Properties

Label 2160.3.c.q.1889.14
Level $2160$
Weight $3$
Character 2160.1889
Analytic conductor $58.856$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(1889,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1889");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1889.14
Character \(\chi\) \(=\) 2160.1889
Dual form 2160.3.c.q.1889.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.322433 + 4.98959i) q^{5} -9.79740i q^{7} -20.4984i q^{11} +4.54977i q^{13} -12.0050 q^{17} +30.3719 q^{19} -20.6653 q^{23} +(-24.7921 + 3.21762i) q^{25} -29.8036i q^{29} -36.5502 q^{31} +(48.8850 - 3.15901i) q^{35} +0.0295872i q^{37} -11.8553i q^{41} +81.6243i q^{43} -58.1176 q^{47} -46.9891 q^{49} +42.3523 q^{53} +(102.279 - 6.60937i) q^{55} -20.4866i q^{59} -62.6603 q^{61} +(-22.7015 + 1.46700i) q^{65} +75.0895i q^{67} +28.6668i q^{71} +111.205i q^{73} -200.831 q^{77} +96.5016 q^{79} -130.230 q^{83} +(-3.87080 - 59.8999i) q^{85} +40.9592i q^{89} +44.5760 q^{91} +(9.79290 + 151.543i) q^{95} +14.9075i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 72 q^{25} + 72 q^{31} - 408 q^{49} + 168 q^{55} - 240 q^{61} + 312 q^{79} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.322433 + 4.98959i 0.0644867 + 0.997919i
\(6\) 0 0
\(7\) 9.79740i 1.39963i −0.714325 0.699814i \(-0.753266\pi\)
0.714325 0.699814i \(-0.246734\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 20.4984i 1.86349i −0.363112 0.931745i \(-0.618286\pi\)
0.363112 0.931745i \(-0.381714\pi\)
\(12\) 0 0
\(13\) 4.54977i 0.349982i 0.984570 + 0.174991i \(0.0559897\pi\)
−0.984570 + 0.174991i \(0.944010\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −12.0050 −0.706175 −0.353087 0.935590i \(-0.614868\pi\)
−0.353087 + 0.935590i \(0.614868\pi\)
\(18\) 0 0
\(19\) 30.3719 1.59852 0.799259 0.600986i \(-0.205225\pi\)
0.799259 + 0.600986i \(0.205225\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −20.6653 −0.898492 −0.449246 0.893408i \(-0.648307\pi\)
−0.449246 + 0.893408i \(0.648307\pi\)
\(24\) 0 0
\(25\) −24.7921 + 3.21762i −0.991683 + 0.128705i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 29.8036i 1.02771i −0.857877 0.513855i \(-0.828217\pi\)
0.857877 0.513855i \(-0.171783\pi\)
\(30\) 0 0
\(31\) −36.5502 −1.17904 −0.589520 0.807754i \(-0.700683\pi\)
−0.589520 + 0.807754i \(0.700683\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 48.8850 3.15901i 1.39672 0.0902574i
\(36\) 0 0
\(37\) 0.0295872i 0.000799655i 1.00000 0.000399827i \(0.000127269\pi\)
−1.00000 0.000399827i \(0.999873\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.8553i 0.289155i −0.989494 0.144577i \(-0.953818\pi\)
0.989494 0.144577i \(-0.0461823\pi\)
\(42\) 0 0
\(43\) 81.6243i 1.89824i 0.314916 + 0.949119i \(0.398024\pi\)
−0.314916 + 0.949119i \(0.601976\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −58.1176 −1.23654 −0.618272 0.785964i \(-0.712167\pi\)
−0.618272 + 0.785964i \(0.712167\pi\)
\(48\) 0 0
\(49\) −46.9891 −0.958961
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 42.3523 0.799099 0.399550 0.916712i \(-0.369167\pi\)
0.399550 + 0.916712i \(0.369167\pi\)
\(54\) 0 0
\(55\) 102.279 6.60937i 1.85961 0.120170i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 20.4866i 0.347230i −0.984814 0.173615i \(-0.944455\pi\)
0.984814 0.173615i \(-0.0555449\pi\)
\(60\) 0 0
\(61\) −62.6603 −1.02722 −0.513609 0.858024i \(-0.671692\pi\)
−0.513609 + 0.858024i \(0.671692\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −22.7015 + 1.46700i −0.349254 + 0.0225692i
\(66\) 0 0
\(67\) 75.0895i 1.12074i 0.828243 + 0.560369i \(0.189341\pi\)
−0.828243 + 0.560369i \(0.810659\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 28.6668i 0.403757i 0.979411 + 0.201879i \(0.0647047\pi\)
−0.979411 + 0.201879i \(0.935295\pi\)
\(72\) 0 0
\(73\) 111.205i 1.52335i 0.647957 + 0.761677i \(0.275623\pi\)
−0.647957 + 0.761677i \(0.724377\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −200.831 −2.60820
\(78\) 0 0
\(79\) 96.5016 1.22154 0.610769 0.791809i \(-0.290860\pi\)
0.610769 + 0.791809i \(0.290860\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −130.230 −1.56904 −0.784520 0.620103i \(-0.787091\pi\)
−0.784520 + 0.620103i \(0.787091\pi\)
\(84\) 0 0
\(85\) −3.87080 59.8999i −0.0455389 0.704705i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 40.9592i 0.460215i 0.973165 + 0.230108i \(0.0739079\pi\)
−0.973165 + 0.230108i \(0.926092\pi\)
\(90\) 0 0
\(91\) 44.5760 0.489846
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.79290 + 151.543i 0.103083 + 1.59519i
\(96\) 0 0
\(97\) 14.9075i 0.153685i 0.997043 + 0.0768426i \(0.0244839\pi\)
−0.997043 + 0.0768426i \(0.975516\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 66.2695i 0.656134i 0.944655 + 0.328067i \(0.106397\pi\)
−0.944655 + 0.328067i \(0.893603\pi\)
\(102\) 0 0
\(103\) 134.582i 1.30662i −0.757090 0.653310i \(-0.773380\pi\)
0.757090 0.653310i \(-0.226620\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −127.716 −1.19361 −0.596803 0.802388i \(-0.703563\pi\)
−0.596803 + 0.802388i \(0.703563\pi\)
\(108\) 0 0
\(109\) −51.6828 −0.474154 −0.237077 0.971491i \(-0.576189\pi\)
−0.237077 + 0.971491i \(0.576189\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 38.9887 0.345033 0.172517 0.985007i \(-0.444810\pi\)
0.172517 + 0.985007i \(0.444810\pi\)
\(114\) 0 0
\(115\) −6.66319 103.112i −0.0579408 0.896622i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 117.618i 0.988383i
\(120\) 0 0
\(121\) −299.184 −2.47260
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −24.0484 122.665i −0.192387 0.981319i
\(126\) 0 0
\(127\) 127.914i 1.00720i −0.863937 0.503599i \(-0.832009\pi\)
0.863937 0.503599i \(-0.167991\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 143.190i 1.09305i −0.837443 0.546525i \(-0.815950\pi\)
0.837443 0.546525i \(-0.184050\pi\)
\(132\) 0 0
\(133\) 297.565i 2.23733i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −100.407 −0.732901 −0.366450 0.930438i \(-0.619427\pi\)
−0.366450 + 0.930438i \(0.619427\pi\)
\(138\) 0 0
\(139\) 166.049 1.19460 0.597299 0.802018i \(-0.296240\pi\)
0.597299 + 0.802018i \(0.296240\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 93.2631 0.652189
\(144\) 0 0
\(145\) 148.708 9.60968i 1.02557 0.0662736i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 143.836i 0.965345i 0.875801 + 0.482673i \(0.160334\pi\)
−0.875801 + 0.482673i \(0.839666\pi\)
\(150\) 0 0
\(151\) 79.0229 0.523330 0.261665 0.965159i \(-0.415728\pi\)
0.261665 + 0.965159i \(0.415728\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −11.7850 182.371i −0.0760323 1.17659i
\(156\) 0 0
\(157\) 40.4882i 0.257887i −0.991652 0.128943i \(-0.958841\pi\)
0.991652 0.128943i \(-0.0411585\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 202.466i 1.25756i
\(162\) 0 0
\(163\) 212.218i 1.30195i −0.759099 0.650975i \(-0.774360\pi\)
0.759099 0.650975i \(-0.225640\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −216.468 −1.29621 −0.648107 0.761549i \(-0.724439\pi\)
−0.648107 + 0.761549i \(0.724439\pi\)
\(168\) 0 0
\(169\) 148.300 0.877512
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −283.865 −1.64084 −0.820419 0.571763i \(-0.806260\pi\)
−0.820419 + 0.571763i \(0.806260\pi\)
\(174\) 0 0
\(175\) 31.5243 + 242.898i 0.180139 + 1.38799i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 34.3092i 0.191672i −0.995397 0.0958358i \(-0.969448\pi\)
0.995397 0.0958358i \(-0.0305524\pi\)
\(180\) 0 0
\(181\) −224.998 −1.24308 −0.621541 0.783382i \(-0.713493\pi\)
−0.621541 + 0.783382i \(0.713493\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.147628 + 0.00953991i −0.000797990 + 5.15671e-5i
\(186\) 0 0
\(187\) 246.083i 1.31595i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 314.419i 1.64617i −0.567916 0.823087i \(-0.692250\pi\)
0.567916 0.823087i \(-0.307750\pi\)
\(192\) 0 0
\(193\) 188.604i 0.977225i −0.872501 0.488613i \(-0.837503\pi\)
0.872501 0.488613i \(-0.162497\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −183.211 −0.930003 −0.465001 0.885310i \(-0.653946\pi\)
−0.465001 + 0.885310i \(0.653946\pi\)
\(198\) 0 0
\(199\) −184.489 −0.927081 −0.463540 0.886076i \(-0.653421\pi\)
−0.463540 + 0.886076i \(0.653421\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −291.998 −1.43841
\(204\) 0 0
\(205\) 59.1533 3.82256i 0.288553 0.0186466i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 622.574i 2.97882i
\(210\) 0 0
\(211\) −115.761 −0.548630 −0.274315 0.961640i \(-0.588451\pi\)
−0.274315 + 0.961640i \(0.588451\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −407.272 + 26.3184i −1.89429 + 0.122411i
\(216\) 0 0
\(217\) 358.097i 1.65022i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 54.6199i 0.247149i
\(222\) 0 0
\(223\) 313.319i 1.40502i 0.711675 + 0.702509i \(0.247937\pi\)
−0.711675 + 0.702509i \(0.752063\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 84.8965 0.373993 0.186997 0.982361i \(-0.440125\pi\)
0.186997 + 0.982361i \(0.440125\pi\)
\(228\) 0 0
\(229\) 137.919 0.602268 0.301134 0.953582i \(-0.402635\pi\)
0.301134 + 0.953582i \(0.402635\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −341.974 −1.46770 −0.733850 0.679312i \(-0.762278\pi\)
−0.733850 + 0.679312i \(0.762278\pi\)
\(234\) 0 0
\(235\) −18.7391 289.983i −0.0797406 1.23397i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 136.991i 0.573184i 0.958053 + 0.286592i \(0.0925225\pi\)
−0.958053 + 0.286592i \(0.907478\pi\)
\(240\) 0 0
\(241\) 92.7885 0.385015 0.192507 0.981296i \(-0.438338\pi\)
0.192507 + 0.981296i \(0.438338\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −15.1509 234.456i −0.0618402 0.956965i
\(246\) 0 0
\(247\) 138.185i 0.559454i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 140.501i 0.559765i 0.960034 + 0.279883i \(0.0902956\pi\)
−0.960034 + 0.279883i \(0.909704\pi\)
\(252\) 0 0
\(253\) 423.606i 1.67433i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 448.630 1.74564 0.872821 0.488041i \(-0.162288\pi\)
0.872821 + 0.488041i \(0.162288\pi\)
\(258\) 0 0
\(259\) 0.289878 0.00111922
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 270.384 1.02808 0.514038 0.857767i \(-0.328149\pi\)
0.514038 + 0.857767i \(0.328149\pi\)
\(264\) 0 0
\(265\) 13.6558 + 211.320i 0.0515312 + 0.797436i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 96.8138i 0.359903i −0.983676 0.179951i \(-0.942406\pi\)
0.983676 0.179951i \(-0.0575940\pi\)
\(270\) 0 0
\(271\) −161.859 −0.597266 −0.298633 0.954368i \(-0.596531\pi\)
−0.298633 + 0.954368i \(0.596531\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 65.9561 + 508.198i 0.239840 + 1.84799i
\(276\) 0 0
\(277\) 45.4093i 0.163933i −0.996635 0.0819663i \(-0.973880\pi\)
0.996635 0.0819663i \(-0.0261200\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 347.471i 1.23655i 0.785962 + 0.618275i \(0.212168\pi\)
−0.785962 + 0.618275i \(0.787832\pi\)
\(282\) 0 0
\(283\) 133.573i 0.471991i −0.971754 0.235995i \(-0.924165\pi\)
0.971754 0.235995i \(-0.0758350\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −116.152 −0.404709
\(288\) 0 0
\(289\) −144.881 −0.501317
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −510.677 −1.74292 −0.871462 0.490463i \(-0.836828\pi\)
−0.871462 + 0.490463i \(0.836828\pi\)
\(294\) 0 0
\(295\) 102.220 6.60556i 0.346508 0.0223917i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 94.0225i 0.314457i
\(300\) 0 0
\(301\) 799.706 2.65683
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.2038 312.649i −0.0662419 1.02508i
\(306\) 0 0
\(307\) 105.199i 0.342668i −0.985213 0.171334i \(-0.945192\pi\)
0.985213 0.171334i \(-0.0548078\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 337.291i 1.08454i −0.840205 0.542268i \(-0.817566\pi\)
0.840205 0.542268i \(-0.182434\pi\)
\(312\) 0 0
\(313\) 169.006i 0.539956i 0.962867 + 0.269978i \(0.0870164\pi\)
−0.962867 + 0.269978i \(0.912984\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 198.794 0.627111 0.313555 0.949570i \(-0.398480\pi\)
0.313555 + 0.949570i \(0.398480\pi\)
\(318\) 0 0
\(319\) −610.926 −1.91513
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −364.613 −1.12883
\(324\) 0 0
\(325\) −14.6394 112.798i −0.0450445 0.347072i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 569.402i 1.73070i
\(330\) 0 0
\(331\) −654.104 −1.97615 −0.988073 0.153985i \(-0.950789\pi\)
−0.988073 + 0.153985i \(0.950789\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −374.666 + 24.2114i −1.11841 + 0.0722727i
\(336\) 0 0
\(337\) 79.9305i 0.237183i 0.992943 + 0.118591i \(0.0378378\pi\)
−0.992943 + 0.118591i \(0.962162\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 749.221i 2.19713i
\(342\) 0 0
\(343\) 19.7016i 0.0574392i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 340.308 0.980716 0.490358 0.871521i \(-0.336866\pi\)
0.490358 + 0.871521i \(0.336866\pi\)
\(348\) 0 0
\(349\) −185.073 −0.530294 −0.265147 0.964208i \(-0.585421\pi\)
−0.265147 + 0.964208i \(0.585421\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 180.031 0.510003 0.255001 0.966941i \(-0.417924\pi\)
0.255001 + 0.966941i \(0.417924\pi\)
\(354\) 0 0
\(355\) −143.035 + 9.24312i −0.402917 + 0.0260370i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 62.2779i 0.173476i −0.996231 0.0867380i \(-0.972356\pi\)
0.996231 0.0867380i \(-0.0276443\pi\)
\(360\) 0 0
\(361\) 561.450 1.55526
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −554.867 + 35.8561i −1.52018 + 0.0982360i
\(366\) 0 0
\(367\) 379.817i 1.03492i 0.855706 + 0.517462i \(0.173123\pi\)
−0.855706 + 0.517462i \(0.826877\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 414.942i 1.11844i
\(372\) 0 0
\(373\) 630.707i 1.69090i −0.534051 0.845452i \(-0.679331\pi\)
0.534051 0.845452i \(-0.320669\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 135.600 0.359681
\(378\) 0 0
\(379\) 336.706 0.888407 0.444204 0.895926i \(-0.353487\pi\)
0.444204 + 0.895926i \(0.353487\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 91.1717 0.238046 0.119023 0.992891i \(-0.462024\pi\)
0.119023 + 0.992891i \(0.462024\pi\)
\(384\) 0 0
\(385\) −64.7546 1002.07i −0.168194 2.60277i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 245.537i 0.631201i −0.948892 0.315601i \(-0.897794\pi\)
0.948892 0.315601i \(-0.102206\pi\)
\(390\) 0 0
\(391\) 248.087 0.634492
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 31.1153 + 481.503i 0.0787730 + 1.21900i
\(396\) 0 0
\(397\) 465.923i 1.17361i 0.809728 + 0.586805i \(0.199614\pi\)
−0.809728 + 0.586805i \(0.800386\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 215.443i 0.537264i 0.963243 + 0.268632i \(0.0865715\pi\)
−0.963243 + 0.268632i \(0.913428\pi\)
\(402\) 0 0
\(403\) 166.295i 0.412643i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.606491 0.00149015
\(408\) 0 0
\(409\) 349.453 0.854408 0.427204 0.904155i \(-0.359499\pi\)
0.427204 + 0.904155i \(0.359499\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −200.715 −0.485994
\(414\) 0 0
\(415\) −41.9906 649.796i −0.101182 1.56577i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 740.404i 1.76707i 0.468361 + 0.883537i \(0.344845\pi\)
−0.468361 + 0.883537i \(0.655155\pi\)
\(420\) 0 0
\(421\) 192.237 0.456621 0.228310 0.973588i \(-0.426680\pi\)
0.228310 + 0.973588i \(0.426680\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 297.628 38.6275i 0.700301 0.0908881i
\(426\) 0 0
\(427\) 613.908i 1.43772i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 388.141i 0.900560i −0.892887 0.450280i \(-0.851324\pi\)
0.892887 0.450280i \(-0.148676\pi\)
\(432\) 0 0
\(433\) 333.349i 0.769859i 0.922946 + 0.384930i \(0.125774\pi\)
−0.922946 + 0.384930i \(0.874226\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −627.644 −1.43626
\(438\) 0 0
\(439\) −613.576 −1.39767 −0.698834 0.715284i \(-0.746297\pi\)
−0.698834 + 0.715284i \(0.746297\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −241.960 −0.546186 −0.273093 0.961988i \(-0.588047\pi\)
−0.273093 + 0.961988i \(0.588047\pi\)
\(444\) 0 0
\(445\) −204.370 + 13.2066i −0.459258 + 0.0296778i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 157.626i 0.351060i −0.984474 0.175530i \(-0.943836\pi\)
0.984474 0.175530i \(-0.0561640\pi\)
\(450\) 0 0
\(451\) −243.016 −0.538837
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.3728 + 222.416i 0.0315885 + 0.488826i
\(456\) 0 0
\(457\) 83.1829i 0.182019i −0.995850 0.0910097i \(-0.970991\pi\)
0.995850 0.0910097i \(-0.0290094\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 478.994i 1.03903i −0.854461 0.519516i \(-0.826112\pi\)
0.854461 0.519516i \(-0.173888\pi\)
\(462\) 0 0
\(463\) 14.1236i 0.0305045i −0.999884 0.0152523i \(-0.995145\pi\)
0.999884 0.0152523i \(-0.00485514\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 363.313 0.777973 0.388986 0.921244i \(-0.372825\pi\)
0.388986 + 0.921244i \(0.372825\pi\)
\(468\) 0 0
\(469\) 735.682 1.56862
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1673.17 3.53735
\(474\) 0 0
\(475\) −752.981 + 97.7251i −1.58522 + 0.205737i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 426.790i 0.891002i −0.895282 0.445501i \(-0.853026\pi\)
0.895282 0.445501i \(-0.146974\pi\)
\(480\) 0 0
\(481\) −0.134615 −0.000279865
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −74.3822 + 4.80667i −0.153365 + 0.00991065i
\(486\) 0 0
\(487\) 416.702i 0.855651i −0.903861 0.427826i \(-0.859280\pi\)
0.903861 0.427826i \(-0.140720\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 537.708i 1.09513i −0.836764 0.547564i \(-0.815555\pi\)
0.836764 0.547564i \(-0.184445\pi\)
\(492\) 0 0
\(493\) 357.792i 0.725743i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 280.860 0.565110
\(498\) 0 0
\(499\) 513.498 1.02905 0.514527 0.857474i \(-0.327968\pi\)
0.514527 + 0.857474i \(0.327968\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 689.783 1.37134 0.685669 0.727913i \(-0.259510\pi\)
0.685669 + 0.727913i \(0.259510\pi\)
\(504\) 0 0
\(505\) −330.658 + 21.3675i −0.654768 + 0.0423119i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 475.164i 0.933524i −0.884383 0.466762i \(-0.845420\pi\)
0.884383 0.466762i \(-0.154580\pi\)
\(510\) 0 0
\(511\) 1089.52 2.13213
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 671.509 43.3937i 1.30390 0.0842596i
\(516\) 0 0
\(517\) 1191.32i 2.30429i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 400.503i 0.768720i 0.923183 + 0.384360i \(0.125578\pi\)
−0.923183 + 0.384360i \(0.874422\pi\)
\(522\) 0 0
\(523\) 325.250i 0.621892i 0.950428 + 0.310946i \(0.100646\pi\)
−0.950428 + 0.310946i \(0.899354\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 438.784 0.832608
\(528\) 0 0
\(529\) −101.945 −0.192712
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 53.9391 0.101199
\(534\) 0 0
\(535\) −41.1798 637.250i −0.0769716 1.19112i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 963.201i 1.78702i
\(540\) 0 0
\(541\) −558.262 −1.03191 −0.515953 0.856617i \(-0.672562\pi\)
−0.515953 + 0.856617i \(0.672562\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16.6643 257.876i −0.0305766 0.473167i
\(546\) 0 0
\(547\) 188.007i 0.343706i 0.985123 + 0.171853i \(0.0549755\pi\)
−0.985123 + 0.171853i \(0.945025\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 905.191i 1.64281i
\(552\) 0 0
\(553\) 945.465i 1.70970i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 391.234 0.702395 0.351197 0.936301i \(-0.385775\pi\)
0.351197 + 0.936301i \(0.385775\pi\)
\(558\) 0 0
\(559\) −371.372 −0.664350
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −888.504 −1.57816 −0.789080 0.614290i \(-0.789442\pi\)
−0.789080 + 0.614290i \(0.789442\pi\)
\(564\) 0 0
\(565\) 12.5713 + 194.538i 0.0222500 + 0.344315i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 576.466i 1.01312i −0.862204 0.506561i \(-0.830917\pi\)
0.862204 0.506561i \(-0.169083\pi\)
\(570\) 0 0
\(571\) 1043.32 1.82718 0.913591 0.406634i \(-0.133298\pi\)
0.913591 + 0.406634i \(0.133298\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 512.336 66.4932i 0.891019 0.115640i
\(576\) 0 0
\(577\) 473.407i 0.820463i −0.911981 0.410231i \(-0.865448\pi\)
0.911981 0.410231i \(-0.134552\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1275.92i 2.19607i
\(582\) 0 0
\(583\) 868.153i 1.48911i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −520.307 −0.886383 −0.443192 0.896427i \(-0.646154\pi\)
−0.443192 + 0.896427i \(0.646154\pi\)
\(588\) 0 0
\(589\) −1110.10 −1.88472
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 181.237 0.305627 0.152814 0.988255i \(-0.451167\pi\)
0.152814 + 0.988255i \(0.451167\pi\)
\(594\) 0 0
\(595\) −586.864 + 37.9238i −0.986325 + 0.0637375i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 555.146i 0.926788i 0.886152 + 0.463394i \(0.153369\pi\)
−0.886152 + 0.463394i \(0.846631\pi\)
\(600\) 0 0
\(601\) 254.752 0.423880 0.211940 0.977283i \(-0.432022\pi\)
0.211940 + 0.977283i \(0.432022\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −96.4670 1492.81i −0.159450 2.46745i
\(606\) 0 0
\(607\) 579.724i 0.955064i 0.878614 + 0.477532i \(0.158469\pi\)
−0.878614 + 0.477532i \(0.841531\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 264.422i 0.432769i
\(612\) 0 0
\(613\) 582.756i 0.950663i −0.879807 0.475331i \(-0.842328\pi\)
0.879807 0.475331i \(-0.157672\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −322.513 −0.522711 −0.261355 0.965243i \(-0.584169\pi\)
−0.261355 + 0.965243i \(0.584169\pi\)
\(618\) 0 0
\(619\) −172.742 −0.279067 −0.139533 0.990217i \(-0.544560\pi\)
−0.139533 + 0.990217i \(0.544560\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 401.294 0.644131
\(624\) 0 0
\(625\) 604.294 159.543i 0.966870 0.255269i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.355194i 0.000564696i
\(630\) 0 0
\(631\) 55.0383 0.0872240 0.0436120 0.999049i \(-0.486113\pi\)
0.0436120 + 0.999049i \(0.486113\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 638.240 41.2438i 1.00510 0.0649509i
\(636\) 0 0
\(637\) 213.790i 0.335620i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 129.694i 0.202331i −0.994870 0.101166i \(-0.967743\pi\)
0.994870 0.101166i \(-0.0322572\pi\)
\(642\) 0 0
\(643\) 635.666i 0.988595i −0.869293 0.494297i \(-0.835425\pi\)
0.869293 0.494297i \(-0.164575\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −118.098 −0.182532 −0.0912659 0.995827i \(-0.529091\pi\)
−0.0912659 + 0.995827i \(0.529091\pi\)
\(648\) 0 0
\(649\) −419.942 −0.647060
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 411.896 0.630775 0.315387 0.948963i \(-0.397866\pi\)
0.315387 + 0.948963i \(0.397866\pi\)
\(654\) 0 0
\(655\) 714.458 46.1691i 1.09078 0.0704872i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1082.14i 1.64209i −0.570864 0.821045i \(-0.693392\pi\)
0.570864 0.821045i \(-0.306608\pi\)
\(660\) 0 0
\(661\) −350.371 −0.530062 −0.265031 0.964240i \(-0.585382\pi\)
−0.265031 + 0.964240i \(0.585382\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1484.73 95.9450i 2.23268 0.144278i
\(666\) 0 0
\(667\) 615.901i 0.923390i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1284.44i 1.91421i
\(672\) 0 0
\(673\) 170.817i 0.253814i −0.991915 0.126907i \(-0.959495\pi\)
0.991915 0.126907i \(-0.0405050\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1080.49 −1.59600 −0.797999 0.602659i \(-0.794108\pi\)
−0.797999 + 0.602659i \(0.794108\pi\)
\(678\) 0 0
\(679\) 146.055 0.215102
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 970.271 1.42060 0.710301 0.703898i \(-0.248559\pi\)
0.710301 + 0.703898i \(0.248559\pi\)
\(684\) 0 0
\(685\) −32.3747 500.992i −0.0472623 0.731375i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 192.693i 0.279671i
\(690\) 0 0
\(691\) 1134.57 1.64193 0.820963 0.570981i \(-0.193437\pi\)
0.820963 + 0.570981i \(0.193437\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 53.5398 + 828.518i 0.0770357 + 1.19211i
\(696\) 0 0
\(697\) 142.323i 0.204194i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 119.201i 0.170045i 0.996379 + 0.0850225i \(0.0270962\pi\)
−0.996379 + 0.0850225i \(0.972904\pi\)
\(702\) 0 0
\(703\) 0.898619i 0.00127826i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 649.269 0.918343
\(708\) 0 0
\(709\) −375.731 −0.529945 −0.264973 0.964256i \(-0.585363\pi\)
−0.264973 + 0.964256i \(0.585363\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 755.322 1.05936
\(714\) 0 0
\(715\) 30.0711 + 465.345i 0.0420575 + 0.650832i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 36.5907i 0.0508911i 0.999676 + 0.0254456i \(0.00810045\pi\)
−0.999676 + 0.0254456i \(0.991900\pi\)
\(720\) 0 0
\(721\) −1318.55 −1.82878
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 95.8968 + 738.893i 0.132271 + 1.01916i
\(726\) 0 0
\(727\) 929.324i 1.27830i 0.769082 + 0.639150i \(0.220714\pi\)
−0.769082 + 0.639150i \(0.779286\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 979.897i 1.34049i
\(732\) 0 0
\(733\) 421.172i 0.574587i −0.957843 0.287293i \(-0.907245\pi\)
0.957843 0.287293i \(-0.0927555\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1539.21 2.08849
\(738\) 0 0
\(739\) 1371.75 1.85622 0.928112 0.372302i \(-0.121432\pi\)
0.928112 + 0.372302i \(0.121432\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −395.236 −0.531946 −0.265973 0.963980i \(-0.585693\pi\)
−0.265973 + 0.963980i \(0.585693\pi\)
\(744\) 0 0
\(745\) −717.685 + 46.3777i −0.963336 + 0.0622519i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1251.28i 1.67060i
\(750\) 0 0
\(751\) −755.093 −1.00545 −0.502725 0.864446i \(-0.667669\pi\)
−0.502725 + 0.864446i \(0.667669\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 25.4796 + 394.292i 0.0337478 + 0.522241i
\(756\) 0 0
\(757\) 1443.36i 1.90668i 0.301899 + 0.953340i \(0.402379\pi\)
−0.301899 + 0.953340i \(0.597621\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1162.57i 1.52769i 0.645402 + 0.763843i \(0.276690\pi\)
−0.645402 + 0.763843i \(0.723310\pi\)
\(762\) 0 0
\(763\) 506.357i 0.663640i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 93.2093 0.121525
\(768\) 0 0
\(769\) 315.120 0.409779 0.204890 0.978785i \(-0.434316\pi\)
0.204890 + 0.978785i \(0.434316\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −505.575 −0.654043 −0.327021 0.945017i \(-0.606045\pi\)
−0.327021 + 0.945017i \(0.606045\pi\)
\(774\) 0 0
\(775\) 906.156 117.605i 1.16923 0.151748i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 360.069i 0.462219i
\(780\) 0 0
\(781\) 587.623 0.752398
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 202.020 13.0547i 0.257350 0.0166303i
\(786\) 0 0
\(787\) 315.935i 0.401442i −0.979648 0.200721i \(-0.935672\pi\)
0.979648 0.200721i \(-0.0643285\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 381.988i 0.482918i
\(792\) 0 0
\(793\) 285.090i 0.359508i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −143.948 −0.180612 −0.0903060 0.995914i \(-0.528784\pi\)
−0.0903060 + 0.995914i \(0.528784\pi\)
\(798\) 0 0
\(799\) 697.700 0.873217
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2279.52 2.83875
\(804\) 0 0
\(805\) −1010.23 + 65.2819i −1.25494 + 0.0810956i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 959.959i 1.18660i 0.804982 + 0.593300i \(0.202175\pi\)
−0.804982 + 0.593300i \(0.797825\pi\)
\(810\) 0 0
\(811\) −462.010 −0.569680 −0.284840 0.958575i \(-0.591940\pi\)
−0.284840 + 0.958575i \(0.591940\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1058.88 68.4261i 1.29924 0.0839584i
\(816\) 0 0
\(817\) 2479.08i 3.03437i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 406.587i 0.495234i −0.968858 0.247617i \(-0.920353\pi\)
0.968858 0.247617i \(-0.0796474\pi\)
\(822\) 0 0
\(823\) 763.410i 0.927594i −0.885941 0.463797i \(-0.846487\pi\)
0.885941 0.463797i \(-0.153513\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −709.076 −0.857407 −0.428704 0.903445i \(-0.641030\pi\)
−0.428704 + 0.903445i \(0.641030\pi\)
\(828\) 0 0
\(829\) 378.921 0.457082 0.228541 0.973534i \(-0.426605\pi\)
0.228541 + 0.973534i \(0.426605\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 564.103 0.677194
\(834\) 0 0
\(835\) −69.7964 1080.09i −0.0835885 1.29352i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 186.622i 0.222434i 0.993796 + 0.111217i \(0.0354748\pi\)
−0.993796 + 0.111217i \(0.964525\pi\)
\(840\) 0 0
\(841\) −47.2555 −0.0561896
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 47.8167 + 739.954i 0.0565878 + 0.875686i
\(846\) 0 0
\(847\) 2931.23i 3.46072i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.611430i 0.000718484i
\(852\) 0 0
\(853\) 374.949i 0.439565i 0.975549 + 0.219782i \(0.0705348\pi\)
−0.975549 + 0.219782i \(0.929465\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1448.08 1.68971 0.844855 0.534996i \(-0.179687\pi\)
0.844855 + 0.534996i \(0.179687\pi\)
\(858\) 0 0
\(859\) −205.005 −0.238655 −0.119328 0.992855i \(-0.538074\pi\)
−0.119328 + 0.992855i \(0.538074\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 416.605 0.482740 0.241370 0.970433i \(-0.422403\pi\)
0.241370 + 0.970433i \(0.422403\pi\)
\(864\) 0 0
\(865\) −91.5275 1416.37i −0.105812 1.63742i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1978.13i 2.27633i
\(870\) 0 0
\(871\) −341.640 −0.392239
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1201.80 + 235.612i −1.37348 + 0.269271i
\(876\) 0 0
\(877\) 617.847i 0.704500i 0.935906 + 0.352250i \(0.114583\pi\)
−0.935906 + 0.352250i \(0.885417\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 56.6963i 0.0643545i 0.999482 + 0.0321773i \(0.0102441\pi\)
−0.999482 + 0.0321773i \(0.989756\pi\)
\(882\) 0 0
\(883\) 127.768i 0.144698i −0.997379 0.0723490i \(-0.976950\pi\)
0.997379 0.0723490i \(-0.0230495\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1040.74 −1.17333 −0.586663 0.809831i \(-0.699559\pi\)
−0.586663 + 0.809831i \(0.699559\pi\)
\(888\) 0 0
\(889\) −1253.23 −1.40970
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1765.14 −1.97664
\(894\) 0 0
\(895\) 171.189 11.0624i 0.191273 0.0123603i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1089.33i 1.21171i
\(900\) 0 0
\(901\) −508.438 −0.564304
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −72.5468 1122.65i −0.0801622 1.24049i
\(906\) 0 0
\(907\) 1194.54i 1.31702i −0.752572 0.658510i \(-0.771187\pi\)
0.752572 0.658510i \(-0.228813\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1177.78i 1.29285i 0.762979 + 0.646423i \(0.223736\pi\)
−0.762979 + 0.646423i \(0.776264\pi\)
\(912\) 0 0
\(913\) 2669.51i 2.92389i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1402.89 −1.52987
\(918\) 0 0
\(919\) 92.3298 0.100468 0.0502339 0.998737i \(-0.484003\pi\)
0.0502339 + 0.998737i \(0.484003\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −130.427 −0.141308
\(924\) 0 0
\(925\) −0.0952005 0.733529i −0.000102919 0.000793004i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1261.17i 1.35756i −0.734341 0.678781i \(-0.762509\pi\)
0.734341 0.678781i \(-0.237491\pi\)
\(930\) 0 0
\(931\) −1427.15 −1.53292
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1227.85 + 79.3453i −1.31321 + 0.0848612i
\(936\) 0 0
\(937\) 762.324i 0.813579i −0.913522 0.406790i \(-0.866648\pi\)
0.913522 0.406790i \(-0.133352\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1419.27i 1.50826i 0.656727 + 0.754129i \(0.271940\pi\)
−0.656727 + 0.754129i \(0.728060\pi\)
\(942\) 0 0
\(943\) 244.994i 0.259803i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1036.68 1.09470 0.547351 0.836903i \(-0.315636\pi\)
0.547351 + 0.836903i \(0.315636\pi\)
\(948\) 0 0
\(949\) −505.956 −0.533147
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.5762 0.0289362 0.0144681 0.999895i \(-0.495395\pi\)
0.0144681 + 0.999895i \(0.495395\pi\)
\(954\) 0 0
\(955\) 1568.82 101.379i 1.64275 0.106156i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 983.732i 1.02579i
\(960\) 0 0
\(961\) 374.920 0.390135
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 941.060 60.8124i 0.975191 0.0630180i
\(966\) 0 0
\(967\) 964.705i 0.997627i 0.866709 + 0.498813i \(0.166231\pi\)
−0.866709 + 0.498813i \(0.833769\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 117.707i 0.121222i 0.998161 + 0.0606111i \(0.0193049\pi\)
−0.998161 + 0.0606111i \(0.980695\pi\)
\(972\) 0 0
\(973\) 1626.85i 1.67199i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 932.883 0.954845 0.477422 0.878674i \(-0.341571\pi\)
0.477422 + 0.878674i \(0.341571\pi\)
\(978\) 0 0
\(979\) 839.598 0.857607
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −291.311 −0.296349 −0.148174 0.988961i \(-0.547340\pi\)
−0.148174 + 0.988961i \(0.547340\pi\)
\(984\) 0 0
\(985\) −59.0732 914.146i −0.0599728 0.928067i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1686.79i 1.70555i
\(990\) 0 0
\(991\) −100.973 −0.101890 −0.0509450 0.998701i \(-0.516223\pi\)
−0.0509450 + 0.998701i \(0.516223\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −59.4854 920.525i −0.0597843 0.925151i
\(996\) 0 0
\(997\) 326.771i 0.327755i −0.986481 0.163877i \(-0.947600\pi\)
0.986481 0.163877i \(-0.0524001\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.c.q.1889.14 24
3.2 odd 2 inner 2160.3.c.q.1889.11 24
4.3 odd 2 1080.3.c.c.809.14 yes 24
5.4 even 2 inner 2160.3.c.q.1889.12 24
12.11 even 2 1080.3.c.c.809.11 24
15.14 odd 2 inner 2160.3.c.q.1889.13 24
20.19 odd 2 1080.3.c.c.809.12 yes 24
60.59 even 2 1080.3.c.c.809.13 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.3.c.c.809.11 24 12.11 even 2
1080.3.c.c.809.12 yes 24 20.19 odd 2
1080.3.c.c.809.13 yes 24 60.59 even 2
1080.3.c.c.809.14 yes 24 4.3 odd 2
2160.3.c.q.1889.11 24 3.2 odd 2 inner
2160.3.c.q.1889.12 24 5.4 even 2 inner
2160.3.c.q.1889.13 24 15.14 odd 2 inner
2160.3.c.q.1889.14 24 1.1 even 1 trivial