Properties

Label 216.4.l.b.179.20
Level $216$
Weight $4$
Character 216.179
Analytic conductor $12.744$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [216,4,Mod(35,216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("216.35");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 216.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7444125612\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.20
Character \(\chi\) \(=\) 216.179
Dual form 216.4.l.b.35.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.867121 + 2.69223i) q^{2} +(-6.49620 + 4.66898i) q^{4} +(8.51655 - 14.7511i) q^{5} +(-9.57807 + 5.52990i) q^{7} +(-18.2030 - 13.4407i) q^{8} +O(q^{10})\) \(q+(0.867121 + 2.69223i) q^{2} +(-6.49620 + 4.66898i) q^{4} +(8.51655 - 14.7511i) q^{5} +(-9.57807 + 5.52990i) q^{7} +(-18.2030 - 13.4407i) q^{8} +(47.0983 + 10.1375i) q^{10} +(-25.7667 + 14.8764i) q^{11} +(-52.0658 - 30.0602i) q^{13} +(-23.1931 - 20.9913i) q^{14} +(20.4013 - 60.6613i) q^{16} -91.7888i q^{17} -136.507 q^{19} +(13.5474 + 135.590i) q^{20} +(-62.3936 - 56.4703i) q^{22} +(30.0089 - 51.9770i) q^{23} +(-82.5634 - 143.004i) q^{25} +(35.7816 - 166.239i) q^{26} +(36.4021 - 80.6432i) q^{28} +(65.0911 + 112.741i) q^{29} +(148.423 + 85.6920i) q^{31} +(181.004 + 2.32417i) q^{32} +(247.117 - 79.5920i) q^{34} +188.383i q^{35} -259.167i q^{37} +(-118.368 - 367.509i) q^{38} +(-353.292 + 154.045i) q^{40} +(-14.3285 - 8.27259i) q^{41} +(-85.3289 - 147.794i) q^{43} +(97.9281 - 216.945i) q^{44} +(165.955 + 35.7206i) q^{46} +(89.8841 + 155.684i) q^{47} +(-110.340 + 191.115i) q^{49} +(313.407 - 346.282i) q^{50} +(478.581 - 47.8171i) q^{52} +205.014 q^{53} +506.783i q^{55} +(248.675 + 28.0753i) q^{56} +(-247.083 + 273.001i) q^{58} +(-624.620 - 360.624i) q^{59} +(-163.824 + 94.5836i) q^{61} +(-102.002 + 473.894i) q^{62} +(150.696 + 489.321i) q^{64} +(-886.843 + 512.019i) q^{65} +(197.490 - 342.063i) q^{67} +(428.560 + 596.278i) q^{68} +(-507.170 + 163.351i) q^{70} -131.203 q^{71} -410.081 q^{73} +(697.737 - 224.729i) q^{74} +(886.778 - 637.350i) q^{76} +(164.530 - 284.975i) q^{77} +(144.247 - 83.2809i) q^{79} +(-721.072 - 817.566i) q^{80} +(9.84712 - 45.7491i) q^{82} +(430.457 - 248.524i) q^{83} +(-1353.99 - 781.724i) q^{85} +(323.905 - 357.880i) q^{86} +(668.980 + 75.5276i) q^{88} +313.674i q^{89} +664.920 q^{91} +(47.7355 + 477.764i) q^{92} +(-341.196 + 376.985i) q^{94} +(-1162.57 + 2013.63i) q^{95} +(-319.471 - 553.340i) q^{97} +(-610.204 - 131.342i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 3 q^{2} - 17 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 64 q + 3 q^{2} - 17 q^{4} + 12 q^{10} - 48 q^{11} - 72 q^{14} + 127 q^{16} - 220 q^{19} + 234 q^{20} - 217 q^{22} - 902 q^{25} - 132 q^{28} + 693 q^{32} + 509 q^{34} + 1977 q^{38} - 36 q^{40} - 1620 q^{41} - 292 q^{43} + 48 q^{46} + 1762 q^{49} + 1227 q^{50} + 330 q^{52} - 942 q^{56} - 282 q^{58} - 5592 q^{59} + 1090 q^{64} + 6 q^{65} + 68 q^{67} + 2025 q^{68} + 600 q^{70} - 868 q^{73} + 420 q^{74} - 1471 q^{76} + 362 q^{82} - 3654 q^{83} + 4119 q^{86} + 3155 q^{88} - 1380 q^{91} + 744 q^{92} - 138 q^{94} - 1912 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/216\mathbb{Z}\right)^\times\).

\(n\) \(55\) \(109\) \(137\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.867121 + 2.69223i 0.306574 + 0.951847i
\(3\) 0 0
\(4\) −6.49620 + 4.66898i −0.812025 + 0.583623i
\(5\) 8.51655 14.7511i 0.761744 1.31938i −0.180207 0.983629i \(-0.557677\pi\)
0.941951 0.335750i \(-0.108990\pi\)
\(6\) 0 0
\(7\) −9.57807 + 5.52990i −0.517167 + 0.298587i −0.735775 0.677226i \(-0.763182\pi\)
0.218608 + 0.975813i \(0.429849\pi\)
\(8\) −18.2030 13.4407i −0.804465 0.594000i
\(9\) 0 0
\(10\) 47.0983 + 10.1375i 1.48938 + 0.320577i
\(11\) −25.7667 + 14.8764i −0.706269 + 0.407765i −0.809678 0.586874i \(-0.800358\pi\)
0.103409 + 0.994639i \(0.467025\pi\)
\(12\) 0 0
\(13\) −52.0658 30.0602i −1.11081 0.641324i −0.171767 0.985138i \(-0.554948\pi\)
−0.939038 + 0.343814i \(0.888281\pi\)
\(14\) −23.1931 20.9913i −0.442759 0.400725i
\(15\) 0 0
\(16\) 20.4013 60.6613i 0.318770 0.947832i
\(17\) 91.7888i 1.30953i −0.755831 0.654766i \(-0.772767\pi\)
0.755831 0.654766i \(-0.227233\pi\)
\(18\) 0 0
\(19\) −136.507 −1.64826 −0.824129 0.566402i \(-0.808335\pi\)
−0.824129 + 0.566402i \(0.808335\pi\)
\(20\) 13.5474 + 135.590i 0.151464 + 1.51594i
\(21\) 0 0
\(22\) −62.3936 56.4703i −0.604653 0.547250i
\(23\) 30.0089 51.9770i 0.272056 0.471215i −0.697332 0.716748i \(-0.745630\pi\)
0.969388 + 0.245533i \(0.0789630\pi\)
\(24\) 0 0
\(25\) −82.5634 143.004i −0.660507 1.14403i
\(26\) 35.7816 166.239i 0.269898 1.25393i
\(27\) 0 0
\(28\) 36.4021 80.6432i 0.245691 0.544290i
\(29\) 65.0911 + 112.741i 0.416797 + 0.721914i 0.995615 0.0935428i \(-0.0298192\pi\)
−0.578818 + 0.815457i \(0.696486\pi\)
\(30\) 0 0
\(31\) 148.423 + 85.6920i 0.859921 + 0.496475i 0.863986 0.503516i \(-0.167961\pi\)
−0.00406514 + 0.999992i \(0.501294\pi\)
\(32\) 181.004 + 2.32417i 0.999918 + 0.0128393i
\(33\) 0 0
\(34\) 247.117 79.5920i 1.24647 0.401468i
\(35\) 188.383i 0.909786i
\(36\) 0 0
\(37\) 259.167i 1.15154i −0.817613 0.575768i \(-0.804703\pi\)
0.817613 0.575768i \(-0.195297\pi\)
\(38\) −118.368 367.509i −0.505313 1.56889i
\(39\) 0 0
\(40\) −353.292 + 154.045i −1.39651 + 0.608918i
\(41\) −14.3285 8.27259i −0.0545791 0.0315113i 0.472462 0.881351i \(-0.343365\pi\)
−0.527041 + 0.849840i \(0.676699\pi\)
\(42\) 0 0
\(43\) −85.3289 147.794i −0.302617 0.524148i 0.674111 0.738630i \(-0.264527\pi\)
−0.976728 + 0.214482i \(0.931194\pi\)
\(44\) 97.9281 216.945i 0.335528 0.743309i
\(45\) 0 0
\(46\) 165.955 + 35.7206i 0.531930 + 0.114494i
\(47\) 89.8841 + 155.684i 0.278956 + 0.483166i 0.971126 0.238569i \(-0.0766782\pi\)
−0.692169 + 0.721735i \(0.743345\pi\)
\(48\) 0 0
\(49\) −110.340 + 191.115i −0.321692 + 0.557187i
\(50\) 313.407 346.282i 0.886449 0.979432i
\(51\) 0 0
\(52\) 478.581 47.8171i 1.27629 0.127520i
\(53\) 205.014 0.531336 0.265668 0.964065i \(-0.414407\pi\)
0.265668 + 0.964065i \(0.414407\pi\)
\(54\) 0 0
\(55\) 506.783i 1.24245i
\(56\) 248.675 + 28.0753i 0.593403 + 0.0669950i
\(57\) 0 0
\(58\) −247.083 + 273.001i −0.559372 + 0.618047i
\(59\) −624.620 360.624i −1.37828 0.795751i −0.386328 0.922362i \(-0.626257\pi\)
−0.991952 + 0.126611i \(0.959590\pi\)
\(60\) 0 0
\(61\) −163.824 + 94.5836i −0.343860 + 0.198528i −0.661978 0.749524i \(-0.730283\pi\)
0.318118 + 0.948051i \(0.396949\pi\)
\(62\) −102.002 + 473.894i −0.208939 + 0.970719i
\(63\) 0 0
\(64\) 150.696 + 489.321i 0.294327 + 0.955705i
\(65\) −886.843 + 512.019i −1.69230 + 0.977049i
\(66\) 0 0
\(67\) 197.490 342.063i 0.360108 0.623726i −0.627870 0.778318i \(-0.716073\pi\)
0.987978 + 0.154592i \(0.0494064\pi\)
\(68\) 428.560 + 596.278i 0.764273 + 1.06337i
\(69\) 0 0
\(70\) −507.170 + 163.351i −0.865977 + 0.278917i
\(71\) −131.203 −0.219310 −0.109655 0.993970i \(-0.534975\pi\)
−0.109655 + 0.993970i \(0.534975\pi\)
\(72\) 0 0
\(73\) −410.081 −0.657485 −0.328743 0.944420i \(-0.606625\pi\)
−0.328743 + 0.944420i \(0.606625\pi\)
\(74\) 697.737 224.729i 1.09609 0.353030i
\(75\) 0 0
\(76\) 886.778 637.350i 1.33843 0.961961i
\(77\) 164.530 284.975i 0.243506 0.421765i
\(78\) 0 0
\(79\) 144.247 83.2809i 0.205431 0.118605i −0.393755 0.919215i \(-0.628824\pi\)
0.599186 + 0.800610i \(0.295491\pi\)
\(80\) −721.072 817.566i −1.00773 1.14258i
\(81\) 0 0
\(82\) 9.84712 45.7491i 0.0132614 0.0616115i
\(83\) 430.457 248.524i 0.569262 0.328664i −0.187592 0.982247i \(-0.560068\pi\)
0.756855 + 0.653583i \(0.226735\pi\)
\(84\) 0 0
\(85\) −1353.99 781.724i −1.72777 0.997528i
\(86\) 323.905 357.880i 0.406134 0.448735i
\(87\) 0 0
\(88\) 668.980 + 75.5276i 0.810381 + 0.0914917i
\(89\) 313.674i 0.373588i 0.982399 + 0.186794i \(0.0598097\pi\)
−0.982399 + 0.186794i \(0.940190\pi\)
\(90\) 0 0
\(91\) 664.920 0.765963
\(92\) 47.7355 + 477.764i 0.0540953 + 0.541417i
\(93\) 0 0
\(94\) −341.196 + 376.985i −0.374380 + 0.413650i
\(95\) −1162.57 + 2013.63i −1.25555 + 2.17468i
\(96\) 0 0
\(97\) −319.471 553.340i −0.334406 0.579208i 0.648965 0.760819i \(-0.275202\pi\)
−0.983371 + 0.181611i \(0.941869\pi\)
\(98\) −610.204 131.342i −0.628979 0.135383i
\(99\) 0 0
\(100\) 1204.03 + 543.496i 1.20403 + 0.543496i
\(101\) −592.922 1026.97i −0.584138 1.01176i −0.994982 0.100052i \(-0.968099\pi\)
0.410844 0.911706i \(-0.365234\pi\)
\(102\) 0 0
\(103\) 633.840 + 365.947i 0.606350 + 0.350076i 0.771536 0.636186i \(-0.219489\pi\)
−0.165185 + 0.986263i \(0.552822\pi\)
\(104\) 543.722 + 1246.99i 0.512657 + 1.17574i
\(105\) 0 0
\(106\) 177.772 + 551.944i 0.162894 + 0.505751i
\(107\) 1377.39i 1.24446i 0.782833 + 0.622232i \(0.213774\pi\)
−0.782833 + 0.622232i \(0.786226\pi\)
\(108\) 0 0
\(109\) 1978.23i 1.73835i 0.494508 + 0.869173i \(0.335348\pi\)
−0.494508 + 0.869173i \(0.664652\pi\)
\(110\) −1364.38 + 439.443i −1.18262 + 0.380902i
\(111\) 0 0
\(112\) 140.046 + 693.835i 0.118153 + 0.585368i
\(113\) −241.953 139.691i −0.201425 0.116293i 0.395895 0.918296i \(-0.370434\pi\)
−0.597320 + 0.802003i \(0.703768\pi\)
\(114\) 0 0
\(115\) −511.145 885.330i −0.414474 0.717890i
\(116\) −949.231 428.480i −0.759775 0.342960i
\(117\) 0 0
\(118\) 429.262 1994.32i 0.334888 1.55587i
\(119\) 507.583 + 879.160i 0.391009 + 0.677247i
\(120\) 0 0
\(121\) −222.884 + 386.047i −0.167456 + 0.290043i
\(122\) −396.696 359.035i −0.294387 0.266439i
\(123\) 0 0
\(124\) −1364.28 + 136.311i −0.988031 + 0.0987185i
\(125\) −683.484 −0.489062
\(126\) 0 0
\(127\) 1164.89i 0.813916i 0.913447 + 0.406958i \(0.133410\pi\)
−0.913447 + 0.406958i \(0.866590\pi\)
\(128\) −1186.69 + 830.008i −0.819451 + 0.573149i
\(129\) 0 0
\(130\) −2147.47 1943.60i −1.44881 1.31127i
\(131\) 255.579 + 147.558i 0.170458 + 0.0984140i 0.582802 0.812614i \(-0.301956\pi\)
−0.412344 + 0.911028i \(0.635290\pi\)
\(132\) 0 0
\(133\) 1307.48 754.872i 0.852425 0.492148i
\(134\) 1092.16 + 235.079i 0.704092 + 0.151550i
\(135\) 0 0
\(136\) −1233.70 + 1670.83i −0.777863 + 1.05347i
\(137\) 2059.29 1188.93i 1.28421 0.741439i 0.306595 0.951840i \(-0.400810\pi\)
0.977615 + 0.210401i \(0.0674771\pi\)
\(138\) 0 0
\(139\) −948.118 + 1642.19i −0.578549 + 1.00208i 0.417097 + 0.908862i \(0.363048\pi\)
−0.995646 + 0.0932144i \(0.970286\pi\)
\(140\) −879.556 1223.77i −0.530972 0.738769i
\(141\) 0 0
\(142\) −113.769 353.230i −0.0672345 0.208749i
\(143\) 1788.75 1.04604
\(144\) 0 0
\(145\) 2217.41 1.26997
\(146\) −355.590 1104.03i −0.201568 0.625825i
\(147\) 0 0
\(148\) 1210.05 + 1683.60i 0.672062 + 0.935075i
\(149\) 1512.62 2619.94i 0.831669 1.44049i −0.0650446 0.997882i \(-0.520719\pi\)
0.896714 0.442611i \(-0.145948\pi\)
\(150\) 0 0
\(151\) 1082.68 625.086i 0.583492 0.336880i −0.179028 0.983844i \(-0.557295\pi\)
0.762520 + 0.646965i \(0.223962\pi\)
\(152\) 2484.84 + 1834.75i 1.32597 + 0.979066i
\(153\) 0 0
\(154\) 909.885 + 195.846i 0.476108 + 0.102478i
\(155\) 2528.10 1459.60i 1.31008 0.756374i
\(156\) 0 0
\(157\) −2000.27 1154.86i −1.01681 0.587055i −0.103631 0.994616i \(-0.533046\pi\)
−0.913178 + 0.407561i \(0.866379\pi\)
\(158\) 349.291 + 316.131i 0.175874 + 0.159177i
\(159\) 0 0
\(160\) 1575.82 2650.22i 0.778621 1.30949i
\(161\) 663.786i 0.324929i
\(162\) 0 0
\(163\) −688.368 −0.330780 −0.165390 0.986228i \(-0.552888\pi\)
−0.165390 + 0.986228i \(0.552888\pi\)
\(164\) 131.706 13.1593i 0.0627103 0.00626566i
\(165\) 0 0
\(166\) 1042.34 + 943.388i 0.487358 + 0.441091i
\(167\) −427.655 + 740.720i −0.198161 + 0.343225i −0.947932 0.318472i \(-0.896830\pi\)
0.749771 + 0.661697i \(0.230164\pi\)
\(168\) 0 0
\(169\) 708.735 + 1227.56i 0.322592 + 0.558746i
\(170\) 930.511 4323.09i 0.419805 1.95039i
\(171\) 0 0
\(172\) 1244.36 + 561.700i 0.551637 + 0.249007i
\(173\) −2177.53 3771.59i −0.956962 1.65751i −0.729814 0.683646i \(-0.760393\pi\)
−0.227147 0.973860i \(-0.572940\pi\)
\(174\) 0 0
\(175\) 1581.60 + 913.135i 0.683185 + 0.394437i
\(176\) 376.749 + 1866.54i 0.161355 + 0.799407i
\(177\) 0 0
\(178\) −844.482 + 271.993i −0.355599 + 0.114532i
\(179\) 943.783i 0.394087i 0.980395 + 0.197044i \(0.0631341\pi\)
−0.980395 + 0.197044i \(0.936866\pi\)
\(180\) 0 0
\(181\) 3910.87i 1.60604i −0.595954 0.803019i \(-0.703226\pi\)
0.595954 0.803019i \(-0.296774\pi\)
\(182\) 576.567 + 1790.12i 0.234824 + 0.729079i
\(183\) 0 0
\(184\) −1244.86 + 542.794i −0.498762 + 0.217475i
\(185\) −3823.00 2207.21i −1.51931 0.877175i
\(186\) 0 0
\(187\) 1365.49 + 2365.10i 0.533981 + 0.924882i
\(188\) −1310.79 591.686i −0.508506 0.229538i
\(189\) 0 0
\(190\) −6429.25 1383.84i −2.45488 0.528393i
\(191\) −153.069 265.123i −0.0579878 0.100438i 0.835574 0.549378i \(-0.185135\pi\)
−0.893562 + 0.448940i \(0.851802\pi\)
\(192\) 0 0
\(193\) −568.565 + 984.783i −0.212053 + 0.367286i −0.952357 0.304986i \(-0.901348\pi\)
0.740304 + 0.672272i \(0.234682\pi\)
\(194\) 1212.70 1339.90i 0.448797 0.495873i
\(195\) 0 0
\(196\) −175.520 1756.70i −0.0639648 0.640197i
\(197\) 5080.25 1.83732 0.918661 0.395046i \(-0.129271\pi\)
0.918661 + 0.395046i \(0.129271\pi\)
\(198\) 0 0
\(199\) 4952.26i 1.76410i −0.471154 0.882051i \(-0.656162\pi\)
0.471154 0.882051i \(-0.343838\pi\)
\(200\) −419.174 + 3712.81i −0.148201 + 1.31268i
\(201\) 0 0
\(202\) 2250.71 2486.79i 0.783957 0.866188i
\(203\) −1246.89 719.895i −0.431108 0.248900i
\(204\) 0 0
\(205\) −244.060 + 140.908i −0.0831506 + 0.0480070i
\(206\) −435.599 + 2023.76i −0.147328 + 0.684477i
\(207\) 0 0
\(208\) −2885.70 + 2545.11i −0.961958 + 0.848423i
\(209\) 3517.34 2030.74i 1.16411 0.672101i
\(210\) 0 0
\(211\) 2281.12 3951.02i 0.744261 1.28910i −0.206279 0.978493i \(-0.566135\pi\)
0.950539 0.310604i \(-0.100531\pi\)
\(212\) −1331.81 + 957.205i −0.431458 + 0.310100i
\(213\) 0 0
\(214\) −3708.26 + 1194.37i −1.18454 + 0.381520i
\(215\) −2906.83 −0.922067
\(216\) 0 0
\(217\) −1895.47 −0.592964
\(218\) −5325.84 + 1715.36i −1.65464 + 0.532931i
\(219\) 0 0
\(220\) −2366.16 3292.17i −0.725121 1.00890i
\(221\) −2759.19 + 4779.06i −0.839834 + 1.45464i
\(222\) 0 0
\(223\) −2534.14 + 1463.08i −0.760979 + 0.439352i −0.829647 0.558288i \(-0.811458\pi\)
0.0686679 + 0.997640i \(0.478125\pi\)
\(224\) −1746.53 + 978.676i −0.520958 + 0.291922i
\(225\) 0 0
\(226\) 166.279 772.521i 0.0489412 0.227378i
\(227\) −153.706 + 88.7420i −0.0449418 + 0.0259472i −0.522303 0.852760i \(-0.674927\pi\)
0.477361 + 0.878707i \(0.341594\pi\)
\(228\) 0 0
\(229\) −964.186 556.673i −0.278232 0.160638i 0.354391 0.935098i \(-0.384688\pi\)
−0.632623 + 0.774460i \(0.718022\pi\)
\(230\) 1940.29 2143.81i 0.556255 0.614602i
\(231\) 0 0
\(232\) 330.468 2927.09i 0.0935184 0.828332i
\(233\) 3511.90i 0.987434i 0.869623 + 0.493717i \(0.164362\pi\)
−0.869623 + 0.493717i \(0.835638\pi\)
\(234\) 0 0
\(235\) 3062.01 0.849973
\(236\) 5741.40 573.649i 1.58362 0.158226i
\(237\) 0 0
\(238\) −1926.76 + 2128.87i −0.524763 + 0.579807i
\(239\) 1232.78 2135.23i 0.333647 0.577894i −0.649577 0.760296i \(-0.725054\pi\)
0.983224 + 0.182402i \(0.0583873\pi\)
\(240\) 0 0
\(241\) 1304.59 + 2259.62i 0.348698 + 0.603963i 0.986018 0.166636i \(-0.0532905\pi\)
−0.637320 + 0.770599i \(0.719957\pi\)
\(242\) −1232.59 265.306i −0.327414 0.0704732i
\(243\) 0 0
\(244\) 622.622 1379.32i 0.163358 0.361894i
\(245\) 1879.44 + 3255.28i 0.490094 + 0.848867i
\(246\) 0 0
\(247\) 7107.36 + 4103.44i 1.83089 + 1.05707i
\(248\) −1549.98 3554.75i −0.396869 0.910190i
\(249\) 0 0
\(250\) −592.664 1840.10i −0.149933 0.465512i
\(251\) 7597.18i 1.91048i −0.295835 0.955239i \(-0.595598\pi\)
0.295835 0.955239i \(-0.404402\pi\)
\(252\) 0 0
\(253\) 1785.70i 0.443739i
\(254\) −3136.15 + 1010.10i −0.774723 + 0.249525i
\(255\) 0 0
\(256\) −3263.58 2475.13i −0.796772 0.604280i
\(257\) 2611.66 + 1507.84i 0.633894 + 0.365979i 0.782259 0.622954i \(-0.214068\pi\)
−0.148364 + 0.988933i \(0.547401\pi\)
\(258\) 0 0
\(259\) 1433.17 + 2482.32i 0.343833 + 0.595536i
\(260\) 3370.50 7466.83i 0.803961 1.78105i
\(261\) 0 0
\(262\) −175.643 + 816.028i −0.0414171 + 0.192421i
\(263\) −1054.16 1825.85i −0.247156 0.428088i 0.715579 0.698532i \(-0.246163\pi\)
−0.962736 + 0.270444i \(0.912830\pi\)
\(264\) 0 0
\(265\) 1746.01 3024.18i 0.404742 0.701034i
\(266\) 3166.03 + 2865.46i 0.729781 + 0.660499i
\(267\) 0 0
\(268\) 314.150 + 3144.19i 0.0716035 + 0.716649i
\(269\) −3771.97 −0.854949 −0.427475 0.904027i \(-0.640597\pi\)
−0.427475 + 0.904027i \(0.640597\pi\)
\(270\) 0 0
\(271\) 912.714i 0.204588i −0.994754 0.102294i \(-0.967382\pi\)
0.994754 0.102294i \(-0.0326183\pi\)
\(272\) −5568.02 1872.61i −1.24122 0.417439i
\(273\) 0 0
\(274\) 4986.52 + 4513.13i 1.09944 + 0.995065i
\(275\) 4254.78 + 2456.50i 0.932991 + 0.538663i
\(276\) 0 0
\(277\) 3177.08 1834.29i 0.689141 0.397876i −0.114149 0.993464i \(-0.536414\pi\)
0.803290 + 0.595588i \(0.203081\pi\)
\(278\) −5243.28 1128.57i −1.13119 0.243480i
\(279\) 0 0
\(280\) 2532.00 3429.13i 0.540413 0.731891i
\(281\) 178.841 103.254i 0.0379671 0.0219203i −0.480896 0.876777i \(-0.659689\pi\)
0.518863 + 0.854857i \(0.326355\pi\)
\(282\) 0 0
\(283\) −166.076 + 287.652i −0.0348841 + 0.0604210i −0.882940 0.469485i \(-0.844440\pi\)
0.848056 + 0.529906i \(0.177773\pi\)
\(284\) 852.324 612.586i 0.178085 0.127994i
\(285\) 0 0
\(286\) 1551.07 + 4815.74i 0.320687 + 0.995666i
\(287\) 182.986 0.0376354
\(288\) 0 0
\(289\) −3512.18 −0.714876
\(290\) 1922.76 + 5969.77i 0.389340 + 1.20882i
\(291\) 0 0
\(292\) 2663.97 1914.66i 0.533894 0.383723i
\(293\) 1010.55 1750.33i 0.201492 0.348994i −0.747518 0.664242i \(-0.768754\pi\)
0.949009 + 0.315248i \(0.102088\pi\)
\(294\) 0 0
\(295\) −10639.2 + 6142.55i −2.09979 + 1.21232i
\(296\) −3483.38 + 4717.61i −0.684012 + 0.926370i
\(297\) 0 0
\(298\) 8365.09 + 1800.52i 1.62610 + 0.350004i
\(299\) −3124.88 + 1804.15i −0.604403 + 0.348952i
\(300\) 0 0
\(301\) 1634.57 + 943.721i 0.313007 + 0.180715i
\(302\) 2621.69 + 2372.80i 0.499541 + 0.452117i
\(303\) 0 0
\(304\) −2784.92 + 8280.70i −0.525415 + 1.56227i
\(305\) 3222.11i 0.604909i
\(306\) 0 0
\(307\) −6085.37 −1.13130 −0.565652 0.824644i \(-0.691376\pi\)
−0.565652 + 0.824644i \(0.691376\pi\)
\(308\) 261.720 + 2619.44i 0.0484184 + 0.484599i
\(309\) 0 0
\(310\) 6121.75 + 5540.58i 1.12159 + 1.01511i
\(311\) 1912.33 3312.26i 0.348676 0.603925i −0.637338 0.770584i \(-0.719965\pi\)
0.986015 + 0.166659i \(0.0532979\pi\)
\(312\) 0 0
\(313\) −2367.38 4100.42i −0.427515 0.740478i 0.569136 0.822243i \(-0.307278\pi\)
−0.996652 + 0.0817649i \(0.973944\pi\)
\(314\) 1374.66 6386.59i 0.247060 1.14782i
\(315\) 0 0
\(316\) −548.219 + 1214.49i −0.0975940 + 0.216205i
\(317\) 2191.42 + 3795.64i 0.388272 + 0.672507i 0.992217 0.124519i \(-0.0397388\pi\)
−0.603945 + 0.797026i \(0.706405\pi\)
\(318\) 0 0
\(319\) −3354.37 1936.65i −0.588742 0.339910i
\(320\) 8501.43 + 1944.40i 1.48514 + 0.339673i
\(321\) 0 0
\(322\) −1787.06 + 575.583i −0.309283 + 0.0996148i
\(323\) 12529.8i 2.15845i
\(324\) 0 0
\(325\) 9927.50i 1.69440i
\(326\) −596.898 1853.24i −0.101408 0.314852i
\(327\) 0 0
\(328\) 149.633 + 343.171i 0.0251893 + 0.0577697i
\(329\) −1721.83 994.100i −0.288534 0.166585i
\(330\) 0 0
\(331\) −650.703 1127.05i −0.108054 0.187155i 0.806928 0.590650i \(-0.201129\pi\)
−0.914982 + 0.403495i \(0.867795\pi\)
\(332\) −1635.98 + 3624.26i −0.270440 + 0.599118i
\(333\) 0 0
\(334\) −2365.02 509.051i −0.387449 0.0833953i
\(335\) −3363.87 5826.40i −0.548621 0.950239i
\(336\) 0 0
\(337\) −3214.30 + 5567.33i −0.519567 + 0.899916i 0.480174 + 0.877173i \(0.340573\pi\)
−0.999741 + 0.0227432i \(0.992760\pi\)
\(338\) −2690.33 + 2972.53i −0.432942 + 0.478355i
\(339\) 0 0
\(340\) 12445.6 1243.50i 1.98517 0.198347i
\(341\) −5099.16 −0.809780
\(342\) 0 0
\(343\) 6234.20i 0.981385i
\(344\) −433.215 + 3837.17i −0.0678993 + 0.601413i
\(345\) 0 0
\(346\) 8265.80 9132.83i 1.28431 1.41903i
\(347\) −4391.49 2535.43i −0.679388 0.392245i 0.120236 0.992745i \(-0.461635\pi\)
−0.799624 + 0.600500i \(0.794968\pi\)
\(348\) 0 0
\(349\) 1404.61 810.954i 0.215436 0.124382i −0.388399 0.921491i \(-0.626972\pi\)
0.603835 + 0.797109i \(0.293638\pi\)
\(350\) −1086.93 + 5049.82i −0.165997 + 0.771212i
\(351\) 0 0
\(352\) −4698.46 + 2632.81i −0.711446 + 0.398663i
\(353\) −567.462 + 327.624i −0.0855607 + 0.0493985i −0.542170 0.840269i \(-0.682397\pi\)
0.456609 + 0.889667i \(0.349064\pi\)
\(354\) 0 0
\(355\) −1117.40 + 1935.40i −0.167058 + 0.289352i
\(356\) −1464.54 2037.69i −0.218034 0.303363i
\(357\) 0 0
\(358\) −2540.88 + 818.374i −0.375111 + 0.120817i
\(359\) 4876.78 0.716954 0.358477 0.933538i \(-0.383296\pi\)
0.358477 + 0.933538i \(0.383296\pi\)
\(360\) 0 0
\(361\) 11775.2 1.71676
\(362\) 10529.0 3391.20i 1.52870 0.492369i
\(363\) 0 0
\(364\) −4319.46 + 3104.50i −0.621981 + 0.447033i
\(365\) −3492.48 + 6049.16i −0.500835 + 0.867472i
\(366\) 0 0
\(367\) 4731.01 2731.45i 0.672907 0.388503i −0.124270 0.992248i \(-0.539659\pi\)
0.797177 + 0.603745i \(0.206326\pi\)
\(368\) −2540.77 2880.77i −0.359910 0.408073i
\(369\) 0 0
\(370\) 2627.31 12206.3i 0.369155 1.71507i
\(371\) −1963.64 + 1133.71i −0.274790 + 0.158650i
\(372\) 0 0
\(373\) −691.653 399.326i −0.0960119 0.0554325i 0.451225 0.892410i \(-0.350987\pi\)
−0.547237 + 0.836978i \(0.684320\pi\)
\(374\) −5183.34 + 5727.04i −0.716642 + 0.791813i
\(375\) 0 0
\(376\) 456.341 4042.01i 0.0625905 0.554390i
\(377\) 7826.62i 1.06921i
\(378\) 0 0
\(379\) −8792.42 −1.19165 −0.595827 0.803113i \(-0.703175\pi\)
−0.595827 + 0.803113i \(0.703175\pi\)
\(380\) −1849.31 18509.0i −0.249652 2.49866i
\(381\) 0 0
\(382\) 581.043 641.990i 0.0778239 0.0859871i
\(383\) −2819.36 + 4883.27i −0.376142 + 0.651497i −0.990497 0.137532i \(-0.956083\pi\)
0.614355 + 0.789030i \(0.289416\pi\)
\(384\) 0 0
\(385\) −2802.46 4854.01i −0.370978 0.642554i
\(386\) −3144.28 676.781i −0.414610 0.0892415i
\(387\) 0 0
\(388\) 4658.88 + 2103.00i 0.609585 + 0.275165i
\(389\) 2191.36 + 3795.54i 0.285620 + 0.494708i 0.972759 0.231817i \(-0.0744672\pi\)
−0.687139 + 0.726526i \(0.741134\pi\)
\(390\) 0 0
\(391\) −4770.90 2754.48i −0.617072 0.356266i
\(392\) 4577.24 1995.81i 0.589759 0.257152i
\(393\) 0 0
\(394\) 4405.19 + 13677.2i 0.563275 + 1.74885i
\(395\) 2837.06i 0.361388i
\(396\) 0 0
\(397\) 12772.4i 1.61469i 0.590082 + 0.807344i \(0.299096\pi\)
−0.590082 + 0.807344i \(0.700904\pi\)
\(398\) 13332.6 4294.21i 1.67916 0.540827i
\(399\) 0 0
\(400\) −10359.2 + 2090.94i −1.29490 + 0.261367i
\(401\) −1752.46 1011.79i −0.218239 0.126000i 0.386896 0.922124i \(-0.373547\pi\)
−0.605135 + 0.796123i \(0.706881\pi\)
\(402\) 0 0
\(403\) −5151.84 8923.25i −0.636803 1.10297i
\(404\) 8646.65 + 3903.07i 1.06482 + 0.480656i
\(405\) 0 0
\(406\) 856.914 3981.16i 0.104749 0.486655i
\(407\) 3855.48 + 6677.88i 0.469555 + 0.813293i
\(408\) 0 0
\(409\) 6852.57 11869.0i 0.828454 1.43492i −0.0707969 0.997491i \(-0.522554\pi\)
0.899251 0.437434i \(-0.144112\pi\)
\(410\) −590.986 534.880i −0.0711871 0.0644289i
\(411\) 0 0
\(412\) −5826.15 + 582.116i −0.696684 + 0.0696088i
\(413\) 7976.87 0.950402
\(414\) 0 0
\(415\) 8466.28i 1.00143i
\(416\) −9354.28 5562.04i −1.10248 0.655533i
\(417\) 0 0
\(418\) 8517.18 + 7708.60i 0.996624 + 0.902009i
\(419\) −10367.2 5985.52i −1.20876 0.697881i −0.246275 0.969200i \(-0.579207\pi\)
−0.962489 + 0.271319i \(0.912540\pi\)
\(420\) 0 0
\(421\) 7018.33 4052.04i 0.812477 0.469084i −0.0353385 0.999375i \(-0.511251\pi\)
0.847815 + 0.530292i \(0.177918\pi\)
\(422\) 12615.1 + 2715.29i 1.45519 + 0.313219i
\(423\) 0 0
\(424\) −3731.86 2755.53i −0.427441 0.315614i
\(425\) −13126.2 + 7578.40i −1.49815 + 0.864956i
\(426\) 0 0
\(427\) 1046.08 1811.86i 0.118555 0.205344i
\(428\) −6431.02 8947.82i −0.726297 1.01054i
\(429\) 0 0
\(430\) −2520.58 7825.86i −0.282681 0.877666i
\(431\) 2632.17 0.294170 0.147085 0.989124i \(-0.453011\pi\)
0.147085 + 0.989124i \(0.453011\pi\)
\(432\) 0 0
\(433\) −2392.15 −0.265495 −0.132747 0.991150i \(-0.542380\pi\)
−0.132747 + 0.991150i \(0.542380\pi\)
\(434\) −1643.61 5103.05i −0.181787 0.564411i
\(435\) 0 0
\(436\) −9236.30 12851.0i −1.01454 1.41158i
\(437\) −4096.43 + 7095.23i −0.448419 + 0.776684i
\(438\) 0 0
\(439\) −13175.7 + 7606.99i −1.43244 + 0.827020i −0.997307 0.0733455i \(-0.976632\pi\)
−0.435134 + 0.900366i \(0.643299\pi\)
\(440\) 6811.52 9224.96i 0.738015 0.999506i
\(441\) 0 0
\(442\) −15258.9 3284.35i −1.64206 0.353441i
\(443\) −1983.58 + 1145.22i −0.212738 + 0.122824i −0.602583 0.798056i \(-0.705862\pi\)
0.389845 + 0.920880i \(0.372528\pi\)
\(444\) 0 0
\(445\) 4627.03 + 2671.42i 0.492904 + 0.284579i
\(446\) −6136.37 5553.81i −0.651492 0.589642i
\(447\) 0 0
\(448\) −4149.27 3853.42i −0.437577 0.406377i
\(449\) 458.702i 0.0482126i 0.999709 + 0.0241063i \(0.00767402\pi\)
−0.999709 + 0.0241063i \(0.992326\pi\)
\(450\) 0 0
\(451\) 492.266 0.0513967
\(452\) 2223.99 222.208i 0.231433 0.0231235i
\(453\) 0 0
\(454\) −372.195 336.861i −0.0384757 0.0348230i
\(455\) 5662.83 9808.31i 0.583467 1.01060i
\(456\) 0 0
\(457\) −2863.81 4960.26i −0.293136 0.507727i 0.681413 0.731899i \(-0.261366\pi\)
−0.974550 + 0.224172i \(0.928032\pi\)
\(458\) 662.625 3078.51i 0.0676036 0.314082i
\(459\) 0 0
\(460\) 7454.09 + 3364.75i 0.755541 + 0.341049i
\(461\) −416.155 720.802i −0.0420440 0.0728223i 0.844238 0.535969i \(-0.180054\pi\)
−0.886282 + 0.463147i \(0.846720\pi\)
\(462\) 0 0
\(463\) −8632.04 4983.71i −0.866447 0.500244i −0.000281312 1.00000i \(-0.500090\pi\)
−0.866166 + 0.499756i \(0.833423\pi\)
\(464\) 8166.96 1648.45i 0.817116 0.164930i
\(465\) 0 0
\(466\) −9454.83 + 3045.24i −0.939886 + 0.302721i
\(467\) 436.159i 0.0432185i −0.999766 0.0216092i \(-0.993121\pi\)
0.999766 0.0216092i \(-0.00687897\pi\)
\(468\) 0 0
\(469\) 4368.41i 0.430094i
\(470\) 2655.14 + 8243.64i 0.260579 + 0.809044i
\(471\) 0 0
\(472\) 6522.89 + 14959.7i 0.636102 + 1.45885i
\(473\) 4397.29 + 2538.78i 0.427458 + 0.246793i
\(474\) 0 0
\(475\) 11270.5 + 19521.1i 1.08869 + 1.88566i
\(476\) −7402.14 3341.30i −0.712766 0.321740i
\(477\) 0 0
\(478\) 6817.50 + 1467.41i 0.652354 + 0.140414i
\(479\) 801.979 + 1389.07i 0.0764997 + 0.132501i 0.901737 0.432284i \(-0.142292\pi\)
−0.825238 + 0.564785i \(0.808959\pi\)
\(480\) 0 0
\(481\) −7790.62 + 13493.8i −0.738507 + 1.27913i
\(482\) −4952.18 + 5471.63i −0.467978 + 0.517066i
\(483\) 0 0
\(484\) −354.544 3548.48i −0.0332968 0.333253i
\(485\) −10883.2 −1.01893
\(486\) 0 0
\(487\) 17352.2i 1.61458i −0.590152 0.807292i \(-0.700932\pi\)
0.590152 0.807292i \(-0.299068\pi\)
\(488\) 4253.35 + 480.201i 0.394549 + 0.0445444i
\(489\) 0 0
\(490\) −7134.27 + 7882.61i −0.657742 + 0.726735i
\(491\) −534.280 308.467i −0.0491073 0.0283521i 0.475245 0.879853i \(-0.342359\pi\)
−0.524353 + 0.851501i \(0.675693\pi\)
\(492\) 0 0
\(493\) 10348.4 5974.64i 0.945370 0.545810i
\(494\) −4884.45 + 22692.8i −0.444862 + 2.06680i
\(495\) 0 0
\(496\) 8226.20 7255.30i 0.744692 0.656799i
\(497\) 1256.68 725.542i 0.113420 0.0654829i
\(498\) 0 0
\(499\) 3190.76 5526.56i 0.286249 0.495797i −0.686663 0.726976i \(-0.740925\pi\)
0.972911 + 0.231179i \(0.0742584\pi\)
\(500\) 4440.05 3191.18i 0.397130 0.285427i
\(501\) 0 0
\(502\) 20453.4 6587.68i 1.81848 0.585702i
\(503\) −518.133 −0.0459292 −0.0229646 0.999736i \(-0.507311\pi\)
−0.0229646 + 0.999736i \(0.507311\pi\)
\(504\) 0 0
\(505\) −20198.6 −1.77986
\(506\) −4807.52 + 1548.42i −0.422372 + 0.136039i
\(507\) 0 0
\(508\) −5438.85 7567.36i −0.475019 0.660920i
\(509\) 7194.61 12461.4i 0.626513 1.08515i −0.361733 0.932282i \(-0.617815\pi\)
0.988246 0.152871i \(-0.0488520\pi\)
\(510\) 0 0
\(511\) 3927.79 2267.71i 0.340030 0.196316i
\(512\) 3833.70 10932.5i 0.330913 0.943661i
\(513\) 0 0
\(514\) −1794.83 + 8338.67i −0.154021 + 0.715570i
\(515\) 10796.3 6233.22i 0.923767 0.533337i
\(516\) 0 0
\(517\) −4632.04 2674.31i −0.394036 0.227497i
\(518\) −5440.25 + 6010.89i −0.461449 + 0.509852i
\(519\) 0 0
\(520\) 23025.1 + 2599.52i 1.94176 + 0.219224i
\(521\) 15224.9i 1.28026i −0.768267 0.640130i \(-0.778881\pi\)
0.768267 0.640130i \(-0.221119\pi\)
\(522\) 0 0
\(523\) 6328.57 0.529118 0.264559 0.964369i \(-0.414774\pi\)
0.264559 + 0.964369i \(0.414774\pi\)
\(524\) −2349.24 + 234.723i −0.195853 + 0.0195685i
\(525\) 0 0
\(526\) 4001.54 4421.27i 0.331702 0.366496i
\(527\) 7865.57 13623.6i 0.650151 1.12609i
\(528\) 0 0
\(529\) 4282.43 + 7417.39i 0.351971 + 0.609631i
\(530\) 9655.79 + 2078.33i 0.791360 + 0.170334i
\(531\) 0 0
\(532\) −4969.15 + 11008.4i −0.404962 + 0.897131i
\(533\) 497.352 + 861.439i 0.0404178 + 0.0700057i
\(534\) 0 0
\(535\) 20318.1 + 11730.6i 1.64192 + 0.947963i
\(536\) −8192.47 + 3572.16i −0.660188 + 0.287861i
\(537\) 0 0
\(538\) −3270.76 10155.0i −0.262105 0.813781i
\(539\) 6565.88i 0.524698i
\(540\) 0 0
\(541\) 5488.92i 0.436206i −0.975926 0.218103i \(-0.930013\pi\)
0.975926 0.218103i \(-0.0699868\pi\)
\(542\) 2457.24 791.434i 0.194737 0.0627214i
\(543\) 0 0
\(544\) 213.333 16614.2i 0.0168135 1.30942i
\(545\) 29181.0 + 16847.7i 2.29354 + 1.32417i
\(546\) 0 0
\(547\) −10861.9 18813.4i −0.849037 1.47058i −0.882069 0.471121i \(-0.843849\pi\)
0.0330315 0.999454i \(-0.489484\pi\)
\(548\) −7826.45 + 17338.3i −0.610090 + 1.35156i
\(549\) 0 0
\(550\) −2924.04 + 13584.9i −0.226694 + 1.05320i
\(551\) −8885.41 15390.0i −0.686989 1.18990i
\(552\) 0 0
\(553\) −921.070 + 1595.34i −0.0708280 + 0.122678i
\(554\) 7693.23 + 6962.87i 0.589989 + 0.533978i
\(555\) 0 0
\(556\) −1508.18 15094.7i −0.115038 1.15137i
\(557\) 17630.6 1.34117 0.670586 0.741832i \(-0.266043\pi\)
0.670586 + 0.741832i \(0.266043\pi\)
\(558\) 0 0
\(559\) 10260.0i 0.776302i
\(560\) 11427.5 + 3843.25i 0.862325 + 0.290012i
\(561\) 0 0
\(562\) 433.060 + 391.947i 0.0325045 + 0.0294187i
\(563\) 16401.0 + 9469.15i 1.22775 + 0.708840i 0.966558 0.256447i \(-0.0825521\pi\)
0.261189 + 0.965288i \(0.415885\pi\)
\(564\) 0 0
\(565\) −4121.21 + 2379.38i −0.306868 + 0.177170i
\(566\) −918.434 197.685i −0.0682061 0.0146808i
\(567\) 0 0
\(568\) 2388.29 + 1763.46i 0.176427 + 0.130270i
\(569\) −6640.91 + 3834.13i −0.489282 + 0.282487i −0.724277 0.689510i \(-0.757826\pi\)
0.234995 + 0.971997i \(0.424493\pi\)
\(570\) 0 0
\(571\) −9216.49 + 15963.4i −0.675478 + 1.16996i 0.300850 + 0.953671i \(0.402730\pi\)
−0.976329 + 0.216292i \(0.930604\pi\)
\(572\) −11620.1 + 8351.66i −0.849408 + 0.610490i
\(573\) 0 0
\(574\) 158.671 + 492.642i 0.0115380 + 0.0358231i
\(575\) −9910.56 −0.718780
\(576\) 0 0
\(577\) 21712.7 1.56657 0.783286 0.621662i \(-0.213542\pi\)
0.783286 + 0.621662i \(0.213542\pi\)
\(578\) −3045.49 9455.61i −0.219162 0.680452i
\(579\) 0 0
\(580\) −14404.7 + 10353.0i −1.03125 + 0.741184i
\(581\) −2748.63 + 4760.77i −0.196269 + 0.339948i
\(582\) 0 0
\(583\) −5282.53 + 3049.87i −0.375266 + 0.216660i
\(584\) 7464.70 + 5511.78i 0.528924 + 0.390546i
\(585\) 0 0
\(586\) 5588.55 + 1202.89i 0.393961 + 0.0847969i
\(587\) −398.575 + 230.117i −0.0280255 + 0.0161805i −0.513947 0.857822i \(-0.671817\pi\)
0.485922 + 0.874002i \(0.338484\pi\)
\(588\) 0 0
\(589\) −20260.8 11697.6i −1.41737 0.818320i
\(590\) −25762.7 23316.9i −1.79768 1.62702i
\(591\) 0 0
\(592\) −15721.4 5287.33i −1.09146 0.367074i
\(593\) 11291.5i 0.781930i 0.920406 + 0.390965i \(0.127859\pi\)
−0.920406 + 0.390965i \(0.872141\pi\)
\(594\) 0 0
\(595\) 17291.4 1.19139
\(596\) 2406.14 + 24082.0i 0.165368 + 1.65510i
\(597\) 0 0
\(598\) −7566.84 6848.48i −0.517443 0.468319i
\(599\) −13786.9 + 23879.6i −0.940431 + 1.62887i −0.175781 + 0.984429i \(0.556245\pi\)
−0.764650 + 0.644445i \(0.777088\pi\)
\(600\) 0 0
\(601\) 2266.68 + 3926.00i 0.153843 + 0.266464i 0.932637 0.360816i \(-0.117502\pi\)
−0.778794 + 0.627280i \(0.784168\pi\)
\(602\) −1123.34 + 5218.97i −0.0760531 + 0.353337i
\(603\) 0 0
\(604\) −4114.80 + 9115.70i −0.277200 + 0.614094i
\(605\) 3796.41 + 6575.58i 0.255117 + 0.441876i
\(606\) 0 0
\(607\) 9493.59 + 5481.13i 0.634815 + 0.366511i 0.782615 0.622507i \(-0.213886\pi\)
−0.147799 + 0.989017i \(0.547219\pi\)
\(608\) −24708.4 317.266i −1.64812 0.0211625i
\(609\) 0 0
\(610\) −8674.65 + 2793.96i −0.575781 + 0.185449i
\(611\) 10807.7i 0.715605i
\(612\) 0 0
\(613\) 17689.3i 1.16552i 0.812644 + 0.582760i \(0.198027\pi\)
−0.812644 + 0.582760i \(0.801973\pi\)
\(614\) −5276.76 16383.2i −0.346828 1.07683i
\(615\) 0 0
\(616\) −6825.20 + 2975.98i −0.446421 + 0.194652i
\(617\) −11483.7 6630.14i −0.749300 0.432609i 0.0761408 0.997097i \(-0.475740\pi\)
−0.825441 + 0.564488i \(0.809073\pi\)
\(618\) 0 0
\(619\) 400.480 + 693.652i 0.0260043 + 0.0450408i 0.878735 0.477311i \(-0.158388\pi\)
−0.852730 + 0.522351i \(0.825055\pi\)
\(620\) −9608.22 + 21285.5i −0.622380 + 1.37879i
\(621\) 0 0
\(622\) 10575.6 + 2276.31i 0.681739 + 0.146739i
\(623\) −1734.59 3004.39i −0.111548 0.193208i
\(624\) 0 0
\(625\) 4499.49 7793.35i 0.287968 0.498774i
\(626\) 8986.48 9929.10i 0.573757 0.633940i
\(627\) 0 0
\(628\) 18386.2 1837.04i 1.16829 0.116729i
\(629\) −23788.6 −1.50797
\(630\) 0 0
\(631\) 12560.3i 0.792422i 0.918160 + 0.396211i \(0.129675\pi\)
−0.918160 + 0.396211i \(0.870325\pi\)
\(632\) −3745.07 422.817i −0.235713 0.0266120i
\(633\) 0 0
\(634\) −8318.52 + 9191.08i −0.521089 + 0.575748i
\(635\) 17183.4 + 9920.85i 1.07386 + 0.619995i
\(636\) 0 0
\(637\) 11489.9 6633.71i 0.714674 0.412617i
\(638\) 2305.25 10710.0i 0.143050 0.664600i
\(639\) 0 0
\(640\) 2137.00 + 24573.8i 0.131988 + 1.51776i
\(641\) 18575.0 10724.3i 1.14457 0.660816i 0.197010 0.980401i \(-0.436877\pi\)
0.947558 + 0.319585i \(0.103544\pi\)
\(642\) 0 0
\(643\) −1549.71 + 2684.17i −0.0950458 + 0.164624i −0.909628 0.415424i \(-0.863633\pi\)
0.814582 + 0.580049i \(0.196966\pi\)
\(644\) −3099.20 4312.08i −0.189636 0.263851i
\(645\) 0 0
\(646\) −33733.2 + 10864.9i −2.05451 + 0.661723i
\(647\) −7913.28 −0.480840 −0.240420 0.970669i \(-0.577285\pi\)
−0.240420 + 0.970669i \(0.577285\pi\)
\(648\) 0 0
\(649\) 21459.2 1.29792
\(650\) −26727.1 + 8608.35i −1.61281 + 0.519457i
\(651\) 0 0
\(652\) 4471.78 3213.98i 0.268602 0.193051i
\(653\) 3180.84 5509.37i 0.190621 0.330166i −0.754835 0.655915i \(-0.772283\pi\)
0.945456 + 0.325749i \(0.105616\pi\)
\(654\) 0 0
\(655\) 4353.30 2513.38i 0.259691 0.149933i
\(656\) −794.146 + 700.417i −0.0472655 + 0.0416870i
\(657\) 0 0
\(658\) 1183.31 5497.57i 0.0701066 0.325711i
\(659\) −20242.2 + 11686.8i −1.19654 + 0.690825i −0.959783 0.280742i \(-0.909419\pi\)
−0.236762 + 0.971568i \(0.576086\pi\)
\(660\) 0 0
\(661\) −3037.57 1753.74i −0.178741 0.103196i 0.407960 0.913000i \(-0.366240\pi\)
−0.586701 + 0.809804i \(0.699574\pi\)
\(662\) 2470.04 2729.13i 0.145016 0.160228i
\(663\) 0 0
\(664\) −11175.9 1261.76i −0.653178 0.0737435i
\(665\) 25715.6i 1.49956i
\(666\) 0 0
\(667\) 7813.26 0.453569
\(668\) −680.275 6808.58i −0.0394021 0.394359i
\(669\) 0 0
\(670\) 12769.1 14108.5i 0.736289 0.813521i
\(671\) 2814.13 4874.22i 0.161905 0.280428i
\(672\) 0 0
\(673\) 12801.6 + 22173.1i 0.733234 + 1.27000i 0.955494 + 0.295010i \(0.0953231\pi\)
−0.222261 + 0.974987i \(0.571344\pi\)
\(674\) −17775.7 3826.08i −1.01587 0.218657i
\(675\) 0 0
\(676\) −10335.6 4665.44i −0.588050 0.265444i
\(677\) −3433.18 5946.45i −0.194901 0.337578i 0.751967 0.659201i \(-0.229105\pi\)
−0.946868 + 0.321622i \(0.895772\pi\)
\(678\) 0 0
\(679\) 6119.83 + 3533.29i 0.345887 + 0.199698i
\(680\) 14139.6 + 32428.2i 0.797398 + 1.82877i
\(681\) 0 0
\(682\) −4421.59 13728.1i −0.248257 0.770787i
\(683\) 5563.45i 0.311683i 0.987782 + 0.155841i \(0.0498089\pi\)
−0.987782 + 0.155841i \(0.950191\pi\)
\(684\) 0 0
\(685\) 40502.3i 2.25915i
\(686\) 16783.9 5405.81i 0.934128 0.300867i
\(687\) 0 0
\(688\) −10706.2 + 2160.98i −0.593270 + 0.119748i
\(689\) −10674.2 6162.76i −0.590211 0.340758i
\(690\) 0 0
\(691\) 16086.6 + 27862.8i 0.885620 + 1.53394i 0.845001 + 0.534765i \(0.179600\pi\)
0.0406192 + 0.999175i \(0.487067\pi\)
\(692\) 31755.1 + 14334.2i 1.74443 + 0.787432i
\(693\) 0 0
\(694\) 3018.00 14021.4i 0.165075 0.766925i
\(695\) 16149.4 + 27971.6i 0.881412 + 1.52665i
\(696\) 0 0
\(697\) −759.331 + 1315.20i −0.0412650 + 0.0714731i
\(698\) 3401.25 + 3078.35i 0.184440 + 0.166930i
\(699\) 0 0
\(700\) −14537.8 + 1452.53i −0.784966 + 0.0784294i
\(701\) −18575.6 −1.00084 −0.500422 0.865782i \(-0.666822\pi\)
−0.500422 + 0.865782i \(0.666822\pi\)
\(702\) 0 0
\(703\) 35378.2i 1.89803i
\(704\) −11162.3 10366.4i −0.597577 0.554968i
\(705\) 0 0
\(706\) −1374.10 1243.65i −0.0732505 0.0662964i
\(707\) 11358.1 + 6557.60i 0.604194 + 0.348832i
\(708\) 0 0
\(709\) −11602.4 + 6698.64i −0.614579 + 0.354827i −0.774756 0.632261i \(-0.782127\pi\)
0.160176 + 0.987088i \(0.448794\pi\)
\(710\) −6179.45 1330.08i −0.326635 0.0703055i
\(711\) 0 0
\(712\) 4215.99 5709.79i 0.221911 0.300539i
\(713\) 8908.02 5143.05i 0.467893 0.270138i
\(714\) 0 0
\(715\) 15234.0 26386.1i 0.796812 1.38012i
\(716\) −4406.50 6131.00i −0.229998 0.320009i
\(717\) 0 0
\(718\) 4228.76 + 13129.4i 0.219799 + 0.682431i
\(719\) −10940.1 −0.567449 −0.283724 0.958906i \(-0.591570\pi\)
−0.283724 + 0.958906i \(0.591570\pi\)
\(720\) 0 0
\(721\) −8094.61 −0.418113
\(722\) 10210.5 + 31701.6i 0.526312 + 1.63409i
\(723\) 0 0
\(724\) 18259.8 + 25405.8i 0.937320 + 1.30414i
\(725\) 10748.3 18616.6i 0.550595 0.953659i
\(726\) 0 0
\(727\) 21844.7 12612.0i 1.11441 0.643403i 0.174439 0.984668i \(-0.444189\pi\)
0.939967 + 0.341265i \(0.110855\pi\)
\(728\) −12103.5 8936.99i −0.616190 0.454982i
\(729\) 0 0
\(730\) −19314.1 4157.21i −0.979243 0.210774i
\(731\) −13565.8 + 7832.24i −0.686389 + 0.396287i
\(732\) 0 0
\(733\) −18183.8 10498.4i −0.916281 0.529015i −0.0338341 0.999427i \(-0.510772\pi\)
−0.882447 + 0.470413i \(0.844105\pi\)
\(734\) 11456.1 + 10368.5i 0.576091 + 0.521400i
\(735\) 0 0
\(736\) 5552.55 9338.32i 0.278084 0.467683i
\(737\) 11751.8i 0.587358i
\(738\) 0 0
\(739\) −13554.1 −0.674691 −0.337346 0.941381i \(-0.609529\pi\)
−0.337346 + 0.941381i \(0.609529\pi\)
\(740\) 35140.4 3511.03i 1.74566 0.174416i
\(741\) 0 0
\(742\) −4754.91 4303.50i −0.235254 0.212920i
\(743\) 3833.05 6639.04i 0.189261 0.327810i −0.755743 0.654868i \(-0.772724\pi\)
0.945004 + 0.327058i \(0.106057\pi\)
\(744\) 0 0
\(745\) −25764.6 44625.7i −1.26704 2.19457i
\(746\) 475.330 2208.35i 0.0233285 0.108383i
\(747\) 0 0
\(748\) −19913.1 8988.70i −0.973388 0.439384i
\(749\) −7616.85 13192.8i −0.371580 0.643596i
\(750\) 0 0
\(751\) −19535.6 11278.9i −0.949220 0.548032i −0.0563812 0.998409i \(-0.517956\pi\)
−0.892838 + 0.450377i \(0.851290\pi\)
\(752\) 11277.7 2276.34i 0.546883 0.110385i
\(753\) 0 0
\(754\) 21071.1 6786.63i 1.01772 0.327791i
\(755\) 21294.3i 1.02646i
\(756\) 0 0
\(757\) 1488.41i 0.0714625i 0.999361 + 0.0357312i \(0.0113760\pi\)
−0.999361 + 0.0357312i \(0.988624\pi\)
\(758\) −7624.10 23671.2i −0.365330 1.13427i
\(759\) 0 0
\(760\) 48226.9 21028.3i 2.30181 1.00365i
\(761\) −6200.52 3579.87i −0.295360 0.170526i 0.344997 0.938604i \(-0.387880\pi\)
−0.640356 + 0.768078i \(0.721213\pi\)
\(762\) 0 0
\(763\) −10939.4 18947.6i −0.519047 0.899016i
\(764\) 2232.22 + 1007.62i 0.105705 + 0.0477150i
\(765\) 0 0
\(766\) −15591.6 3355.97i −0.735441 0.158298i
\(767\) 21680.9 + 37552.4i 1.02067 + 1.76785i
\(768\) 0 0
\(769\) −13431.2 + 23263.6i −0.629835 + 1.09091i 0.357750 + 0.933818i \(0.383544\pi\)
−0.987585 + 0.157089i \(0.949789\pi\)
\(770\) 10638.0 11753.9i 0.497880 0.550105i
\(771\) 0 0
\(772\) −904.422 9051.97i −0.0421643 0.422004i
\(773\) 30329.6 1.41123 0.705613 0.708597i \(-0.250672\pi\)
0.705613 + 0.708597i \(0.250672\pi\)
\(774\) 0 0
\(775\) 28300.1i 1.31170i
\(776\) −1621.95 + 14366.3i −0.0750319 + 0.664589i
\(777\) 0 0
\(778\) −8318.29 + 9190.83i −0.383323 + 0.423531i
\(779\) 1955.95 + 1129.27i 0.0899605 + 0.0519387i
\(780\) 0 0
\(781\) 3380.68 1951.84i 0.154892 0.0894267i
\(782\) 3278.75 15232.8i 0.149933 0.696580i
\(783\) 0 0
\(784\) 9342.20 + 10592.4i 0.425574 + 0.482524i
\(785\) −34070.8 + 19670.8i −1.54910 + 0.894371i
\(786\) 0 0
\(787\) −13373.7 + 23164.0i −0.605746 + 1.04918i 0.386187 + 0.922421i \(0.373792\pi\)
−0.991933 + 0.126763i \(0.959541\pi\)
\(788\) −33002.3 + 23719.6i −1.49195 + 1.07230i
\(789\) 0 0
\(790\) 7638.03 2460.08i 0.343986 0.110792i
\(791\) 3089.92 0.138894
\(792\) 0 0
\(793\) 11372.8 0.509282
\(794\) −34386.4 + 11075.3i −1.53693 + 0.495021i
\(795\) 0 0
\(796\) 23122.0 + 32170.9i 1.02957 + 1.43250i
\(797\) 17637.8 30549.6i 0.783894 1.35775i −0.145763 0.989320i \(-0.546564\pi\)
0.929657 0.368426i \(-0.120103\pi\)
\(798\) 0 0
\(799\) 14290.0 8250.35i 0.632722 0.365302i
\(800\) −14612.0 26076.2i −0.645764 1.15242i
\(801\) 0 0
\(802\) 1204.36 5595.38i 0.0530267 0.246359i
\(803\) 10566.5 6100.55i 0.464361 0.268099i
\(804\) 0 0
\(805\) 9791.57 + 5653.17i 0.428705 + 0.247513i
\(806\) 19556.2 21607.5i 0.854636 0.944282i
\(807\) 0 0
\(808\) −3010.27 + 26663.2i −0.131065 + 1.16090i
\(809\) 15744.5i 0.684238i 0.939657 + 0.342119i \(0.111145\pi\)
−0.939657 + 0.342119i \(0.888855\pi\)
\(810\) 0 0
\(811\) −24665.7 −1.06798 −0.533989 0.845491i \(-0.679308\pi\)
−0.533989 + 0.845491i \(0.679308\pi\)
\(812\) 11461.3 1145.14i 0.495334 0.0494910i
\(813\) 0 0
\(814\) −14635.2 + 16170.4i −0.630178 + 0.696279i
\(815\) −5862.52 + 10154.2i −0.251970 + 0.436424i
\(816\) 0 0
\(817\) 11648.0 + 20174.9i 0.498791 + 0.863932i
\(818\) 37896.1 + 8156.83i 1.61981 + 0.348651i
\(819\) 0 0
\(820\) 927.565 2054.88i 0.0395024 0.0875114i
\(821\) −8244.80 14280.4i −0.350482 0.607052i 0.635852 0.771811i \(-0.280649\pi\)
−0.986334 + 0.164759i \(0.947315\pi\)
\(822\) 0 0
\(823\) 19313.2 + 11150.5i 0.818004 + 0.472275i 0.849728 0.527222i \(-0.176766\pi\)
−0.0317237 + 0.999497i \(0.510100\pi\)
\(824\) −6619.17 15180.6i −0.279842 0.641796i
\(825\) 0 0
\(826\) 6916.91 + 21475.6i 0.291368 + 0.904637i
\(827\) 25362.4i 1.06643i −0.845980 0.533214i \(-0.820984\pi\)
0.845980 0.533214i \(-0.179016\pi\)
\(828\) 0 0
\(829\) 14068.1i 0.589390i 0.955591 + 0.294695i \(0.0952180\pi\)
−0.955591 + 0.294695i \(0.904782\pi\)
\(830\) 22793.2 7341.30i 0.953208 0.307012i
\(831\) 0 0
\(832\) 6863.00 30006.8i 0.285976 1.25036i
\(833\) 17542.2 + 10128.0i 0.729655 + 0.421266i
\(834\) 0 0
\(835\) 7284.29 + 12616.8i 0.301896 + 0.522899i
\(836\) −13367.9 + 29614.5i −0.553036 + 1.22517i
\(837\) 0 0
\(838\) 7124.76 33101.1i 0.293700 1.36451i
\(839\) −17579.0 30447.8i −0.723355 1.25289i −0.959647 0.281206i \(-0.909266\pi\)
0.236292 0.971682i \(-0.424068\pi\)
\(840\) 0 0
\(841\) 3720.79 6444.60i 0.152560 0.264242i
\(842\) 16994.8 + 15381.4i 0.695580 + 0.629545i
\(843\) 0 0
\(844\) 3628.60 + 36317.1i 0.147988 + 1.48115i
\(845\) 24143.9 0.982930
\(846\) 0 0
\(847\) 4930.11i 0.200001i
\(848\) 4182.54 12436.4i 0.169374 0.503617i
\(849\) 0 0
\(850\) −31784.8 28767.3i −1.28260 1.16083i
\(851\) −13470.7 7777.32i −0.542621 0.313282i
\(852\) 0 0
\(853\) −24779.3 + 14306.3i −0.994637 + 0.574254i −0.906657 0.421868i \(-0.861374\pi\)
−0.0879799 + 0.996122i \(0.528041\pi\)
\(854\) 5785.01 + 1245.18i 0.231802 + 0.0498936i
\(855\) 0 0
\(856\) 18513.1 25072.6i 0.739212 1.00113i
\(857\) 3490.42 2015.20i 0.139126 0.0803242i −0.428822 0.903389i \(-0.641071\pi\)
0.567947 + 0.823065i \(0.307738\pi\)
\(858\) 0 0
\(859\) 16530.6 28631.9i 0.656599 1.13726i −0.324892 0.945751i \(-0.605328\pi\)
0.981490 0.191511i \(-0.0613387\pi\)
\(860\) 18883.4 13571.9i 0.748741 0.538139i
\(861\) 0 0
\(862\) 2282.41 + 7086.41i 0.0901847 + 0.280005i
\(863\) 7712.99 0.304233 0.152117 0.988363i \(-0.451391\pi\)
0.152117 + 0.988363i \(0.451391\pi\)
\(864\) 0 0
\(865\) −74180.1 −2.91584
\(866\) −2074.28 6440.21i −0.0813938 0.252711i
\(867\) 0 0
\(868\) 12313.4 8849.93i 0.481501 0.346067i
\(869\) −2477.84 + 4291.75i −0.0967262 + 0.167535i
\(870\) 0 0
\(871\) −20565.0 + 11873.2i −0.800021 + 0.461892i
\(872\) 26588.7 36009.6i 1.03258 1.39844i
\(873\) 0 0
\(874\) −22654.1 4876.11i −0.876758 0.188715i
\(875\) 6546.46 3779.60i 0.252927 0.146027i
\(876\) 0 0
\(877\) 6756.94 + 3901.12i 0.260166 + 0.150207i 0.624410 0.781096i \(-0.285339\pi\)
−0.364244 + 0.931303i \(0.618673\pi\)
\(878\) −31904.7 28875.8i −1.22635 1.10992i
\(879\) 0 0
\(880\) 30742.1 + 10339.0i 1.17763 + 0.396055i
\(881\) 13478.5i 0.515439i 0.966220 + 0.257720i \(0.0829711\pi\)
−0.966220 + 0.257720i \(0.917029\pi\)
\(882\) 0 0
\(883\) 7582.25 0.288973 0.144486 0.989507i \(-0.453847\pi\)
0.144486 + 0.989507i \(0.453847\pi\)
\(884\) −4389.07 43928.4i −0.166992 1.67135i
\(885\) 0 0
\(886\) −4803.20 4347.21i −0.182130 0.164839i
\(887\) −23011.6 + 39857.2i −0.871086 + 1.50877i −0.0102115 + 0.999948i \(0.503250\pi\)
−0.860874 + 0.508817i \(0.830083\pi\)
\(888\) 0 0
\(889\) −6441.73 11157.4i −0.243024 0.420930i
\(890\) −3179.87 + 14773.5i −0.119764 + 0.556414i
\(891\) 0 0
\(892\) 9631.15 21336.3i 0.361519 0.800889i
\(893\) −12269.8 21252.0i −0.459792 0.796383i
\(894\) 0 0
\(895\) 13921.8 + 8037.78i 0.519951 + 0.300194i
\(896\) 6776.36 14512.2i 0.252659 0.541091i
\(897\) 0 0
\(898\) −1234.93 + 397.750i −0.0458911 + 0.0147807i
\(899\) 22311.2i 0.827718i
\(900\) 0 0
\(901\) 18818.0i 0.695802i
\(902\) 426.855 + 1325.29i 0.0157569 + 0.0489218i
\(903\) 0 0
\(904\) 2526.70 + 5794.81i 0.0929612 + 0.213200i
\(905\) −57689.7 33307.1i −2.11897 1.22339i
\(906\) 0 0
\(907\) −23434.9 40590.5i −0.857931 1.48598i −0.873899 0.486108i \(-0.838416\pi\)
0.0159676 0.999873i \(-0.494917\pi\)
\(908\) 584.168 1294.13i 0.0213505 0.0472988i
\(909\) 0 0
\(910\) 31316.6 + 6740.65i 1.14081 + 0.245550i
\(911\) 19401.4 + 33604.1i 0.705593 + 1.22212i 0.966477 + 0.256753i \(0.0826527\pi\)
−0.260884 + 0.965370i \(0.584014\pi\)
\(912\) 0 0
\(913\) −7394.31 + 12807.3i −0.268035 + 0.464250i
\(914\) 10870.9 12011.2i 0.393411 0.434677i
\(915\) 0 0
\(916\) 8862.64 885.506i 0.319683 0.0319410i
\(917\) −3263.93 −0.117540
\(918\) 0 0
\(919\) 7904.72i 0.283735i 0.989886 + 0.141868i \(0.0453107\pi\)
−0.989886 + 0.141868i \(0.954689\pi\)
\(920\) −2595.08 + 22985.8i −0.0929972 + 0.823715i
\(921\) 0 0
\(922\) 1579.71 1745.41i 0.0564261 0.0623448i
\(923\) 6831.22 + 3944.00i 0.243610 + 0.140648i
\(924\) 0 0
\(925\) −37061.9 + 21397.7i −1.31739 + 0.760597i
\(926\) 5932.27 27560.9i 0.210525 0.978087i
\(927\) 0 0
\(928\) 11519.8 + 20557.9i 0.407494 + 0.727206i
\(929\) 10521.4 6074.56i 0.371579 0.214532i −0.302569 0.953128i \(-0.597844\pi\)
0.674148 + 0.738596i \(0.264511\pi\)
\(930\) 0 0
\(931\) 15062.3 26088.6i 0.530232 0.918388i
\(932\) −16397.0 22814.0i −0.576289 0.801821i
\(933\) 0 0
\(934\) 1174.24 378.203i 0.0411374 0.0132497i
\(935\) 46517.0 1.62703
\(936\) 0 0
\(937\) −16651.7 −0.580561 −0.290281 0.956942i \(-0.593749\pi\)
−0.290281 + 0.956942i \(0.593749\pi\)
\(938\) −11760.8 + 3787.94i −0.409384 + 0.131856i
\(939\) 0 0
\(940\) −19891.4 + 14296.5i −0.690199 + 0.496063i
\(941\) −19863.7 + 34404.9i −0.688138 + 1.19189i 0.284301 + 0.958735i \(0.408238\pi\)
−0.972439 + 0.233155i \(0.925095\pi\)
\(942\) 0 0
\(943\) −859.968 + 496.503i −0.0296972 + 0.0171457i
\(944\) −34618.9 + 30533.0i −1.19359 + 1.05272i
\(945\) 0 0
\(946\) −3021.99 + 14039.9i −0.103862 + 0.482535i
\(947\) 7635.77 4408.51i 0.262016 0.151275i −0.363238 0.931696i \(-0.618329\pi\)
0.625254 + 0.780421i \(0.284995\pi\)
\(948\) 0 0
\(949\) 21351.2 + 12327.1i 0.730338 + 0.421661i
\(950\) −42782.3 + 47269.9i −1.46110 + 1.61436i
\(951\) 0 0
\(952\) 2577.00 22825.6i 0.0877322 0.777081i
\(953\) 13435.9i 0.456697i 0.973579 + 0.228348i \(0.0733326\pi\)
−0.973579 + 0.228348i \(0.926667\pi\)
\(954\) 0 0
\(955\) −5214.47 −0.176687
\(956\) 1960.99 + 19626.7i 0.0663419 + 0.663988i
\(957\) 0 0
\(958\) −3044.28 + 3363.60i −0.102668 + 0.113437i
\(959\) −13149.3 + 22775.3i −0.442767 + 0.766896i
\(960\) 0 0
\(961\) −209.265 362.458i −0.00702444 0.0121667i
\(962\) −43083.7 9273.42i −1.44394 0.310797i
\(963\) 0 0
\(964\) −19025.0 8587.84i −0.635638 0.286925i
\(965\) 9684.43 + 16773.9i 0.323060 + 0.559556i
\(966\) 0 0
\(967\) −20368.5 11759.8i −0.677361 0.391075i 0.121499 0.992592i \(-0.461230\pi\)
−0.798860 + 0.601517i \(0.794563\pi\)
\(968\) 9245.89 4031.48i 0.306998 0.133860i
\(969\) 0 0
\(970\) −9437.03 29300.0i −0.312376 0.969862i
\(971\) 47072.5i 1.55575i 0.628422 + 0.777873i \(0.283701\pi\)
−0.628422 + 0.777873i \(0.716299\pi\)
\(972\) 0 0
\(973\) 20972.0i 0.690988i
\(974\) 46716.1 15046.4i 1.53684 0.494989i
\(975\) 0 0
\(976\) 2395.36 + 11867.4i 0.0785589 + 0.389206i
\(977\) 22592.2 + 13043.6i 0.739805 + 0.427126i 0.821998 0.569490i \(-0.192859\pi\)
−0.0821936 + 0.996616i \(0.526193\pi\)
\(978\) 0 0
\(979\) −4666.34 8082.34i −0.152336 0.263854i
\(980\) −27408.1 12371.9i −0.893387 0.403272i
\(981\) 0 0
\(982\) 367.177 1705.88i 0.0119319 0.0554347i
\(983\) −7003.52 12130.5i −0.227241 0.393593i 0.729749 0.683716i \(-0.239637\pi\)
−0.956989 + 0.290123i \(0.906304\pi\)
\(984\) 0 0
\(985\) 43266.2 74939.3i 1.39957 2.42413i
\(986\) 25058.4 + 22679.5i 0.809353 + 0.732517i
\(987\) 0 0
\(988\) −65329.7 + 6527.38i −2.10366 + 0.210186i
\(989\) −10242.5 −0.329315
\(990\) 0 0
\(991\) 27361.4i 0.877056i 0.898718 + 0.438528i \(0.144500\pi\)
−0.898718 + 0.438528i \(0.855500\pi\)
\(992\) 26666.0 + 15855.6i 0.853475 + 0.507475i
\(993\) 0 0
\(994\) 3043.02 + 2754.13i 0.0971012 + 0.0878829i
\(995\) −73051.3 42176.2i −2.32752 1.34379i
\(996\) 0 0
\(997\) 12223.6 7057.31i 0.388291 0.224180i −0.293128 0.956073i \(-0.594696\pi\)
0.681419 + 0.731893i \(0.261363\pi\)
\(998\) 17645.5 + 3798.06i 0.559679 + 0.120466i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 216.4.l.b.179.20 64
3.2 odd 2 72.4.l.b.59.13 yes 64
4.3 odd 2 864.4.p.b.719.30 64
8.3 odd 2 inner 216.4.l.b.179.8 64
8.5 even 2 864.4.p.b.719.3 64
9.2 odd 6 inner 216.4.l.b.35.8 64
9.7 even 3 72.4.l.b.11.25 yes 64
12.11 even 2 288.4.p.b.239.17 64
24.5 odd 2 288.4.p.b.239.18 64
24.11 even 2 72.4.l.b.59.25 yes 64
36.7 odd 6 288.4.p.b.47.18 64
36.11 even 6 864.4.p.b.143.3 64
72.11 even 6 inner 216.4.l.b.35.20 64
72.29 odd 6 864.4.p.b.143.30 64
72.43 odd 6 72.4.l.b.11.13 64
72.61 even 6 288.4.p.b.47.17 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.b.11.13 64 72.43 odd 6
72.4.l.b.11.25 yes 64 9.7 even 3
72.4.l.b.59.13 yes 64 3.2 odd 2
72.4.l.b.59.25 yes 64 24.11 even 2
216.4.l.b.35.8 64 9.2 odd 6 inner
216.4.l.b.35.20 64 72.11 even 6 inner
216.4.l.b.179.8 64 8.3 odd 2 inner
216.4.l.b.179.20 64 1.1 even 1 trivial
288.4.p.b.47.17 64 72.61 even 6
288.4.p.b.47.18 64 36.7 odd 6
288.4.p.b.239.17 64 12.11 even 2
288.4.p.b.239.18 64 24.5 odd 2
864.4.p.b.143.3 64 36.11 even 6
864.4.p.b.143.30 64 72.29 odd 6
864.4.p.b.719.3 64 8.5 even 2
864.4.p.b.719.30 64 4.3 odd 2