Properties

Label 2156.2.q.d.901.5
Level $2156$
Weight $2$
Character 2156.901
Analytic conductor $17.216$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(901,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.721389578983833600000000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.5
Root \(-0.372250 - 1.20300i\) of defining polynomial
Character \(\chi\) \(=\) 2156.901
Dual form 2156.2.q.d.2089.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.662827 - 0.382683i) q^{3} +(-0.662827 - 0.382683i) q^{5} +(-1.20711 + 2.09077i) q^{9} +(-2.23861 + 2.44716i) q^{11} +2.42030 q^{13} -0.585786 q^{15} +(-2.92156 - 5.06030i) q^{17} +(1.71141 - 2.96425i) q^{19} +(2.12132 - 3.67423i) q^{23} +(-2.20711 - 3.82282i) q^{25} +4.14386i q^{27} -4.47214i q^{29} +(-1.05110 + 0.606854i) q^{31} +(-0.547324 + 2.47873i) q^{33} +(0.585786 - 1.01461i) q^{37} +(1.60424 - 0.926210i) q^{39} +10.6837 q^{41} -10.7967i q^{43} +(1.60021 - 0.923880i) q^{45} +(5.73800 + 3.31283i) q^{47} +(-3.87298 - 2.23607i) q^{51} +(3.53553 + 6.12372i) q^{53} +(2.42030 - 0.765367i) q^{55} -2.61972i q^{57} +(5.18889 - 2.99581i) q^{59} +(2.92156 - 5.06030i) q^{61} +(-1.60424 - 0.926210i) q^{65} +(-1.53553 - 2.65962i) q^{67} -3.24718i q^{69} +12.2426 q^{71} +(-4.63298 - 8.02455i) q^{73} +(-2.92586 - 1.68925i) q^{75} +(-11.6190 - 6.70820i) q^{79} +(-2.03553 - 3.52565i) q^{81} +11.6863 q^{83} +4.47214i q^{85} +(-1.71141 - 2.96425i) q^{87} +(0.274552 + 0.158513i) q^{89} +(-0.464466 + 0.804479i) q^{93} +(-2.26874 + 1.30986i) q^{95} +12.9343i q^{97} +(-2.41421 - 7.63441i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{9} + 8 q^{11} - 32 q^{15} - 24 q^{25} + 32 q^{37} + 32 q^{67} + 128 q^{71} + 24 q^{81} - 64 q^{93} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.662827 0.382683i 0.382683 0.220942i −0.296302 0.955094i \(-0.595753\pi\)
0.678985 + 0.734152i \(0.262420\pi\)
\(4\) 0 0
\(5\) −0.662827 0.382683i −0.296425 0.171141i 0.344411 0.938819i \(-0.388079\pi\)
−0.640836 + 0.767678i \(0.721412\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.20711 + 2.09077i −0.402369 + 0.696923i
\(10\) 0 0
\(11\) −2.23861 + 2.44716i −0.674967 + 0.737848i
\(12\) 0 0
\(13\) 2.42030 0.671271 0.335636 0.941992i \(-0.391049\pi\)
0.335636 + 0.941992i \(0.391049\pi\)
\(14\) 0 0
\(15\) −0.585786 −0.151249
\(16\) 0 0
\(17\) −2.92156 5.06030i −0.708583 1.22730i −0.965383 0.260837i \(-0.916001\pi\)
0.256799 0.966465i \(-0.417332\pi\)
\(18\) 0 0
\(19\) 1.71141 2.96425i 0.392625 0.680046i −0.600170 0.799872i \(-0.704900\pi\)
0.992795 + 0.119826i \(0.0382337\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.12132 3.67423i 0.442326 0.766131i −0.555536 0.831493i \(-0.687487\pi\)
0.997862 + 0.0653618i \(0.0208201\pi\)
\(24\) 0 0
\(25\) −2.20711 3.82282i −0.441421 0.764564i
\(26\) 0 0
\(27\) 4.14386i 0.797486i
\(28\) 0 0
\(29\) 4.47214i 0.830455i −0.909718 0.415227i \(-0.863702\pi\)
0.909718 0.415227i \(-0.136298\pi\)
\(30\) 0 0
\(31\) −1.05110 + 0.606854i −0.188784 + 0.108994i −0.591413 0.806369i \(-0.701430\pi\)
0.402629 + 0.915363i \(0.368096\pi\)
\(32\) 0 0
\(33\) −0.547324 + 2.47873i −0.0952769 + 0.431491i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.585786 1.01461i 0.0963027 0.166801i −0.813849 0.581077i \(-0.802632\pi\)
0.910152 + 0.414275i \(0.135965\pi\)
\(38\) 0 0
\(39\) 1.60424 0.926210i 0.256884 0.148312i
\(40\) 0 0
\(41\) 10.6837 1.66852 0.834259 0.551372i \(-0.185896\pi\)
0.834259 + 0.551372i \(0.185896\pi\)
\(42\) 0 0
\(43\) 10.7967i 1.64648i −0.567694 0.823240i \(-0.692164\pi\)
0.567694 0.823240i \(-0.307836\pi\)
\(44\) 0 0
\(45\) 1.60021 0.923880i 0.238545 0.137724i
\(46\) 0 0
\(47\) 5.73800 + 3.31283i 0.836973 + 0.483227i 0.856234 0.516588i \(-0.172798\pi\)
−0.0192611 + 0.999814i \(0.506131\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.87298 2.23607i −0.542326 0.313112i
\(52\) 0 0
\(53\) 3.53553 + 6.12372i 0.485643 + 0.841158i 0.999864 0.0164995i \(-0.00525220\pi\)
−0.514221 + 0.857658i \(0.671919\pi\)
\(54\) 0 0
\(55\) 2.42030 0.765367i 0.326354 0.103202i
\(56\) 0 0
\(57\) 2.61972i 0.346990i
\(58\) 0 0
\(59\) 5.18889 2.99581i 0.675536 0.390021i −0.122635 0.992452i \(-0.539134\pi\)
0.798171 + 0.602431i \(0.205801\pi\)
\(60\) 0 0
\(61\) 2.92156 5.06030i 0.374068 0.647905i −0.616119 0.787653i \(-0.711296\pi\)
0.990187 + 0.139748i \(0.0446294\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.60424 0.926210i −0.198982 0.114882i
\(66\) 0 0
\(67\) −1.53553 2.65962i −0.187595 0.324925i 0.756853 0.653586i \(-0.226736\pi\)
−0.944448 + 0.328661i \(0.893403\pi\)
\(68\) 0 0
\(69\) 3.24718i 0.390914i
\(70\) 0 0
\(71\) 12.2426 1.45293 0.726467 0.687201i \(-0.241161\pi\)
0.726467 + 0.687201i \(0.241161\pi\)
\(72\) 0 0
\(73\) −4.63298 8.02455i −0.542249 0.939203i −0.998775 0.0494923i \(-0.984240\pi\)
0.456526 0.889710i \(-0.349094\pi\)
\(74\) 0 0
\(75\) −2.92586 1.68925i −0.337849 0.195057i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.6190 6.70820i −1.30723 0.754732i −0.325600 0.945507i \(-0.605566\pi\)
−0.981634 + 0.190776i \(0.938900\pi\)
\(80\) 0 0
\(81\) −2.03553 3.52565i −0.226170 0.391739i
\(82\) 0 0
\(83\) 11.6863 1.28273 0.641367 0.767235i \(-0.278368\pi\)
0.641367 + 0.767235i \(0.278368\pi\)
\(84\) 0 0
\(85\) 4.47214i 0.485071i
\(86\) 0 0
\(87\) −1.71141 2.96425i −0.183483 0.317801i
\(88\) 0 0
\(89\) 0.274552 + 0.158513i 0.0291025 + 0.0168023i 0.514481 0.857502i \(-0.327985\pi\)
−0.485378 + 0.874304i \(0.661318\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.464466 + 0.804479i −0.0481629 + 0.0834206i
\(94\) 0 0
\(95\) −2.26874 + 1.30986i −0.232768 + 0.134389i
\(96\) 0 0
\(97\) 12.9343i 1.31328i 0.754204 + 0.656640i \(0.228023\pi\)
−0.754204 + 0.656640i \(0.771977\pi\)
\(98\) 0 0
\(99\) −2.41421 7.63441i −0.242638 0.767287i
\(100\) 0 0
\(101\) −4.63298 8.02455i −0.460998 0.798473i 0.538013 0.842937i \(-0.319175\pi\)
−0.999011 + 0.0444642i \(0.985842\pi\)
\(102\) 0 0
\(103\) −9.87579 5.70179i −0.973090 0.561814i −0.0729135 0.997338i \(-0.523230\pi\)
−0.900177 + 0.435524i \(0.856563\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.47723 3.16228i −0.529503 0.305709i 0.211311 0.977419i \(-0.432227\pi\)
−0.740814 + 0.671710i \(0.765560\pi\)
\(108\) 0 0
\(109\) −11.6190 + 6.70820i −1.11289 + 0.642529i −0.939577 0.342337i \(-0.888782\pi\)
−0.173316 + 0.984866i \(0.555448\pi\)
\(110\) 0 0
\(111\) 0.896683i 0.0851094i
\(112\) 0 0
\(113\) −6.34315 −0.596713 −0.298356 0.954455i \(-0.596438\pi\)
−0.298356 + 0.954455i \(0.596438\pi\)
\(114\) 0 0
\(115\) −2.81214 + 1.62359i −0.262233 + 0.151400i
\(116\) 0 0
\(117\) −2.92156 + 5.06030i −0.270099 + 0.467825i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.977226 10.9565i −0.0888387 0.996046i
\(122\) 0 0
\(123\) 7.08147 4.08849i 0.638514 0.368646i
\(124\) 0 0
\(125\) 7.20533i 0.644464i
\(126\) 0 0
\(127\) 6.32456i 0.561214i −0.959823 0.280607i \(-0.909464\pi\)
0.959823 0.280607i \(-0.0905357\pi\)
\(128\) 0 0
\(129\) −4.13171 7.15634i −0.363777 0.630081i
\(130\) 0 0
\(131\) −0.708890 + 1.22783i −0.0619360 + 0.107276i −0.895331 0.445402i \(-0.853061\pi\)
0.833395 + 0.552678i \(0.186394\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.58579 2.74666i 0.136483 0.236395i
\(136\) 0 0
\(137\) 1.58579 + 2.74666i 0.135483 + 0.234663i 0.925782 0.378058i \(-0.123408\pi\)
−0.790299 + 0.612721i \(0.790075\pi\)
\(138\) 0 0
\(139\) 8.26343 0.700895 0.350447 0.936582i \(-0.386030\pi\)
0.350447 + 0.936582i \(0.386030\pi\)
\(140\) 0 0
\(141\) 5.07107 0.427061
\(142\) 0 0
\(143\) −5.41812 + 5.92288i −0.453086 + 0.495296i
\(144\) 0 0
\(145\) −1.71141 + 2.96425i −0.142125 + 0.246168i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.47723 3.16228i −0.448712 0.259064i 0.258574 0.965991i \(-0.416747\pi\)
−0.707286 + 0.706928i \(0.750081\pi\)
\(150\) 0 0
\(151\) −3.87298 + 2.23607i −0.315179 + 0.181969i −0.649242 0.760582i \(-0.724914\pi\)
0.334063 + 0.942551i \(0.391580\pi\)
\(152\) 0 0
\(153\) 14.1066 1.14045
\(154\) 0 0
\(155\) 0.928932 0.0746136
\(156\) 0 0
\(157\) 18.5396 10.7039i 1.47963 0.854262i 0.479891 0.877328i \(-0.340676\pi\)
0.999734 + 0.0230662i \(0.00734284\pi\)
\(158\) 0 0
\(159\) 4.68690 + 2.70598i 0.371695 + 0.214598i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.707107 1.22474i 0.0553849 0.0959294i −0.837004 0.547197i \(-0.815695\pi\)
0.892389 + 0.451268i \(0.149028\pi\)
\(164\) 0 0
\(165\) 1.31135 1.43352i 0.102088 0.111599i
\(166\) 0 0
\(167\) 3.42282 0.264866 0.132433 0.991192i \(-0.457721\pi\)
0.132433 + 0.991192i \(0.457721\pi\)
\(168\) 0 0
\(169\) −7.14214 −0.549395
\(170\) 0 0
\(171\) 4.13171 + 7.15634i 0.315960 + 0.547259i
\(172\) 0 0
\(173\) −1.21015 + 2.09604i −0.0920061 + 0.159359i −0.908355 0.418200i \(-0.862661\pi\)
0.816349 + 0.577559i \(0.195995\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.29289 3.97141i 0.172344 0.298509i
\(178\) 0 0
\(179\) −2.17157 3.76127i −0.162311 0.281131i 0.773386 0.633935i \(-0.218561\pi\)
−0.935697 + 0.352804i \(0.885228\pi\)
\(180\) 0 0
\(181\) 18.1606i 1.34986i −0.737880 0.674932i \(-0.764173\pi\)
0.737880 0.674932i \(-0.235827\pi\)
\(182\) 0 0
\(183\) 4.47214i 0.330590i
\(184\) 0 0
\(185\) −0.776550 + 0.448342i −0.0570931 + 0.0329627i
\(186\) 0 0
\(187\) 18.9236 + 4.17850i 1.38383 + 0.305562i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.65685 + 9.79796i −0.409316 + 0.708955i −0.994813 0.101719i \(-0.967566\pi\)
0.585498 + 0.810674i \(0.300899\pi\)
\(192\) 0 0
\(193\) −5.47723 + 3.16228i −0.394259 + 0.227626i −0.684004 0.729478i \(-0.739763\pi\)
0.289745 + 0.957104i \(0.406430\pi\)
\(194\) 0 0
\(195\) −1.41778 −0.101529
\(196\) 0 0
\(197\) 15.2688i 1.08786i 0.839131 + 0.543929i \(0.183064\pi\)
−0.839131 + 0.543929i \(0.816936\pi\)
\(198\) 0 0
\(199\) −11.3623 + 6.56001i −0.805450 + 0.465027i −0.845373 0.534176i \(-0.820622\pi\)
0.0399232 + 0.999203i \(0.487289\pi\)
\(200\) 0 0
\(201\) −2.03559 1.17525i −0.143579 0.0828955i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −7.08147 4.08849i −0.494591 0.285552i
\(206\) 0 0
\(207\) 5.12132 + 8.87039i 0.355956 + 0.616535i
\(208\) 0 0
\(209\) 3.42282 + 10.8239i 0.236762 + 0.748706i
\(210\) 0 0
\(211\) 3.70484i 0.255052i −0.991835 0.127526i \(-0.959296\pi\)
0.991835 0.127526i \(-0.0407036\pi\)
\(212\) 0 0
\(213\) 8.11475 4.68506i 0.556014 0.321015i
\(214\) 0 0
\(215\) −4.13171 + 7.15634i −0.281781 + 0.488058i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.14172 3.54593i −0.415019 0.239611i
\(220\) 0 0
\(221\) −7.07107 12.2474i −0.475651 0.823853i
\(222\) 0 0
\(223\) 5.80591i 0.388792i 0.980923 + 0.194396i \(0.0622748\pi\)
−0.980923 + 0.194396i \(0.937725\pi\)
\(224\) 0 0
\(225\) 10.6569 0.710457
\(226\) 0 0
\(227\) 7.55454 + 13.0848i 0.501412 + 0.868472i 0.999999 + 0.00163167i \(0.000519376\pi\)
−0.498586 + 0.866840i \(0.666147\pi\)
\(228\) 0 0
\(229\) 9.87579 + 5.70179i 0.652611 + 0.376785i 0.789456 0.613808i \(-0.210363\pi\)
−0.136845 + 0.990592i \(0.543696\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.8877 + 8.01806i 0.909813 + 0.525281i 0.880371 0.474286i \(-0.157294\pi\)
0.0294419 + 0.999566i \(0.490627\pi\)
\(234\) 0 0
\(235\) −2.53553 4.39167i −0.165400 0.286481i
\(236\) 0 0
\(237\) −10.2685 −0.667009
\(238\) 0 0
\(239\) 21.5934i 1.39676i −0.715727 0.698380i \(-0.753905\pi\)
0.715727 0.698380i \(-0.246095\pi\)
\(240\) 0 0
\(241\) −1.21015 2.09604i −0.0779527 0.135018i 0.824414 0.565988i \(-0.191505\pi\)
−0.902366 + 0.430970i \(0.858172\pi\)
\(242\) 0 0
\(243\) −13.4645 7.77372i −0.863747 0.498684i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.14214 7.17439i 0.263558 0.456495i
\(248\) 0 0
\(249\) 7.74597 4.47214i 0.490881 0.283410i
\(250\) 0 0
\(251\) 0.317025i 0.0200105i 0.999950 + 0.0100052i \(0.00318482\pi\)
−0.999950 + 0.0100052i \(0.996815\pi\)
\(252\) 0 0
\(253\) 4.24264 + 13.4164i 0.266733 + 0.843482i
\(254\) 0 0
\(255\) 1.71141 + 2.96425i 0.107173 + 0.185629i
\(256\) 0 0
\(257\) −23.0657 13.3170i −1.43880 0.830691i −0.441033 0.897491i \(-0.645388\pi\)
−0.997766 + 0.0667993i \(0.978721\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 9.35021 + 5.39835i 0.578763 + 0.334149i
\(262\) 0 0
\(263\) 23.2379 13.4164i 1.43291 0.827291i 0.435568 0.900156i \(-0.356547\pi\)
0.997342 + 0.0728645i \(0.0232141\pi\)
\(264\) 0 0
\(265\) 5.41196i 0.332454i
\(266\) 0 0
\(267\) 0.242641 0.0148494
\(268\) 0 0
\(269\) −25.4896 + 14.7164i −1.55413 + 0.897276i −0.556328 + 0.830963i \(0.687790\pi\)
−0.997799 + 0.0663129i \(0.978876\pi\)
\(270\) 0 0
\(271\) 11.6863 20.2412i 0.709889 1.22956i −0.255008 0.966939i \(-0.582078\pi\)
0.964898 0.262626i \(-0.0845884\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.2959 + 3.15666i 0.862077 + 0.190354i
\(276\) 0 0
\(277\) −24.1776 + 13.9590i −1.45269 + 0.838713i −0.998634 0.0522579i \(-0.983358\pi\)
−0.454060 + 0.890971i \(0.650025\pi\)
\(278\) 0 0
\(279\) 2.93015i 0.175424i
\(280\) 0 0
\(281\) 5.55726i 0.331518i 0.986166 + 0.165759i \(0.0530074\pi\)
−0.986166 + 0.165759i \(0.946993\pi\)
\(282\) 0 0
\(283\) 8.97232 + 15.5405i 0.533349 + 0.923788i 0.999241 + 0.0389462i \(0.0124001\pi\)
−0.465892 + 0.884841i \(0.654267\pi\)
\(284\) 0 0
\(285\) −1.00252 + 1.73642i −0.0593843 + 0.102857i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.57107 + 14.8455i −0.504180 + 0.873266i
\(290\) 0 0
\(291\) 4.94975 + 8.57321i 0.290159 + 0.502571i
\(292\) 0 0
\(293\) −5.84313 −0.341359 −0.170680 0.985327i \(-0.554596\pi\)
−0.170680 + 0.985327i \(0.554596\pi\)
\(294\) 0 0
\(295\) −4.58579 −0.266995
\(296\) 0 0
\(297\) −10.1407 9.27650i −0.588423 0.538277i
\(298\) 0 0
\(299\) 5.13424 8.89276i 0.296921 0.514282i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.14172 3.54593i −0.352833 0.203708i
\(304\) 0 0
\(305\) −3.87298 + 2.23607i −0.221766 + 0.128037i
\(306\) 0 0
\(307\) −15.1091 −0.862321 −0.431160 0.902275i \(-0.641896\pi\)
−0.431160 + 0.902275i \(0.641896\pi\)
\(308\) 0 0
\(309\) −8.72792 −0.496514
\(310\) 0 0
\(311\) 11.9780 6.91550i 0.679210 0.392142i −0.120347 0.992732i \(-0.538401\pi\)
0.799557 + 0.600590i \(0.205068\pi\)
\(312\) 0 0
\(313\) 12.2997 + 7.10121i 0.695217 + 0.401384i 0.805564 0.592509i \(-0.201863\pi\)
−0.110346 + 0.993893i \(0.535196\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.48528 + 2.57258i −0.0834217 + 0.144491i −0.904718 0.426012i \(-0.859918\pi\)
0.821296 + 0.570502i \(0.193252\pi\)
\(318\) 0 0
\(319\) 10.9441 + 10.0114i 0.612749 + 0.560530i
\(320\) 0 0
\(321\) −4.84061 −0.270176
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 0 0
\(325\) −5.34187 9.25238i −0.296313 0.513230i
\(326\) 0 0
\(327\) −5.13424 + 8.89276i −0.283924 + 0.491771i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.00000 + 5.19615i −0.164895 + 0.285606i −0.936618 0.350352i \(-0.886062\pi\)
0.771723 + 0.635959i \(0.219395\pi\)
\(332\) 0 0
\(333\) 1.41421 + 2.44949i 0.0774984 + 0.134231i
\(334\) 0 0
\(335\) 2.35049i 0.128421i
\(336\) 0 0
\(337\) 22.3607i 1.21806i 0.793146 + 0.609032i \(0.208442\pi\)
−0.793146 + 0.609032i \(0.791558\pi\)
\(338\) 0 0
\(339\) −4.20441 + 2.42742i −0.228352 + 0.131839i
\(340\) 0 0
\(341\) 0.867939 3.93073i 0.0470015 0.212861i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.24264 + 2.15232i −0.0669015 + 0.115877i
\(346\) 0 0
\(347\) 0.664499 0.383649i 0.0356722 0.0205953i −0.482058 0.876139i \(-0.660111\pi\)
0.517730 + 0.855544i \(0.326777\pi\)
\(348\) 0 0
\(349\) −32.6385 −1.74710 −0.873548 0.486737i \(-0.838187\pi\)
−0.873548 + 0.486737i \(0.838187\pi\)
\(350\) 0 0
\(351\) 10.0294i 0.535329i
\(352\) 0 0
\(353\) 14.2410 8.22206i 0.757973 0.437616i −0.0705942 0.997505i \(-0.522490\pi\)
0.828568 + 0.559889i \(0.189156\pi\)
\(354\) 0 0
\(355\) −8.11475 4.68506i −0.430686 0.248657i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.5131 + 13.5753i 1.24098 + 0.716478i 0.969293 0.245909i \(-0.0790863\pi\)
0.271683 + 0.962387i \(0.412420\pi\)
\(360\) 0 0
\(361\) 3.64214 + 6.30836i 0.191691 + 0.332019i
\(362\) 0 0
\(363\) −4.84061 6.88830i −0.254066 0.361542i
\(364\) 0 0
\(365\) 7.09185i 0.371205i
\(366\) 0 0
\(367\) 19.7045 11.3764i 1.02857 0.593842i 0.111992 0.993709i \(-0.464277\pi\)
0.916573 + 0.399867i \(0.130944\pi\)
\(368\) 0 0
\(369\) −12.8964 + 22.3372i −0.671360 + 1.16283i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.9545 + 6.32456i 0.567200 + 0.327473i 0.756030 0.654537i \(-0.227136\pi\)
−0.188830 + 0.982010i \(0.560470\pi\)
\(374\) 0 0
\(375\) 2.75736 + 4.77589i 0.142389 + 0.246626i
\(376\) 0 0
\(377\) 10.8239i 0.557460i
\(378\) 0 0
\(379\) 36.7279 1.88659 0.943293 0.331960i \(-0.107710\pi\)
0.943293 + 0.331960i \(0.107710\pi\)
\(380\) 0 0
\(381\) −2.42030 4.19209i −0.123996 0.214767i
\(382\) 0 0
\(383\) 26.3327 + 15.2032i 1.34554 + 0.776848i 0.987614 0.156902i \(-0.0501506\pi\)
0.357926 + 0.933750i \(0.383484\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 22.5734 + 13.0328i 1.14747 + 0.662492i
\(388\) 0 0
\(389\) −15.7782 27.3286i −0.799985 1.38562i −0.919625 0.392798i \(-0.871507\pi\)
0.119640 0.992817i \(-0.461826\pi\)
\(390\) 0 0
\(391\) −24.7903 −1.25370
\(392\) 0 0
\(393\) 1.08512i 0.0547372i
\(394\) 0 0
\(395\) 5.13424 + 8.89276i 0.258331 + 0.447443i
\(396\) 0 0
\(397\) −3.79662 2.19198i −0.190547 0.110012i 0.401692 0.915775i \(-0.368422\pi\)
−0.592239 + 0.805763i \(0.701756\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.22183 + 3.84831i −0.110953 + 0.192176i −0.916155 0.400825i \(-0.868724\pi\)
0.805202 + 0.593001i \(0.202057\pi\)
\(402\) 0 0
\(403\) −2.54399 + 1.46877i −0.126725 + 0.0731647i
\(404\) 0 0
\(405\) 3.11586i 0.154828i
\(406\) 0 0
\(407\) 1.17157 + 3.70484i 0.0580727 + 0.183642i
\(408\) 0 0
\(409\) 10.4761 + 18.1451i 0.518010 + 0.897220i 0.999781 + 0.0209225i \(0.00666032\pi\)
−0.481771 + 0.876297i \(0.660006\pi\)
\(410\) 0 0
\(411\) 2.10220 + 1.21371i 0.103694 + 0.0598678i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −7.74597 4.47214i −0.380235 0.219529i
\(416\) 0 0
\(417\) 5.47723 3.16228i 0.268221 0.154857i
\(418\) 0 0
\(419\) 10.9552i 0.535198i −0.963530 0.267599i \(-0.913770\pi\)
0.963530 0.267599i \(-0.0862303\pi\)
\(420\) 0 0
\(421\) −35.5563 −1.73291 −0.866455 0.499255i \(-0.833607\pi\)
−0.866455 + 0.499255i \(0.833607\pi\)
\(422\) 0 0
\(423\) −13.8528 + 7.99789i −0.673544 + 0.388871i
\(424\) 0 0
\(425\) −12.8964 + 22.3372i −0.625568 + 1.08351i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.32469 + 5.99927i −0.0639566 + 0.289647i
\(430\) 0 0
\(431\) 21.6337 12.4902i 1.04206 0.601632i 0.121641 0.992574i \(-0.461184\pi\)
0.920415 + 0.390942i \(0.127851\pi\)
\(432\) 0 0
\(433\) 21.4077i 1.02879i −0.857553 0.514395i \(-0.828016\pi\)
0.857553 0.514395i \(-0.171984\pi\)
\(434\) 0 0
\(435\) 2.61972i 0.125606i
\(436\) 0 0
\(437\) −7.26091 12.5763i −0.347336 0.601604i
\(438\) 0 0
\(439\) 14.8154 25.6611i 0.707103 1.22474i −0.258825 0.965924i \(-0.583335\pi\)
0.965927 0.258813i \(-0.0833315\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.3137 + 17.8639i −0.490019 + 0.848738i −0.999934 0.0114869i \(-0.996344\pi\)
0.509915 + 0.860225i \(0.329677\pi\)
\(444\) 0 0
\(445\) −0.121320 0.210133i −0.00575114 0.00996126i
\(446\) 0 0
\(447\) −4.84061 −0.228953
\(448\) 0 0
\(449\) −14.5858 −0.688346 −0.344173 0.938906i \(-0.611841\pi\)
−0.344173 + 0.938906i \(0.611841\pi\)
\(450\) 0 0
\(451\) −23.9167 + 26.1448i −1.12620 + 1.23111i
\(452\) 0 0
\(453\) −1.71141 + 2.96425i −0.0804092 + 0.139273i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.4464 + 15.2688i 1.23711 + 0.714246i 0.968502 0.249004i \(-0.0801033\pi\)
0.268607 + 0.963250i \(0.413437\pi\)
\(458\) 0 0
\(459\) 20.9692 12.1065i 0.978757 0.565085i
\(460\) 0 0
\(461\) −10.6837 −0.497591 −0.248796 0.968556i \(-0.580035\pi\)
−0.248796 + 0.968556i \(0.580035\pi\)
\(462\) 0 0
\(463\) 15.0711 0.700412 0.350206 0.936673i \(-0.386112\pi\)
0.350206 + 0.936673i \(0.386112\pi\)
\(464\) 0 0
\(465\) 0.615721 0.355487i 0.0285534 0.0164853i
\(466\) 0 0
\(467\) 2.69841 + 1.55793i 0.124868 + 0.0720924i 0.561133 0.827726i \(-0.310366\pi\)
−0.436265 + 0.899818i \(0.643699\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 8.19239 14.1896i 0.377485 0.653824i
\(472\) 0 0
\(473\) 26.4213 + 24.1696i 1.21485 + 1.11132i
\(474\) 0 0
\(475\) −15.1091 −0.693252
\(476\) 0 0
\(477\) −17.0711 −0.781631
\(478\) 0 0
\(479\) 18.2383 + 31.5896i 0.833328 + 1.44337i 0.895385 + 0.445294i \(0.146901\pi\)
−0.0620567 + 0.998073i \(0.519766\pi\)
\(480\) 0 0
\(481\) 1.41778 2.45567i 0.0646452 0.111969i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.94975 8.57321i 0.224756 0.389290i
\(486\) 0 0
\(487\) −16.3640 28.3432i −0.741522 1.28435i −0.951802 0.306712i \(-0.900771\pi\)
0.210280 0.977641i \(-0.432562\pi\)
\(488\) 0 0
\(489\) 1.08239i 0.0489475i
\(490\) 0 0
\(491\) 4.47214i 0.201825i 0.994895 + 0.100912i \(0.0321762\pi\)
−0.994895 + 0.100912i \(0.967824\pi\)
\(492\) 0 0
\(493\) −22.6303 + 13.0656i −1.01922 + 0.588446i
\(494\) 0 0
\(495\) −1.32136 + 5.98418i −0.0593906 + 0.268969i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 5.05025 8.74729i 0.226080 0.391583i −0.730563 0.682846i \(-0.760742\pi\)
0.956643 + 0.291263i \(0.0940755\pi\)
\(500\) 0 0
\(501\) 2.26874 1.30986i 0.101360 0.0585202i
\(502\) 0 0
\(503\) −14.5218 −0.647496 −0.323748 0.946143i \(-0.604943\pi\)
−0.323748 + 0.946143i \(0.604943\pi\)
\(504\) 0 0
\(505\) 7.09185i 0.315583i
\(506\) 0 0
\(507\) −4.73400 + 2.73318i −0.210244 + 0.121385i
\(508\) 0 0
\(509\) −24.1639 13.9510i −1.07105 0.618369i −0.142580 0.989783i \(-0.545540\pi\)
−0.928467 + 0.371414i \(0.878873\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 12.2834 + 7.09185i 0.542328 + 0.313113i
\(514\) 0 0
\(515\) 4.36396 + 7.55860i 0.192299 + 0.333072i
\(516\) 0 0
\(517\) −20.9522 + 6.62567i −0.921477 + 0.291397i
\(518\) 0 0
\(519\) 1.85242i 0.0813122i
\(520\) 0 0
\(521\) 36.1614 20.8778i 1.58426 0.914674i 0.590034 0.807379i \(-0.299114\pi\)
0.994227 0.107295i \(-0.0342189\pi\)
\(522\) 0 0
\(523\) 22.3700 38.7460i 0.978171 1.69424i 0.309125 0.951021i \(-0.399964\pi\)
0.669046 0.743221i \(-0.266703\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.14172 + 3.54593i 0.267538 + 0.154463i
\(528\) 0 0
\(529\) 2.50000 + 4.33013i 0.108696 + 0.188266i
\(530\) 0 0
\(531\) 14.4650i 0.627730i
\(532\) 0 0
\(533\) 25.8579 1.12003
\(534\) 0 0
\(535\) 2.42030 + 4.19209i 0.104639 + 0.181240i
\(536\) 0 0
\(537\) −2.87875 1.66205i −0.124227 0.0717227i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −20.9692 12.1065i −0.901535 0.520501i −0.0238368 0.999716i \(-0.507588\pi\)
−0.877698 + 0.479215i \(0.840922\pi\)
\(542\) 0 0
\(543\) −6.94975 12.0373i −0.298242 0.516571i
\(544\) 0 0
\(545\) 10.2685 0.439853
\(546\) 0 0
\(547\) 39.4819i 1.68813i 0.536245 + 0.844063i \(0.319842\pi\)
−0.536245 + 0.844063i \(0.680158\pi\)
\(548\) 0 0
\(549\) 7.05328 + 12.2166i 0.301027 + 0.521393i
\(550\) 0 0
\(551\) −13.2565 7.65367i −0.564748 0.326057i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.343146 + 0.594346i −0.0145657 + 0.0252286i
\(556\) 0 0
\(557\) −23.2379 + 13.4164i −0.984621 + 0.568471i −0.903662 0.428246i \(-0.859132\pi\)
−0.0809592 + 0.996717i \(0.525798\pi\)
\(558\) 0 0
\(559\) 26.1313i 1.10523i
\(560\) 0 0
\(561\) 14.1421 4.47214i 0.597081 0.188814i
\(562\) 0 0
\(563\) 7.55454 + 13.0848i 0.318386 + 0.551461i 0.980151 0.198250i \(-0.0635259\pi\)
−0.661766 + 0.749711i \(0.730193\pi\)
\(564\) 0 0
\(565\) 4.20441 + 2.42742i 0.176881 + 0.102122i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.0359 + 10.4130i 0.756105 + 0.436537i 0.827896 0.560882i \(-0.189538\pi\)
−0.0717905 + 0.997420i \(0.522871\pi\)
\(570\) 0 0
\(571\) −13.2232 + 7.63441i −0.553373 + 0.319490i −0.750481 0.660891i \(-0.770178\pi\)
0.197108 + 0.980382i \(0.436845\pi\)
\(572\) 0 0
\(573\) 8.65914i 0.361741i
\(574\) 0 0
\(575\) −18.7279 −0.781008
\(576\) 0 0
\(577\) −22.7441 + 13.1313i −0.946848 + 0.546663i −0.892100 0.451838i \(-0.850769\pi\)
−0.0547473 + 0.998500i \(0.517435\pi\)
\(578\) 0 0
\(579\) −2.42030 + 4.19209i −0.100584 + 0.174217i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −22.9005 5.05662i −0.948440 0.209424i
\(584\) 0 0
\(585\) 3.87298 2.23607i 0.160128 0.0924500i
\(586\) 0 0
\(587\) 13.5684i 0.560026i −0.959996 0.280013i \(-0.909661\pi\)
0.959996 0.280013i \(-0.0903388\pi\)
\(588\) 0 0
\(589\) 4.15431i 0.171175i
\(590\) 0 0
\(591\) 5.84313 + 10.1206i 0.240354 + 0.416306i
\(592\) 0 0
\(593\) −17.7370 + 30.7214i −0.728372 + 1.26158i 0.229199 + 0.973380i \(0.426389\pi\)
−0.957571 + 0.288197i \(0.906944\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.02082 + 8.69631i −0.205488 + 0.355916i
\(598\) 0 0
\(599\) 19.1924 + 33.2422i 0.784180 + 1.35824i 0.929488 + 0.368853i \(0.120249\pi\)
−0.145308 + 0.989386i \(0.546417\pi\)
\(600\) 0 0
\(601\) −22.3700 −0.912491 −0.456245 0.889854i \(-0.650806\pi\)
−0.456245 + 0.889854i \(0.650806\pi\)
\(602\) 0 0
\(603\) 7.41421 0.301930
\(604\) 0 0
\(605\) −3.54514 + 7.63624i −0.144131 + 0.310457i
\(606\) 0 0
\(607\) 0.708890 1.22783i 0.0287730 0.0498362i −0.851280 0.524711i \(-0.824173\pi\)
0.880053 + 0.474875i \(0.157507\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.8877 + 8.01806i 0.561836 + 0.324376i
\(612\) 0 0
\(613\) −4.81273 + 2.77863i −0.194384 + 0.112228i −0.594033 0.804440i \(-0.702465\pi\)
0.399649 + 0.916668i \(0.369132\pi\)
\(614\) 0 0
\(615\) −6.25839 −0.252362
\(616\) 0 0
\(617\) 6.14214 0.247273 0.123637 0.992328i \(-0.460544\pi\)
0.123637 + 0.992328i \(0.460544\pi\)
\(618\) 0 0
\(619\) 27.5918 15.9301i 1.10901 0.640286i 0.170435 0.985369i \(-0.445483\pi\)
0.938572 + 0.345083i \(0.112149\pi\)
\(620\) 0 0
\(621\) 15.2255 + 8.79045i 0.610979 + 0.352749i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −8.27817 + 14.3382i −0.331127 + 0.573529i
\(626\) 0 0
\(627\) 6.41088 + 5.86453i 0.256026 + 0.234207i
\(628\) 0 0
\(629\) −6.84565 −0.272954
\(630\) 0 0
\(631\) −46.9706 −1.86987 −0.934934 0.354821i \(-0.884542\pi\)
−0.934934 + 0.354821i \(0.884542\pi\)
\(632\) 0 0
\(633\) −1.41778 2.45567i −0.0563517 0.0976040i
\(634\) 0 0
\(635\) −2.42030 + 4.19209i −0.0960468 + 0.166358i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −14.7782 + 25.5965i −0.584616 + 1.01258i
\(640\) 0 0
\(641\) 6.41421 + 11.1097i 0.253346 + 0.438808i 0.964445 0.264284i \(-0.0851355\pi\)
−0.711099 + 0.703092i \(0.751802\pi\)
\(642\) 0 0
\(643\) 17.0012i 0.670464i 0.942136 + 0.335232i \(0.108815\pi\)
−0.942136 + 0.335232i \(0.891185\pi\)
\(644\) 0 0
\(645\) 6.32456i 0.249029i
\(646\) 0 0
\(647\) −16.1158 + 9.30445i −0.633577 + 0.365796i −0.782136 0.623108i \(-0.785870\pi\)
0.148559 + 0.988904i \(0.452536\pi\)
\(648\) 0 0
\(649\) −4.28469 + 19.4045i −0.168189 + 0.761695i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.60660 + 7.97887i −0.180270 + 0.312237i −0.941973 0.335690i \(-0.891031\pi\)
0.761702 + 0.647927i \(0.224364\pi\)
\(654\) 0 0
\(655\) 0.939743 0.542561i 0.0367188 0.0211996i
\(656\) 0 0
\(657\) 22.3700 0.872736
\(658\) 0 0
\(659\) 27.1506i 1.05764i −0.848734 0.528819i \(-0.822635\pi\)
0.848734 0.528819i \(-0.177365\pi\)
\(660\) 0 0
\(661\) 10.4249 6.01882i 0.405481 0.234105i −0.283365 0.959012i \(-0.591451\pi\)
0.688846 + 0.724907i \(0.258117\pi\)
\(662\) 0 0
\(663\) −9.37379 5.41196i −0.364048 0.210183i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.4317 9.48683i −0.636237 0.367332i
\(668\) 0 0
\(669\) 2.22183 + 3.84831i 0.0859007 + 0.148784i
\(670\) 0 0
\(671\) 5.84313 + 18.4776i 0.225571 + 0.713319i
\(672\) 0 0
\(673\) 32.3901i 1.24855i 0.781206 + 0.624273i \(0.214605\pi\)
−0.781206 + 0.624273i \(0.785395\pi\)
\(674\) 0 0
\(675\) 15.8412 9.14594i 0.609729 0.352027i
\(676\) 0 0
\(677\) 1.91904 3.32388i 0.0737548 0.127747i −0.826789 0.562512i \(-0.809835\pi\)
0.900544 + 0.434765i \(0.143168\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 10.0147 + 5.78199i 0.383764 + 0.221567i
\(682\) 0 0
\(683\) −8.00000 13.8564i −0.306111 0.530201i 0.671397 0.741098i \(-0.265695\pi\)
−0.977508 + 0.210898i \(0.932361\pi\)
\(684\) 0 0
\(685\) 2.42742i 0.0927468i
\(686\) 0 0
\(687\) 8.72792 0.332991
\(688\) 0 0
\(689\) 8.55706 + 14.8213i 0.325998 + 0.564645i
\(690\) 0 0
\(691\) 36.2556 + 20.9322i 1.37923 + 0.796299i 0.992067 0.125713i \(-0.0401218\pi\)
0.387163 + 0.922011i \(0.373455\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.47723 3.16228i −0.207763 0.119952i
\(696\) 0 0
\(697\) −31.2132 54.0629i −1.18228 2.04778i
\(698\) 0 0
\(699\) 12.2735 0.464227
\(700\) 0 0
\(701\) 16.0361i 0.605676i 0.953042 + 0.302838i \(0.0979341\pi\)
−0.953042 + 0.302838i \(0.902066\pi\)
\(702\) 0 0
\(703\) −2.00504 3.47284i −0.0756217 0.130981i
\(704\) 0 0
\(705\) −3.36124 1.94061i −0.126592 0.0730877i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 19.9203 34.5030i 0.748123 1.29579i −0.200598 0.979674i \(-0.564289\pi\)
0.948721 0.316113i \(-0.102378\pi\)
\(710\) 0 0
\(711\) 28.0506 16.1950i 1.05198 0.607361i
\(712\) 0 0
\(713\) 5.14933i 0.192844i
\(714\) 0 0
\(715\) 5.85786 1.85242i 0.219072 0.0692766i
\(716\) 0 0
\(717\) −8.26343 14.3127i −0.308603 0.534517i
\(718\) 0 0
\(719\) −33.2161 19.1773i −1.23875 0.715193i −0.269911 0.962885i \(-0.586994\pi\)
−0.968839 + 0.247693i \(0.920328\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.60424 0.926210i −0.0596624 0.0344461i
\(724\) 0 0
\(725\) −17.0962 + 9.87048i −0.634936 + 0.366580i
\(726\) 0 0
\(727\) 7.89377i 0.292764i −0.989228 0.146382i \(-0.953237\pi\)
0.989228 0.146382i \(-0.0467628\pi\)
\(728\) 0 0
\(729\) 0.313708 0.0116188
\(730\) 0 0
\(731\) −54.6345 + 31.5432i −2.02073 + 1.16667i
\(732\) 0 0
\(733\) 14.3142 24.7929i 0.528707 0.915747i −0.470733 0.882276i \(-0.656011\pi\)
0.999440 0.0334709i \(-0.0106561\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.94600 + 2.19616i 0.366366 + 0.0808967i
\(738\) 0 0
\(739\) −18.7004 + 10.7967i −0.687906 + 0.397163i −0.802827 0.596212i \(-0.796672\pi\)
0.114921 + 0.993375i \(0.463338\pi\)
\(740\) 0 0
\(741\) 6.34051i 0.232924i
\(742\) 0 0
\(743\) 25.2982i 0.928102i 0.885809 + 0.464051i \(0.153605\pi\)
−0.885809 + 0.464051i \(0.846395\pi\)
\(744\) 0 0
\(745\) 2.42030 + 4.19209i 0.0886730 + 0.153586i
\(746\) 0 0
\(747\) −14.1066 + 24.4333i −0.516132 + 0.893967i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 11.0503 19.1396i 0.403229 0.698414i −0.590884 0.806756i \(-0.701221\pi\)
0.994114 + 0.108343i \(0.0345543\pi\)
\(752\) 0 0
\(753\) 0.121320 + 0.210133i 0.00442116 + 0.00765767i
\(754\) 0 0
\(755\) 3.42282 0.124569
\(756\) 0 0
\(757\) 10.1005 0.367109 0.183555 0.983010i \(-0.441240\pi\)
0.183555 + 0.983010i \(0.441240\pi\)
\(758\) 0 0
\(759\) 7.94637 + 7.26917i 0.288435 + 0.263854i
\(760\) 0 0
\(761\) −13.6053 + 23.5651i −0.493192 + 0.854233i −0.999969 0.00784391i \(-0.997503\pi\)
0.506778 + 0.862077i \(0.330837\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −9.35021 5.39835i −0.338058 0.195178i
\(766\) 0 0
\(767\) 12.5587 7.25077i 0.453468 0.261810i
\(768\) 0 0
\(769\) −23.7878 −0.857809 −0.428904 0.903350i \(-0.641100\pi\)
−0.428904 + 0.903350i \(0.641100\pi\)
\(770\) 0 0
\(771\) −20.3848 −0.734140
\(772\) 0 0
\(773\) 17.2140 9.93850i 0.619144 0.357463i −0.157391 0.987536i \(-0.550308\pi\)
0.776536 + 0.630073i \(0.216975\pi\)
\(774\) 0 0
\(775\) 4.63979 + 2.67878i 0.166666 + 0.0962248i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.2843 31.6693i 0.655102 1.13467i
\(780\) 0 0
\(781\) −27.4065 + 29.9598i −0.980683 + 1.07204i
\(782\) 0 0
\(783\) 18.5319 0.662276
\(784\) 0 0
\(785\) −16.3848 −0.584798
\(786\) 0 0
\(787\) −23.3725 40.4824i −0.833140 1.44304i −0.895536 0.444989i \(-0.853207\pi\)
0.0623959 0.998051i \(-0.480126\pi\)
\(788\) 0 0
\(789\) 10.2685 17.7855i 0.365567 0.633181i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 7.07107 12.2474i 0.251101 0.434920i
\(794\) 0 0
\(795\) −2.07107 3.58719i −0.0734532 0.127225i
\(796\) 0 0
\(797\) 28.2417i 1.00037i −0.865918 0.500185i \(-0.833265\pi\)
0.865918 0.500185i \(-0.166735\pi\)
\(798\) 0 0
\(799\) 38.7146i 1.36963i
\(800\) 0 0
\(801\) −0.662827 + 0.382683i −0.0234198 + 0.0135215i
\(802\) 0 0
\(803\) 30.0088 + 6.62621i 1.05899 + 0.233834i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −11.2635 + 19.5089i −0.396492 + 0.686745i
\(808\) 0 0
\(809\) 19.6402 11.3393i 0.690511 0.398667i −0.113292 0.993562i \(-0.536140\pi\)
0.803804 + 0.594895i \(0.202806\pi\)
\(810\) 0 0
\(811\) 42.7349 1.50063 0.750313 0.661083i \(-0.229903\pi\)
0.750313 + 0.661083i \(0.229903\pi\)
\(812\) 0 0
\(813\) 17.8885i 0.627379i
\(814\) 0 0
\(815\) −0.937379 + 0.541196i −0.0328350 + 0.0189573i
\(816\) 0 0
\(817\) −32.0041 18.4776i −1.11968 0.646449i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.5522 8.40171i −0.507875 0.293222i 0.224085 0.974570i \(-0.428061\pi\)
−0.731960 + 0.681348i \(0.761394\pi\)
\(822\) 0 0
\(823\) 1.82843 + 3.16693i 0.0637350 + 0.110392i 0.896132 0.443787i \(-0.146365\pi\)
−0.832397 + 0.554180i \(0.813032\pi\)
\(824\) 0 0
\(825\) 10.6837 3.37849i 0.371960 0.117624i
\(826\) 0 0
\(827\) 9.71157i 0.337704i −0.985641 0.168852i \(-0.945994\pi\)
0.985641 0.168852i \(-0.0540060\pi\)
\(828\) 0 0
\(829\) 35.6123 20.5608i 1.23687 0.714106i 0.268415 0.963303i \(-0.413500\pi\)
0.968453 + 0.249198i \(0.0801670\pi\)
\(830\) 0 0
\(831\) −10.6837 + 18.5048i −0.370615 + 0.641923i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.26874 1.30986i −0.0785130 0.0453295i
\(836\) 0 0
\(837\) −2.51472 4.35562i −0.0869214 0.150552i
\(838\) 0 0
\(839\) 3.19278i 0.110227i 0.998480 + 0.0551136i \(0.0175521\pi\)
−0.998480 + 0.0551136i \(0.982448\pi\)
\(840\) 0 0
\(841\) 9.00000 0.310345
\(842\) 0 0
\(843\) 2.12667 + 3.68350i 0.0732464 + 0.126867i
\(844\) 0 0
\(845\) 4.73400 + 2.73318i 0.162855 + 0.0940241i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.8942 + 6.86712i 0.408208 + 0.235679i
\(850\) 0 0
\(851\) −2.48528 4.30463i −0.0851943 0.147561i
\(852\) 0 0
\(853\) −14.6938 −0.503107 −0.251553 0.967843i \(-0.580941\pi\)
−0.251553 + 0.967843i \(0.580941\pi\)
\(854\) 0 0
\(855\) 6.32456i 0.216295i
\(856\) 0 0
\(857\) −16.0256 27.7572i −0.547424 0.948166i −0.998450 0.0556554i \(-0.982275\pi\)
0.451026 0.892511i \(-0.351058\pi\)
\(858\) 0 0
\(859\) 1.92186 + 1.10959i 0.0655732 + 0.0378587i 0.532428 0.846475i \(-0.321280\pi\)
−0.466855 + 0.884334i \(0.654613\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.00000 3.46410i 0.0680808 0.117919i −0.829976 0.557800i \(-0.811646\pi\)
0.898056 + 0.439880i \(0.144979\pi\)
\(864\) 0 0
\(865\) 1.60424 0.926210i 0.0545459 0.0314921i
\(866\) 0 0
\(867\) 13.1200i 0.445579i
\(868\) 0 0
\(869\) 42.4264 13.4164i 1.43922 0.455120i
\(870\) 0 0
\(871\) −3.71646 6.43709i −0.125927 0.218113i
\(872\) 0 0
\(873\) −27.0427 15.6131i −0.915256 0.528423i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −34.4676 19.8999i −1.16389 0.671971i −0.211655 0.977344i \(-0.567885\pi\)
−0.952233 + 0.305373i \(0.901219\pi\)
\(878\) 0 0
\(879\) −3.87298 + 2.23607i −0.130632 + 0.0754207i
\(880\) 0 0
\(881\) 20.4023i 0.687370i 0.939085 + 0.343685i \(0.111675\pi\)
−0.939085 + 0.343685i \(0.888325\pi\)
\(882\) 0 0
\(883\) −22.2843 −0.749925 −0.374963 0.927040i \(-0.622344\pi\)
−0.374963 + 0.927040i \(0.622344\pi\)
\(884\) 0 0
\(885\) −3.03958 + 1.75490i −0.102174 + 0.0589905i
\(886\) 0 0
\(887\) −10.9774 + 19.0134i −0.368584 + 0.638406i −0.989344 0.145594i \(-0.953491\pi\)
0.620761 + 0.784000i \(0.286824\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 13.1846 + 2.91128i 0.441701 + 0.0975314i
\(892\) 0 0
\(893\) 19.6402 11.3393i 0.657233 0.379454i
\(894\) 0 0
\(895\) 3.32410i 0.111112i
\(896\) 0 0
\(897\) 7.85915i 0.262409i
\(898\) 0 0
\(899\) 2.71393 + 4.70067i 0.0905148 + 0.156776i
\(900\) 0 0
\(901\) 20.6586 35.7817i 0.688237 1.19206i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.94975 + 12.0373i −0.231017 + 0.400134i
\(906\) 0 0
\(907\) 23.5355 + 40.7647i 0.781485 + 1.35357i 0.931077 + 0.364823i \(0.118871\pi\)
−0.149592 + 0.988748i \(0.547796\pi\)
\(908\) 0 0
\(909\) 22.3700 0.741966
\(910\) 0 0
\(911\) 49.6985 1.64658 0.823292 0.567618i \(-0.192135\pi\)
0.823292 + 0.567618i \(0.192135\pi\)
\(912\) 0 0
\(913\) −26.1610 + 28.5982i −0.865803 + 0.946462i
\(914\) 0 0
\(915\) −1.71141 + 2.96425i −0.0565775 + 0.0979952i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −36.4611 21.0508i −1.20274 0.694403i −0.241577 0.970382i \(-0.577665\pi\)
−0.961164 + 0.275979i \(0.910998\pi\)
\(920\) 0 0
\(921\) −10.0147 + 5.78199i −0.329996 + 0.190523i
\(922\) 0 0
\(923\) 29.6309 0.975313
\(924\) 0 0
\(925\) −5.17157 −0.170040
\(926\) 0 0
\(927\) 23.8423 13.7653i 0.783083 0.452113i
\(928\) 0 0
\(929\) 41.3308 + 23.8624i 1.35602 + 0.782898i 0.989085 0.147348i \(-0.0470737\pi\)
0.366935 + 0.930246i \(0.380407\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 5.29289 9.16756i 0.173282 0.300132i
\(934\) 0 0
\(935\) −10.9441 10.0114i −0.357909 0.327407i
\(936\) 0 0
\(937\) 15.5243 0.507158 0.253579 0.967315i \(-0.418392\pi\)
0.253579 + 0.967315i \(0.418392\pi\)
\(938\) 0 0
\(939\) 10.8701 0.354731
\(940\) 0 0
\(941\) −4.92661 8.53314i −0.160603 0.278172i 0.774482 0.632596i \(-0.218010\pi\)
−0.935085 + 0.354423i \(0.884677\pi\)
\(942\) 0 0
\(943\) 22.6636 39.2545i 0.738029 1.27830i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.4853 + 35.4815i −0.665682 + 1.15300i 0.313418 + 0.949615i \(0.398526\pi\)
−0.979100 + 0.203380i \(0.934807\pi\)
\(948\) 0 0
\(949\) −11.2132 19.4218i −0.363996 0.630460i
\(950\) 0 0
\(951\) 2.27357i 0.0737256i
\(952\) 0 0
\(953\) 38.3968i 1.24379i −0.783099 0.621897i \(-0.786362\pi\)
0.783099 0.621897i \(-0.213638\pi\)
\(954\) 0 0
\(955\) 7.49903 4.32957i 0.242663 0.140102i
\(956\) 0 0
\(957\) 11.0852 + 2.44771i 0.358334 + 0.0791232i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −14.7635 + 25.5711i −0.476241 + 0.824873i
\(962\) 0 0
\(963\) 13.2232 7.63441i 0.426111 0.246016i
\(964\) 0 0
\(965\) 4.84061 0.155825
\(966\) 0 0
\(967\) 17.1212i 0.550582i 0.961361 + 0.275291i \(0.0887742\pi\)
−0.961361 + 0.275291i \(0.911226\pi\)
\(968\) 0 0
\(969\) −13.2565 + 7.65367i −0.425862 + 0.245871i
\(970\) 0 0
\(971\) −26.1995 15.1263i −0.840782 0.485426i 0.0167478 0.999860i \(-0.494669\pi\)
−0.857530 + 0.514434i \(0.828002\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −7.08147 4.08849i −0.226788 0.130936i
\(976\) 0 0
\(977\) 8.60660 + 14.9071i 0.275350 + 0.476919i 0.970223 0.242212i \(-0.0778731\pi\)
−0.694874 + 0.719132i \(0.744540\pi\)
\(978\) 0 0
\(979\) −1.00252 + 0.317025i −0.0320407 + 0.0101322i
\(980\) 0 0
\(981\) 32.3901i 1.03414i
\(982\) 0 0
\(983\) 45.8569 26.4755i 1.46261 0.844437i 0.463476 0.886109i \(-0.346602\pi\)
0.999131 + 0.0416728i \(0.0132687\pi\)
\(984\) 0 0
\(985\) 5.84313 10.1206i 0.186178 0.322469i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −39.6696 22.9032i −1.26142 0.728281i
\(990\) 0 0
\(991\) 7.77817 + 13.4722i 0.247082 + 0.427958i 0.962715 0.270518i \(-0.0871950\pi\)
−0.715633 + 0.698476i \(0.753862\pi\)
\(992\) 0 0
\(993\) 4.59220i 0.145729i
\(994\) 0 0
\(995\) 10.0416 0.318341
\(996\) 0 0
\(997\) −13.8989 24.0736i −0.440183 0.762420i 0.557519 0.830164i \(-0.311753\pi\)
−0.997703 + 0.0677439i \(0.978420\pi\)
\(998\) 0 0
\(999\) 4.20441 + 2.42742i 0.133022 + 0.0768001i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.q.d.901.5 16
7.2 even 3 2156.2.c.a.1077.5 yes 8
7.3 odd 6 inner 2156.2.q.d.2089.6 16
7.4 even 3 inner 2156.2.q.d.2089.4 16
7.5 odd 6 2156.2.c.a.1077.3 8
7.6 odd 2 inner 2156.2.q.d.901.3 16
11.10 odd 2 inner 2156.2.q.d.901.6 16
77.10 even 6 inner 2156.2.q.d.2089.5 16
77.32 odd 6 inner 2156.2.q.d.2089.3 16
77.54 even 6 2156.2.c.a.1077.4 yes 8
77.65 odd 6 2156.2.c.a.1077.6 yes 8
77.76 even 2 inner 2156.2.q.d.901.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2156.2.c.a.1077.3 8 7.5 odd 6
2156.2.c.a.1077.4 yes 8 77.54 even 6
2156.2.c.a.1077.5 yes 8 7.2 even 3
2156.2.c.a.1077.6 yes 8 77.65 odd 6
2156.2.q.d.901.3 16 7.6 odd 2 inner
2156.2.q.d.901.4 16 77.76 even 2 inner
2156.2.q.d.901.5 16 1.1 even 1 trivial
2156.2.q.d.901.6 16 11.10 odd 2 inner
2156.2.q.d.2089.3 16 77.32 odd 6 inner
2156.2.q.d.2089.4 16 7.4 even 3 inner
2156.2.q.d.2089.5 16 77.10 even 6 inner
2156.2.q.d.2089.6 16 7.3 odd 6 inner