Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2160,3,Mod(1889,2160)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2160.1889");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 2160.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(58.8557371018\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 1080) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1889.1 | 0 | 0 | 0 | −4.67464 | − | 1.77419i | 0 | − | 9.67132i | 0 | 0 | 0 | |||||||||||||||
1889.2 | 0 | 0 | 0 | −4.67464 | + | 1.77419i | 0 | 9.67132i | 0 | 0 | 0 | ||||||||||||||||
1889.3 | 0 | 0 | 0 | −4.52542 | − | 2.12616i | 0 | 0.343255i | 0 | 0 | 0 | ||||||||||||||||
1889.4 | 0 | 0 | 0 | −4.52542 | + | 2.12616i | 0 | − | 0.343255i | 0 | 0 | 0 | |||||||||||||||
1889.5 | 0 | 0 | 0 | −4.01139 | − | 2.98475i | 0 | − | 2.17094i | 0 | 0 | 0 | |||||||||||||||
1889.6 | 0 | 0 | 0 | −4.01139 | + | 2.98475i | 0 | 2.17094i | 0 | 0 | 0 | ||||||||||||||||
1889.7 | 0 | 0 | 0 | −2.12464 | − | 4.52614i | 0 | 4.02248i | 0 | 0 | 0 | ||||||||||||||||
1889.8 | 0 | 0 | 0 | −2.12464 | + | 4.52614i | 0 | − | 4.02248i | 0 | 0 | 0 | |||||||||||||||
1889.9 | 0 | 0 | 0 | −1.72017 | − | 4.69478i | 0 | 13.6186i | 0 | 0 | 0 | ||||||||||||||||
1889.10 | 0 | 0 | 0 | −1.72017 | + | 4.69478i | 0 | − | 13.6186i | 0 | 0 | 0 | |||||||||||||||
1889.11 | 0 | 0 | 0 | −0.322433 | − | 4.98959i | 0 | − | 9.79740i | 0 | 0 | 0 | |||||||||||||||
1889.12 | 0 | 0 | 0 | −0.322433 | + | 4.98959i | 0 | 9.79740i | 0 | 0 | 0 | ||||||||||||||||
1889.13 | 0 | 0 | 0 | 0.322433 | − | 4.98959i | 0 | 9.79740i | 0 | 0 | 0 | ||||||||||||||||
1889.14 | 0 | 0 | 0 | 0.322433 | + | 4.98959i | 0 | − | 9.79740i | 0 | 0 | 0 | |||||||||||||||
1889.15 | 0 | 0 | 0 | 1.72017 | − | 4.69478i | 0 | − | 13.6186i | 0 | 0 | 0 | |||||||||||||||
1889.16 | 0 | 0 | 0 | 1.72017 | + | 4.69478i | 0 | 13.6186i | 0 | 0 | 0 | ||||||||||||||||
1889.17 | 0 | 0 | 0 | 2.12464 | − | 4.52614i | 0 | − | 4.02248i | 0 | 0 | 0 | |||||||||||||||
1889.18 | 0 | 0 | 0 | 2.12464 | + | 4.52614i | 0 | 4.02248i | 0 | 0 | 0 | ||||||||||||||||
1889.19 | 0 | 0 | 0 | 4.01139 | − | 2.98475i | 0 | 2.17094i | 0 | 0 | 0 | ||||||||||||||||
1889.20 | 0 | 0 | 0 | 4.01139 | + | 2.98475i | 0 | − | 2.17094i | 0 | 0 | 0 | |||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2160.3.c.q | 24 | |
3.b | odd | 2 | 1 | inner | 2160.3.c.q | 24 | |
4.b | odd | 2 | 1 | 1080.3.c.c | ✓ | 24 | |
5.b | even | 2 | 1 | inner | 2160.3.c.q | 24 | |
12.b | even | 2 | 1 | 1080.3.c.c | ✓ | 24 | |
15.d | odd | 2 | 1 | inner | 2160.3.c.q | 24 | |
20.d | odd | 2 | 1 | 1080.3.c.c | ✓ | 24 | |
60.h | even | 2 | 1 | 1080.3.c.c | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1080.3.c.c | ✓ | 24 | 4.b | odd | 2 | 1 | |
1080.3.c.c | ✓ | 24 | 12.b | even | 2 | 1 | |
1080.3.c.c | ✓ | 24 | 20.d | odd | 2 | 1 | |
1080.3.c.c | ✓ | 24 | 60.h | even | 2 | 1 | |
2160.3.c.q | 24 | 1.a | even | 1 | 1 | trivial | |
2160.3.c.q | 24 | 3.b | odd | 2 | 1 | inner | |
2160.3.c.q | 24 | 5.b | even | 2 | 1 | inner | |
2160.3.c.q | 24 | 15.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2160, [\chi])\):
\( T_{7}^{12} + 396T_{7}^{10} + 52086T_{7}^{8} + 2621876T_{7}^{6} + 38464065T_{7}^{4} + 131476872T_{7}^{2} + 14961424 \) |
\( T_{17}^{12} - 2322 T_{17}^{10} + 1867761 T_{17}^{8} - 616559040 T_{17}^{6} + 76935826944 T_{17}^{4} + \cdots + 39999047270400 \) |