −0.321325 −0.160663 0.987009i \(-0.551363\pi\)
−0.160663 + 0.987009i \(0.551363\pi\)
\(912\) 0 0
\(913\) −15.6768 + 3.46158i −0.518828 + 0.114562i
\(914\) 0 0
\(915\) 4.13171 7.15634i 0.136590 0.236581i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −25.5066 14.7263i −0.841386 0.485775i 0.0163488 0.999866i \(-0.494796\pi\)
−0.857735 + 0.514092i \(0.828129\pi\)
\(920\) 0 0
\(921\) −20.9692 + 12.1065i −0.690957 + 0.398924i
\(922\) 0 0
\(923\) 21.9547 0.722649
\(924\) 0 0
\(925\) −10.8284 −0.356036
\(926\) 0 0
\(927\) −3.24752 + 1.87496i −0.106662 + 0.0615816i
\(928\) 0 0
\(929\) 13.3703 + 7.71933i 0.438664 + 0.253263i 0.703031 0.711159i \(-0.251830\pi\)
−0.264367 + 0.964422i \(0.585163\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 6.70711 11.6170i 0.219581 0.380325i
\(934\) 0 0
\(935\) 3.19808 + 14.4835i 0.104589 + 0.473662i
\(936\) 0 0
\(937\) 20.9522 0.684479 0.342239 0.939613i \(-0.388815\pi\)
0.342239 + 0.939613i \(0.388815\pi\)
\(938\) 0 0
\(939\) −42.8701 −1.39901
\(940\) 0 0
\(941\) 29.4233 + 50.9626i 0.959171 + 1.66133i 0.724521 + 0.689253i \(0.242061\pi\)
0.234650 + 0.972080i \(0.424605\pi\)
\(942\) 0 0
\(943\) −19.6561 + 34.0453i −0.640089 + 1.10867i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.51472 + 6.08767i −0.114213 + 0.197823i −0.917465 0.397817i \(-0.869768\pi\)
0.803252 + 0.595640i \(0.203101\pi\)
\(948\) 0 0
\(949\) 31.2132 + 54.0629i 1.01322 + 1.75495i
\(950\) 0 0
\(951\) 57.2261i 1.85568i
\(952\) 0 0
\(953\) 51.0459i 1.65354i −0.562541 0.826770i \(-0.690176\pi\)
0.562541 0.826770i \(-0.309824\pi\)
\(954\) 0 0
\(955\) 18.1043 10.4525i 0.585840 0.338235i
\(956\) 0 0
\(957\) 18.4986 + 20.2220i 0.597975 + 0.653683i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 17.7635 30.7672i 0.573015 0.992491i
\(962\) 0 0
\(963\) 2.26874 1.30986i 0.0731092 0.0422096i
\(964\) 0 0
\(965\) 11.6863 0.376194
\(966\) 0 0
\(967\) 8.17697i 0.262954i −0.991319 0.131477i \(-0.958028\pi\)
0.991319 0.131477i \(-0.0419719\pi\)
\(968\) 0 0
\(969\) 32.0041 18.4776i 1.02812 0.593586i
\(970\) 0 0
\(971\) −40.8483 23.5838i −1.31089 0.756840i −0.328642 0.944454i \(-0.606591\pi\)
−0.982243 + 0.187615i \(0.939924\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 14.8274 + 8.56062i 0.474858 + 0.274159i
\(976\) 0 0
\(977\) −12.6066 21.8353i −0.403321 0.698572i 0.590804 0.806815i \(-0.298811\pi\)
−0.994124 + 0.108243i \(0.965478\pi\)
\(978\) 0 0
\(979\) 14.1066 + 4.46088i 0.450848 + 0.142571i
\(980\) 0 0
\(981\) 5.55726i 0.177430i
\(982\) 0 0
\(983\) 11.4955 6.63693i 0.366650 0.211685i −0.305344 0.952242i \(-0.598771\pi\)
0.671994 + 0.740557i \(0.265438\pi\)
\(984\) 0 0
\(985\) −2.42030 + 4.19209i −0.0771173 + 0.133571i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.80622 3.92957i −0.216425 0.124953i
\(990\) 0 0
\(991\) −7.77817 13.4722i −0.247082 0.427958i 0.715633 0.698476i \(-0.246138\pi\)
−0.962715 + 0.270518i \(0.912805\pi\)
\(992\) 0 0
\(993\) 11.0866i 0.351821i
\(994\) 0 0
\(995\) −38.0416 −1.20600
\(996\) 0 0
\(997\) 16.0256 + 27.7572i 0.507536 + 0.879078i 0.999962 + 0.00872355i \(0.00277683\pi\)
−0.492426 + 0.870354i \(0.663890\pi\)
\(998\) 0 0
\(999\) −28.2546 16.3128i −0.893936 0.516114i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.q.d.901.2 16
7.2 even 3 2156.2.c.a.1077.2 yes 8
7.3 odd 6 inner 2156.2.q.d.2089.1 16
7.4 even 3 inner 2156.2.q.d.2089.7 16
7.5 odd 6 2156.2.c.a.1077.8 yes 8
7.6 odd 2 inner 2156.2.q.d.901.8 16
11.10 odd 2 inner 2156.2.q.d.901.1 16
77.10 even 6 inner 2156.2.q.d.2089.2 16
77.32 odd 6 inner 2156.2.q.d.2089.8 16
77.54 even 6 2156.2.c.a.1077.7 yes 8
77.65 odd 6 2156.2.c.a.1077.1 8
77.76 even 2 inner 2156.2.q.d.901.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2156.2.c.a.1077.1 8 77.65 odd 6
2156.2.c.a.1077.2 yes 8 7.2 even 3
2156.2.c.a.1077.7 yes 8 77.54 even 6
2156.2.c.a.1077.8 yes 8 7.5 odd 6
2156.2.q.d.901.1 16 11.10 odd 2 inner
2156.2.q.d.901.2 16 1.1 even 1 trivial
2156.2.q.d.901.7 16 77.76 even 2 inner
2156.2.q.d.901.8 16 7.6 odd 2 inner
2156.2.q.d.2089.1 16 7.3 odd 6 inner
2156.2.q.d.2089.2 16 77.10 even 6 inner
2156.2.q.d.2089.7 16 7.4 even 3 inner
2156.2.q.d.2089.8 16 77.32 odd 6 inner